Arachnida: Araneida) Found in Fort Washington and Piscataway National Parks, Maryland

Total Page:16

File Type:pdf, Size:1020Kb

Arachnida: Araneida) Found in Fort Washington and Piscataway National Parks, Maryland AN ANNOTATED LIST OF THE SPIDERS (ARACHNIDA: ARANEIDA) FOUND IN FORT WASHINGTON AND PISCATAWAY NATIONAL PARKS, MARYLAND Theodore W. Suman Principal Investigator Theodore W. Suman, Ph.D. 7591 Polly's Hill Lane Easton, Maryland 21601 (410) 822 1204 [email protected] 1 AN ANNOTATED LIST OF THE SPIDERS (ARACHNIDA: ARANEIDA) FOUND IN FORT WASHINGTON AND PISCATAWAYNATIONALPARKS,MARYLAND Theodore W. Suman The spiders (Arachnida: Araneida) listed in this report represent the results of a two year (2002 - 2003) survey conducted in Fort Washington and Piscataway National Parks located in southwestern Prince Georges and northwestern Charles Counties, Maryland. This survey is part of the National Park Service's effort to broaden knowledge of the biodiversity occurring within the National Park system and was conducted under Permit # NACE - 2002 - SCI - 0005 and Park­ assigned Study Id # NACE - 00018. Table 1 is an alphabetical list (subfamily, genus, species) of all of the spiders found in both Parks. Information on the number of specimens collected, sex, date(s) collected, collecting location(s), and habitat(s) is also included. Table 2 lists the species found in only one or the other of the two Parks. General information on the collecting dates, collecting and extraction methods, and collecting sites is described below. COLLECTING DATES Collecting dates were spread throughout the spring to fall seasons of 2002 and 2003 to maximize the probability of finding all of the species present. Collecting dates for each Park are listed separately. FORT WASHINGTON 2002-27 March; 2,23 April; 20 May; 21,23 Aug.; 12,25 Sept. 2003 - 8 May; 12,26 June PISCATAWAY PARK 2002-9,16 April; 21 May; 24 June; 1 July 2003 - 20,30 May; 5 Nov. 2 COLLECTING AND EXTRACTING METHODS Specimens were collected on site by the following methods. - A standard insect sweep net used both for sweeping vegetation and beating vegetation as high as could be reached. - Hand sweeping about one square meter of leaf litter for later extraction of specimens in lab. - Pitfall traps using plastic drinking cups (15 cm. in dia.) with non-toxic antifreeze for a preservative. The traps were left in place about one week - Hand collecting specimens from webs, dead leaves, etc. Extraction in the lab. of specimens from leaf litter and ofller debris utilized Berlese funnels (15 watt light bulb hung over the top) and Winkler mesh bags. The funnels and mesh bags operated for several days each until no more specimens were recovered. COLLECTING SITES The collecting sites selected represent different types of habitats. Sites within each park are designated in Table 1 with the numbers I through 3 for Fort Washington and with numbers 4 through 7 for Piscataway Park. The specific habitats within each site are designated with letters. FORT WASIDNGTON 1. Southeastern part of Park, Includes gravel service road beyond locked chain to Bunker B. a. Open grass areas and young upland woods on west side of service road about halfway between locked chain and Bunker B. b. Deep gully adjacent to and north of Bunker B. c. In, around, and on top of Bunker B. 3 2. Western part of Park near public fishing area and lighthouse. Includes grass area and adjacent woods to parking lot, around old brick building, and edge of Potomac River near lighthouse. a. Beach and misc. debris used as bulk heading along Potomac River. b. Debris around foundation of old brick building near river. c. Young stand of trees about halfway between parking lot and river. d. Vegetation (grass, trees, edge veg.) adjacent to parking lot. 3. Northeastern part of Park. Includes sites west of service road/trail that begins on right (north) just before Entrance Station to park, and picnic area and adjacent woods on west side of site. · a. Wooded area and gully west of service road/trail. Located about 2/10 kilometer from locked chain at entrance to service road/trail. b. Area of mowed grass and edge vegetation on west side of service road/trail about halfway between entrance to road and site 3a. c. Grass area around picnic tables, adjacent woods, and gully in interior of woods. Site located on west side of site 3. PISCATAWAY PARK 4. Mockley Point and adjacent Indian grounds. a. Mockley Point. Includes agricultural field/meadow along dirt road leading to Point, and woods and beach area along Potomac River at end of dirt road. b. Areas adjacent to Indian grounds. Includes dry and swampy woods on eastern side of Accokeek Creek. 4 5. Park on west side of Accokeek Creek. Includes meadows along access road, woods adjacent to parking lot, and western bank of Accokeek Creek near mouth and western end of boardwalk. a. Meadows on both sides of access road leading to parking lot. b. Wooded bank along western side of Accokeek Creek near mouth. c. Dry woods adjacent to parking lot between lot and Potomac River. 6. National Colonial Farm grounds. a. Maintenance and storage buildings and museum barn. Includes area around foundation of buildings, in buildings, and nearby young patch of woods and dry stream bed. b. Area along Bluebird trail. Includes meadow just east of trail, woods just west of trail, and in gully adjacent to trail. 7. Marshall Hall. Collecting sites located just northeast of end of entrance road. a. Along Potomac River. Includes beach debris, and woody and herbaceous riparian vegetation. b. Wooded area northeast of historic cemetery. Includes vegetation in bottom of wet gully, sides of gully, and upland woods. 5 RESULTS AND DISCUSSION Table 1 lists all of the spider species found during this survey. Table 2 lists the species occurring in only one or the other of the two Parks. A total of about 113 species belonging to 84 genera and 24 families were found. For comparison, the last comprehensive list of spiders in Maryland was published by Muma (1945). Muma listed 406 species belonging to 179 genera and 26 families. Since Muma's work in the 1940's however, there have been many changes in spider taxonomy at all levels (family, genus, species) making a comparison difficult. Spiders are solitary predators with few individuals of the different species collected. Further complicating this spider survey is that many individuals collected are immature making identifications very difficult. If immature specimens could be identified to at least genus, they were included. No threatened, endangered or invasive species were found. Most of the species are fairly common and probably would not require any special conservation measures beyond maintaining the Parks in at least their present condition. The only poisonous spider found was the Black Widow (Latrodectus mactans) A female was collected on the National Colonial Farm grounds by farm personnel. The Brown Recluse spider (Loxosceles reclusa) has been found in Maryland but was not found during this survey. Because specialized equipment and methods, not available for this survey, are required for sampling in the forest canopy, spiders from this habitat were not collected. Levi (1973), for example, indicated that numerous small orb-weavers (Araneidae: Araneus) may occur in the forest tree-crowns. Future surveys of the fauna in the Parks should include this habitat. 6 TABLEl Table 1 is an alphabetical list (by family, genus and species) of all of the spider species found in both Parks during this survey. Following the name of each species is information on: 1. The total number and sex of the specimens collected (m. = male; f = female; imm. = immature). 2. The National Park Service catalog numbers (FOWA ..... = Fort Washington; PISC ..... = Piscataway Park). 3. Site(s) and date(s) represent where the specimens were collected within the Parks and the day(s) and month(s) when the specimens were collected. 4. The habitat(s) of the specimens and the method(s) of collecting and extracting. AGELENIDAE Agelenopsis sp.; 1 imm.; FOWA - 13656; Site - 1b; 2002 - 23 April Habitat - leaf litter in gully; Berlese Cicurina brevis (Emerton); 1 f.; PISC-21476 Site - 4b; 2002 - 21 May Habitat - rotten wood in swampy woods Tegenaria domesticus (Clerck); 1 imm.; PISC-21477 Site - 6a; 2002 - 21 May Habitat - on web in museum biding. Tegenaria sp.; 2 imm.'s; PISC-21478 Site - 6a; 2002 - 21 May Habitat- in museum & hay storage hidings. 7 Wadotes calcaratus (Keyserling); 2 m. 's FOWA-13657 Site - 3a; 2002 - 2 April; 2003 - 8-20 May Habitat - leaf litter in woods; Berlese, Winkler Wadotes sp.; 2 imm.'s FOWA-13658; PISC-21479 Sites- lb, 6b; 2002- 9, 23 April Habitat - leaf litter in gully; Berlese AMAUROBIIDAE Amaurobius sp.; 1 imm. PISC 21480 Site - 6a; 2002 - 21 May Habitat - web in museum biding. ANYPHAENIDAE Anyphaena fraterna (Banks); I imm. FOWA-13659 Site - 3a; 2003 - 8-20 May Habitat - pitfall trap in woods Anyphaena sp.; 28 imm.'s FOWA-13660;PISC-21481 Sites - la, lb, le, 2d, 3a, 4a, 5c, 6b, 7a 2002 -2,9,16,23 April; 21 May; I July; 12,25 Sept. 2003 - 26 June; 5 Nov. Habitat - sweeping vegetation in woods Hibana gracilis (Hentz); 3 imm. 's FOWA- 13661; PISC-21482 Sites- la, 3a, 7b; 2002-2 April; 12 Sept.; 2003 - 5 Nov. Habitat - litter in open areas & in woods; sweeping, Berlese Wulfila alba (Hentz); 1 m., 1 f PISC-21483 Site - 5c; 2002 - 1 July Habitat - beating dead leaves in woods 8 Wulfila saltabunda (Hentz); 1 f PISC-21484 Site - 6b; 2003 - 20 May Habitat - sweeping along trail Wulfila sp.; 13 imm. 's FOWA - 13662; PISC - 21485 Sites- la, 3a, 4a, 4b, 6b; 2002- 2,9,16,23 April; 21 May Habitat - sweeping veg. along beach & in woods, dead leaves in gully ARANEIDAE Araneus marmoreus Clerck; 1 f. FOWA-13663 Site - le; 2002 - 25 Sept.
Recommended publications
  • Arachnids (Excluding Acarina and Pseudoscorpionida) of the Wichita Mountains Wildlife Refuge, Oklahoma
    OCCASIONAL PAPERS THE MUSEUM TEXAS TECH UNIVERSITY NUMBER 67 5 SEPTEMBER 1980 ARACHNIDS (EXCLUDING ACARINA AND PSEUDOSCORPIONIDA) OF THE WICHITA MOUNTAINS WILDLIFE REFUGE, OKLAHOMA JAMES C. COKENDOLPHER AND FRANK D. BRYCE The Wichita Mountains are located in eastern Greer, southern Kiowa, and northwestern Comanche counties in Oklahoma. Since their formation more than 300 million years ago, these rugged mountains have been fragmented and weathered, until today the highest peak (Mount Pinchot) stands only 756 meters above sea level (Tyler, 1977). The mountains are composed predominantly of granite and gabbro. Forests of oak, elm, and walnut border most waterways, while at elevations from 153 to 427 meters prair­ ies are the predominant vegetation type. A more detailed sum­ mary of the climatic and biotic features of the Wichitas has been presented by Blair and Hubbell (1938). A large tract of land in the eastern range of the Wichita Moun­ tains (now northeastern Comanche County) was set aside as the Wichita National Forest by President McKinley during 1901. In 1905, President Theodore Roosevelt created a game preserve on those lands managed by the Forest Service. Since 1935, this pre­ serve has been known as the Wichita Mountains Wildlife Refuge. Numerous papers on Oklahoma spiders have been published (Bailey and Chada, 1968; Bailey et al., 1968; Banks et al, 1932; Branson, 1958, 1959, 1966, 1968; Branson and Drew, 1972; Gro- thaus, 1968; Harrel, 1962, 1965; Horner, 1975; Rogers and Horner, 1977), but only a single, comprehensive work (Banks et al., 1932) exists covering all arachnid orders in the state. Further additions and annotations to the arachnid fauna of Oklahoma can be found 2 OCCASIONAL PAPERS MUSEUM TEXAS TECH UNIVERSITY in recent revisionary studies.
    [Show full text]
  • Direct and Indirect Effects of White-Tailed Deer (Odocoileus Virginianus) Herbivory on Beetle and Spider Assemblages in Northern Wisconsin
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2014 Direct and Indirect Effects of White-Tailed Deer (Odocoileus virginianus) Herbivory on Beetle and Spider Assemblages in Northern Wisconsin Elizabeth J. Sancomb Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Biology Commons Repository Citation Sancomb, Elizabeth J., "Direct and Indirect Effects of White-Tailed Deer (Odocoileus virginianus) Herbivory on Beetle and Spider Assemblages in Northern Wisconsin" (2014). Browse all Theses and Dissertations. 1375. https://corescholar.libraries.wright.edu/etd_all/1375 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. DIRECT AND INDIRECT EFFECTS OF WHITE-TAILED DEER (Odocoileus virginianus) HERBIVORY ON BEETLE AND SPIDER ASSEMBLAGES IN NORTHERN WISCONSIN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Elizabeth Jo Sancomb B.S., University of Maryland, 2011 2014 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL July 21, 2014 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY ElizABeth Jo SAncomb ENTITLED Direct And indirect effects of white-tailed deer (Odocoileus virginianus) herBivory on Beetle And spider AssemblAges in Northern Wisconsin BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science ___________________________________________ Thomas Rooney, Ph.D. Thesis Director ___________________________________________ David Goldstein, Ph.D., Chair DepArtment of BiologicAl Sciences College of Science And MAthematics Committee on FinAl ExAminAtion ____________________________________________ Don Cipollini, Ph.D.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • A Summary List of Fossil Spiders
    A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature.
    [Show full text]
  • American M1useum Novitates
    AMERICAN M1USEUM NOVITATES Published by Number 1334 TiE AMERICAN MUSEUM OF NATURAL HISTORY February 21, 1947 New York City -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ NORTH AMERICAN AGELENIDAE OF THE GENUS WADOTES CHAMBERLIN' BY MARTIN H. MUMA2 This review of North American spiders much smaller than the anterior laterals, an of the genus Wadotes Chamberlin is based anteriorly attached median longitudinal on material in the collections of the Ameri- tubercle or scape on the epigynum, and two can Museum of Natural History, New York, caudally projecting processes at the base of New York, the United States National the tarsus of the male palpus. Chamber- Museum, Washington, D. C., and the lin also stated that the legs of these spiders Museum of Comparative Zo6logy, Cam- are shorter than in Coras Simon which bridge, Massachusetts. Spiders in the causes the spines to be closer together. author's private collection were also studied. Wadotes is closely related to Coras, the The types of the single new species de- spiders of the two genera appearing very scribed here are deposited in the collection much alike in size, shape, and coloration on of the American Museum of Natural His- gross examination. Closer examination tory. reveals several differences which seem to be Acknowledgments are due Dr. W. J. of generic importance. Among these, in Gertsch of the American Museum, Dr. R. addition to those given by Chamberlin, are E. Blackwelder of the United States Na- the ratio of cephalic to thoracic width and tional Museum, and Miss E. B. Bryant of the space occupied by the eye area. In the Museum of Comparative Zo6logy for Coras the cephalic width is to the thoracic their cooperation in providing material for width as 3.5 to 6, while in Wadotes the ratio this study.
    [Show full text]
  • Estimating Spider Species Richness in a Southern Appalachian Cove Hardwood Forest
    1996. The Journal of Arachnology 24:111-128 ESTIMATING SPIDER SPECIES RICHNESS IN A SOUTHERN APPALACHIAN COVE HARDWOOD FOREST Jonathan A. Coddington: Dept. of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560 USA Laurel H. Young and Frederick A. Coyle: Dept. of Biology, Western Carolina University, Cullowhee, North Carolina 28723 USA ABSTRACT. Variation in species richness at the landscape scale is an important consideration in con- servation planning and natural resource management. To assess the ability of rapid inventory techniques to estimate local species richness, three collectors sampled the spider fauna of a "wilderness" cove forest in the southern Appalachians for 133 person-hours during September and early October 1991 using four methods: aerial hand collecting, ground hand collecting, beating, and leaf litter extraction. Eighty-nine species in 64 genera and 19 families were found. To these data we applied various statistical techniques (lognormal, Poisson lognormal, Chao 1, Chao 2, jackknife, and species accumulation curve) to estimate the number of species present as adults at this site. Estimates clustered between roughly 100-130 species with an outlier (Poisson lognormal) at 182 species. We compare these estimates to those from Bolivian tropical forest sites sampled in much the same way but less intensively. We discuss the biases and errors such estimates may entail and their utility for inventory design. We also assess the effects of method, time of day and collector on the number of adults, number of species and taxonomic composition of the samples and discuss the nature and importance of such effects. Method, collector and method-time of day interaction significantly affected the numbers of adults and species per sample; and each of the four methods collected clearly different sets of species.
    [Show full text]
  • Selection for Imperfection: a Review of Asymmetric Genitalia 2 in Araneomorph Spiders (Araneae: Araneomorphae)
    bioRxiv preprint doi: https://doi.org/10.1101/704692; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Selection for imperfection: A review of asymmetric genitalia 2 in araneomorph spiders (Araneae: Araneomorphae). 3 4 5 6 F. ANDRES RIVERA-QUIROZ*1, 3, MENNO SCHILTHUIZEN2, 3, BOOPA 7 PETCHARAD4 and JEREMY A. MILLER1 8 1 Department Biodiversity Discovery group, Naturalis Biodiversity Center, 9 Darwinweg 2, 2333CR Leiden, The Netherlands 10 2 Endless Forms Group, Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, 11 The Netherlands 12 3 Institute for Biology Leiden (IBL), Leiden University, Sylviusweg 72, 2333BE 13 Leiden, The Netherlands. 14 4 Faculty of Science and Technology, Thammasat University, Rangsit, Pathum Thani, 15 12121 Thailand. 16 17 18 19 Running Title: Asymmetric genitalia in spiders 20 21 *Corresponding author 22 E-mail: [email protected] (AR) 23 bioRxiv preprint doi: https://doi.org/10.1101/704692; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 24 Abstract 25 26 Bilateral asymmetry in the genitalia is a rare but widely dispersed phenomenon in the 27 animal tree of life. In arthropods, occurrences vary greatly from one group to another 28 and there seems to be no common explanation for all the independent origins.
    [Show full text]
  • A New Spider Genus (Araneae: Linyphiidae: Erigoninae) from a Tropical Montane Cloud Forest of Mexico
    European Journal of Taxonomy 731: 97–116 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.731.1207 www.europeanjournaloftaxonomy.eu 2021 · Ibarra-Núñez G. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:0EFF0D93-EF7D-4943-BEBF-995E25D34544 A new spider genus (Araneae: Linyphiidae: Erigoninae) from a tropical montane cloud forest of Mexico Guillermo IBARRA-NÚÑEZ 1,*, David CHAMÉ-VÁZQUEZ 2 & Julieta MAYA-MORALES 3 1,2,3 El Colegio de la Frontera Sur, Unidad Tapachula. Carretera Antiguo Aeropuerto km 2.5, Apdo. Postal 36, Tapachula, Chiapas 30700, Mexico. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:61F4CDEF-04B8-4F8E-83DF-BFB576205F7A 2 urn:lsid:zoobank.org:author:CDA7A4DA-D0CF-4445-908A-3096B1C8D55D 3 urn:lsid:zoobank.org:author:BE1F67AB-94A6-45F7-A311-8C99E16139BA Abstract. A new genus and species of spider (Araneae, Linyphiidae, Erigoninae) from a tropical montane cloud forest of Mexico is described from both male and female specimens, Xim trenzado gen. et sp. nov. A phylogenetic parsimony analysis situates Xim gen. nov. as a distinct genus among the distal Erigoninae. Xim gen. nov. is sister to a clade including Ceratinopsis, Tutaibo and Sphecozone, but differs from those genera by having a high cymbium, large paracymbium, short straight embolus, male cheliceral stridulatory striae widely and evenly spaced, both sexes with a post-ocular lobe, male with two series of prolateral macrosetae on femur I, and the female by having strongly oblong, u-shaped spermathecae.
    [Show full text]
  • SA Spider Checklist
    REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region.
    [Show full text]
  • Influence of Web-Monitoring Tactics on the Density of Mitochondria
    JOURNAL OF MORPHOLOGY2t3:34t-347 (1992) Influenceof Web-MonitoringTactics on the Densityof Mitochondriain LegMuscles of theSpider Family Uloboridae BRENT D. OPELL ANo DAVID C, KONUR ni a Po t v t ec h n i c I ns t i t ut e qn d s tat e (rn iu e r si tv, Er:ff:w, {,i;: l:y; [; ;ri ABSTRACT From electron micrographs we determined the ratio of mitochon- drial to myofibril cross sectional area in cells of the first leg anterior depressor muscles of adult females of four spider species, each from a different genus. Specieswith more active web-monitoring tactics and greater tracheal supplies to their first legs have muscle cells that are better supplied with mitochondria than those with less active tactics and less well-developed tracheal systems. These results demonstrate that, even in homologous tissues of closely related species,mitochondrial supply can change to accommodate changesin metabolic activity. o 1992Wiley-Liss, Inc. Mitochondria are the sites of oxidative single monitoring line and shake the web '87a).In phosphorylation and are found in greater when a prey strikes it (Opell, both numbers in more active tissues.For example, orb-web and reduced-web spiders, the first in insects mitochondrial densitv is low in legs play an important role in web monitor- small visceral muscles and inactive fat cells ing and manipulation. (Dean '85; '68; 'ZB) et al., Smith, Sohal, and As summarized in Table 1, previous stud- high in metabolically active tissues such as ies show that these differences in web-moni- flight muscles (Chapman,'54; Edwards and toring tactics are reflected in both the web- Ruska, '55; Levenbook '56; and Williams, monitoring force expressed by a species and Smith, '62), (Smith, '68; Malpighian tubules the degree of its tracheal development (Opell, Wigglesworth and Salpeter, '62), '87a,b).
    [Show full text]
  • List of Ohio Spiders
    List of Ohio Spiders 2 August 2021 Richard A. Bradley Department of EEO Biology Ohio State University Museum of Biological Diversity 1315 Kinnear Road Columbus, OH 43212 This list is based on published specimen records of spider species from Ohio. Additional species that have been recorded during the Ohio Spider Survey (beginning 1994) are also included. I would very much appreciate any corrections; please mail them to the above address or email ([email protected]). 676 [+6] Species Mygalomorphae Antrodiaetidae (foldingdoor spiders) (2) Antrodiaetus robustus (Simon, 1890) Antrodiaetus unicolor (Hentz, 1842) Atypidae (purseweb spiders) (3) Sphodros coylei Gertsch & Platnick, 1980 Sphodros niger (Hentz, 1842) Sphodros rufipes (Latreille, 1829) Euctenizidae (waferdoor spiders) (1) Myrmekiaphila foliata Atkinson, 1886 Halonoproctidae (trapdoor spiders) (1) Ummidia audouini (Lucas, 1835) Araneomorphae Agelenidae (funnel weavers) (14) Agelenopsis emertoni Chamberlin & Ivie, 1935 | Agelenopsis kastoni Chamberlin & Ivie, 1941 | Agelenopsis naevia (Walckenaer, 1805) grass spiders Agelenopsis pennsylvanica (C.L. Koch, 1843) | Agelnopsis potteri (Blackwell, 1846) | Agelenopsis utahana (Chamberlin & Ivie, 1933) | Coras aerialis Muma, 1946 Coras juvenilis (Keyserling, 1881) Coras lamellosus (Keyserling, 1887) Coras medicinalis (Hentz, 1821) Coras montanus (Emerton, 1889) Tegenaria domestica (Clerck, 1757) barn funnel weaver In Wadotes calcaratus (Keyserling, 1887) Wadotes hybridus (Emerton, 1889) Amaurobiidae (hackledmesh weavers) (2) Amaurobius
    [Show full text]
  • 1 CHECKLIST of ILLINOIS SPIDERS Over 500 Spider Species Have Been
    1 CHECKLIST OF ILLINOIS SPIDERS Over 500 spider species have been reported to occur in Illinois. This checklist includes 558 species, and there may be records in the literature that have eluded the author’s attention. This checklist of Illinois species has been compiled from sources cited below. The initials in parentheses that follow each species name and authorship in the list denote the paper or other source in which the species was reported. Locality data, dates of collection, and other information about each species can be obtained by referring to the indicated sources. (AAS) American Arachnological Society Spider Species List for North America, published on the web site of the American Arachnological Society: http://americanarachnology.org/AAS_information.html (B&N) Beatty, J. A. and J. M. Nelson. 1979. Additions to the Checklist of Illinois Spiders. The Great Lakes Entomologist 12:49-56. (JB) Beatty, J. A. 2002. The Spiders of Illinois and Indiana, their Geolographical Affinities, and an Annotated Checklist. Proc. Ind. Acad. Sci. 1:77-94. (BC) Cutler, B. 1987. A Revision of the American Species of the Antlike Jumping Spider Genus Synageles (Araneae: Salticidae). J. Arachnol.15:321-348. (G&P) Gertsch, W. J. And N. I. Platnick. 1980. A Revision of the American Spiders of the Family Atypidae (Araneae, Mygalomorphae). Amer. Mus. Novitates 2704:1-39. (BK) Kaston, B. J. 1955. Check List of Illinois Spiders. Trans. Ill. State Acad. Sci. 47: 165- 172. (SK) Kendeigh, S. C. 1979. Invertebrate Populations of the Deciduous Forest Fluctuations and Relations to Weather. Illinois Biol. Monog. 50:1-107.
    [Show full text]