Quantum Field Theory and the Standard Model Matthew D

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Field Theory and the Standard Model Matthew D Cambridge University Press 978-1-107-03473-0 - Quantum Field Theory and the Standard Model Matthew D. Schwartz Frontmatter More information Quantum Field Theory and the Standard Model Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide vari- ety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independent study. MATTHEW D. SCHWARTZ is an Associate Professor of Physics at Harvard University. He is one of the world’s leading experts on quantum field theory and its applications to the Standard Model. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03473-0 - Quantum Field Theory and the Standard Model Matthew D. Schwartz Frontmatter More information © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03473-0 - Quantum Field Theory and the Standard Model Matthew D. Schwartz Frontmatter More information Quantum Field Theory and the Standard Model MATTHEW D. SCHWARTZ Harvard University © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03473-0 - Quantum Field Theory and the Standard Model Matthew D. Schwartz Frontmatter More information University Printing House, Cambridge CB2 8BS, United Kingdom Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9781107034730 c M. Schwartz 2014 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2014 4th printing 2015 Printed in the United States of America by Sheridan Books, Inc. A catalog record for this publication is available from the British Library Library of Congress Cataloging in Publication data Schwartz, Matthew Dean, 1976– Quantum field theory and the standard model / Matthew D. Schwartz. pages cm ISBN 978-1-107-03473-0 (hardback) 1. Quantum field theory – Textbooks. 2. Particles (Nuclear physics) – Textbooks. I. Title. QC174.45.S329 2014 530.143–dc23 2013016195 ISBN 978-1-107-03473-0 Hardback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03473-0 - Quantum Field Theory and the Standard Model Matthew D. Schwartz Frontmatter More information To my mother, and to Carolyn, Eve and Alec © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03473-0 - Quantum Field Theory and the Standard Model Matthew D. Schwartz Frontmatter More information © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03473-0 - Quantum Field Theory and the Standard Model Matthew D. Schwartz Frontmatter More information Contents Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1 Blackbody radiation 3 1.2 Einstein coefficients 5 1.3 Quantum field theory 7 2 Lorentz invariance and second quantization 10 2.1 Lorentz invariance 10 2.2 Classical plane waves as oscillators 17 2.3 Second quantization 20 Problems 27 3 Classical field theory 29 3.1 Hamiltonians and Lagrangians 29 3.2 The Euler–Lagrange equations 31 3.3 Noether’s theorem 32 3.4 Coulomb’s law 37 3.5 Green’s functions 39 Problems 42 4 Old-fashioned perturbation theory 46 4.1 Lippmann–Schwinger equation 47 4.2 Early infinities 52 Problems 55 5 Cross sections and decay rates 56 5.1 Cross sections 57 5.2 Non-relativistic limit 63 5.3 e+e− → μ+μ− with spin 65 Problems 67 6 The S-matrix and time-ordered products 69 6.1 The LSZ reduction formula 70 6.2 The Feynman propagator 75 Problems 77 vii © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03473-0 - Quantum Field Theory and the Standard Model Matthew D. Schwartz Frontmatter More information viii Contents 7 Feynman rules 78 7.1 Lagrangian derivation 79 7.2 Hamiltonian derivation 84 7.3 Momentum-space Feynman rules 93 7.4 Examples 97 7.A Normal ordering and Wick’s theorem 100 Problems 103 Part II Quantum electrodynamics 107 8 Spin 1 and gauge invariance 109 8.1 Unitary representations of the Poincare´ group 109 8.2 Embedding particles into fields 113 8.3 Covariant derivatives 120 8.4 Quantization and the Ward identity 123 8.5 The photon propagator 128 8.6 Is gauge invariance real? 130 8.7 Higher-spin fields 132 Problems 138 9 Scalar quantum electrodynamics 140 9.1 Quantizing complex scalar fields 140 9.2 Feynman rules for scalar QED 142 9.3 Scattering in scalar QED 146 9.4 Ward identity and gauge invariance 147 9.5 Lorentz invariance and charge conservation 150 Problems 155 10 Spinors 157 10.1 Representations of the Lorentz group 158 10.2 Spinor representations 163 10.3 Dirac matrices 168 10.4 Coupling to the photon 173 1 10.5 What does spin 2 mean? 174 10.6 Majorana and Weyl fermions 178 Problems 181 11 Spinor solutions and CPT 184 11.1 Chirality, helicity and spin 185 11.2 Solving the Dirac equation 188 11.3 Majorana spinors 192 11.4 Charge conjugation 193 11.5 Parity 195 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03473-0 - Quantum Field Theory and the Standard Model Matthew D. Schwartz Frontmatter More information Contents ix 11.6 Time reversal 198 Problems 201 12 Spin and statistics 205 12.1 Identical particles 206 12.2 Spin-statistics from path dependence 208 12.3 Quantizing spinors 211 12.4 Lorentz invariance of the S -matrix 212 12.5 Stability 215 12.6 Causality 219 Problems 223 13 Quantum electrodynamics 224 13.1 QED Feynman rules 225 13.2 γ-matrix identities 229 13.3 e+e− → μ+μ− 230 13.4 Rutherford scattering e−p+ → e−p+ 234 13.5 Compton scattering 238 13.6 Historical note 246 Problems 248 14 Path integrals 251 14.1 Introduction 251 14.2 The path integral 254 14.3 Generating functionals 261 14.4 Where is the iε? 264 14.5 Gauge invariance 267 14.6 Fermionic path integral 269 14.7 Schwinger–Dyson equations 272 14.8 Ward–Takahashi identity 277 Problems 283 Part III Renormalization 285 15 The Casimir effect 287 15.1 Casimir effect 287 15.2 Hard cutoff 289 15.3 Regulator independence 291 15.4 Scalar field theory example 296 Problems 299 16 Vacuum polarization 300 16.1 Scalar φ3 theory 302 16.2 Vacuum polarization in QED 304 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03473-0 - Quantum Field Theory and the Standard Model Matthew D. Schwartz Frontmatter More information x Contents 16.3 Physics of vacuum polarization 309 Problems 314 17 The anomalous magnetic moment 315 17.1 Extracting the moment 315 17.2 Evaluating the graphs 318 Problems 321 18 Mass renormalization 322 18.1 Vacuum expectation values 323 18.2 Electron self-energy 324 18.3 Pole mass 330 18.4 Minimal subtraction 334 18.5 Summary and discussion 336 Problems 338 19 Renormalized perturbation theory 339 19.1 Counterterms 339 19.2 Two-point functions 342 19.3 Three-point functions 345 19.4 Renormalization conditions in QED 349 19.5 Z1 = Z2: implications and proof 350 Problems 354 20 Infrared divergences 355 20.1 e+e− → μ+μ− (+γ) 356 20.2 Jets 364 20.3 Other loops 366 20.A Dimensional regularization 373 Problems 380 21 Renormalizability 381 21.1 Renormalizability of QED 382 21.2 Non-renormalizable field theories 386 Problems 393 22 Non-renormalizable theories 394 22.1 The Schrodinger¨ equation 395 22.2 The 4-Fermi theory 396 22.3 Theory of mesons 400 22.4 Quantum gravity 403 22.5 Summary of non-renormalizable theories 407 22.6 Mass terms and naturalness 407 22.7 Super-renormalizable theories 414 Problems 416 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-03473-0 - Quantum Field Theory and the Standard Model Matthew D. Schwartz Frontmatter More information Contents xi 23 The renormalization group 417 23.1 Running couplings 419 23.2 Renormalization group from counterterms 423 23.3 Renormalization group equation for the 4-Fermi theory 426 23.4 Renormalization group equation for general interactions 429 23.5 Scalar masses and renormalization group flows 435 23.6 Wilsonian renormalization group equation 442 Problems
Recommended publications
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • Baryon and Lepton Number Anomalies in the Standard Model
    Appendix A Baryon and Lepton Number Anomalies in the Standard Model A.1 Baryon Number Anomalies The introduction of a gauged baryon number leads to the inclusion of quantum anomalies in the theory, refer to Fig. 1.2. The anomalies, for the baryonic current, are given by the following, 2 For SU(3) U(1)B , ⎛ ⎞ 3 A (SU(3)2U(1) ) = Tr[λaλb B]=3 × ⎝ B − B ⎠ = 0. (A.1) 1 B 2 i i lef t right 2 For SU(2) U(1)B , 3 × 3 3 A (SU(2)2U(1) ) = Tr[τ aτ b B]= B = . (A.2) 2 B 2 Q 2 ( )2 ( ) For U 1 Y U 1 B , 3 A (U(1)2 U(1) ) = Tr[YYB]=3 × 3(2Y 2 B − Y 2 B − Y 2 B ) =− . (A.3) 3 Y B Q Q u u d d 2 ( )2 ( ) For U 1 BU 1 Y , A ( ( )2 ( ) ) = [ ]= × ( 2 − 2 − 2 ) = . 4 U 1 BU 1 Y Tr BBY 3 3 2BQYQ Bu Yu Bd Yd 0 (A.4) ( )3 For U 1 B , A ( ( )3 ) = [ ]= × ( 3 − 3 − 3) = . 5 U 1 B Tr BBB 3 3 2BQ Bu Bd 0 (A.5) © Springer International Publishing AG, part of Springer Nature 2018 133 N. D. Barrie, Cosmological Implications of Quantum Anomalies, Springer Theses, https://doi.org/10.1007/978-3-319-94715-0 134 Appendix A: Baryon and Lepton Number Anomalies in the Standard Model 2 Fig. A.1 1-Loop corrections to a SU(2) U(1)B , where the loop contains only left-handed quarks, ( )2 ( ) and b U 1 Y U 1 B where the loop contains only quarks For U(1)B , A6(U(1)B ) = Tr[B]=3 × 3(2BQ − Bu − Bd ) = 0, (A.6) where the factor of 3 × 3 is a result of there being three generations of quarks and three colours for each quark.
    [Show full text]
  • Introduction to Supersymmetry
    Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × .
    [Show full text]
  • The Standard Model and Beyond Maxim Perelstein, LEPP/Cornell U
    The Standard Model and Beyond Maxim Perelstein, LEPP/Cornell U. NYSS APS/AAPT Conference, April 19, 2008 The basic question of particle physics: What is the world made of? What is the smallest indivisible building block of matter? Is there such a thing? In the 20th century, we made tremendous progress in observing smaller and smaller objects Today’s accelerators allow us to study matter on length scales as short as 10^(-18) m The world’s largest particle accelerator/collider: the Tevatron (located at Fermilab in suburban Chicago) 4 miles long, accelerates protons and antiprotons to 99.9999% of speed of light and collides them head-on, 2 The CDF million collisions/sec. detector The control room Particle Collider is a Giant Microscope! • Optics: diffraction limit, ∆min ≈ λ • Quantum mechanics: particles waves, λ ≈ h¯/p • Higher energies shorter distances: ∆ ∼ 10−13 cm M c2 ∼ 1 GeV • Nucleus: proton mass p • Colliders today: E ∼ 100 GeV ∆ ∼ 10−16 cm • Colliders in near future: E ∼ 1000 GeV ∼ 1 TeV ∆ ∼ 10−17 cm Particle Colliders Can Create New Particles! • All naturally occuring matter consists of particles of just a few types: protons, neutrons, electrons, photons, neutrinos • Most other known particles are highly unstable (lifetimes << 1 sec) do not occur naturally In Special Relativity, energy and momentum are conserved, • 2 but mass is not: energy-mass transfer is possible! E = mc • So, a collision of 2 protons moving relativistically can result in production of particles that are much heavier than the protons, “made out of” their kinetic
    [Show full text]
  • 6 STANDARD MODEL: One-Loop Structure
    6 STANDARD MODEL: One-Loop Structure Although the fundamental laws of Nature obey quantum mechanics, mi- croscopically challenged physicists build and use quantum field theories by starting from a classical Lagrangian. The classical approximation, which de- scribes macroscopic objects from physics professors to dinosaurs, has in itself a physical reality, but since it emerges only at later times of cosmological evolution, it is not fundamental. We should therefore not be too surprised if unforeseen special problems and opportunities emerge in the analysis of quantum perturbations away from the classical Lagrangian. The classical Lagrangian is used as input to the path integral, whose eval- uation produces another Lagrangian, the effective Lagrangian, Leff , which encodes all the consequences of the quantum field theory. It contains an infinite series of polynomials in the fields associated with its degrees of free- dom, and their derivatives. The classical Lagrangian is reproduced by this expansion in the lowest power of ~ and of momentum. With the notable exceptions of scale invariance, and of some (anomalous) chiral symmetries, we think that the symmetries of the classical Lagrangian survive the quanti- zation process. Consequently, not all possible polynomials in the fields and their derivatives appear in Leff , only those which respect the symmetries. The terms which are of higher order in ~ yield the quantum corrections to the theory. They are calculated according to a specific, but perilous path, which uses the classical Lagrangian as input. This procedure gener- ates infinities, due to quantum effects at short distances. Fortunately, most fundamental interactions are described by theories where these infinities can be absorbed in a redefinition of the input parameters and fields, i.e.
    [Show full text]
  • On the Metastability of the Standard Model Vacuum
    CERN–TH/2001–092 LNF-01/014(P) GeF/TH/6-01 IFUP–TH/2001–11 hep-ph/0104016 On the metastability of the Standard Model vacuum Gino Isidori1, Giovanni Ridolfi2 and Alessandro Strumia3 Theory Division, CERN, CH-1211 Geneva 23, Switzerland Abstract If the Higgs mass mH is as low as suggested by present experimental information, the Standard Model ground state might not be absolutely stable. We present a detailed analysis of the lower bounds on mH imposed by the requirement that the electroweak vacuum be sufficiently long-lived. We perform a complete one-loop calculation of the tunnelling probability at zero temperature, and we improve it by means of two-loop renormalization-group equations. We find that, for mH = 115 GeV, the Higgs potential develops an instability below the Planck scale for mt > (166 2) GeV, but the electroweak ± vacuum is sufficiently long-lived for mt < (175 2) GeV. ± 1On leave from INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati, Italy. 2On leave from INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova, Italy. 3On leave from Dipartimento di Fisica, Universit`a di Pisa and INFN, Sezione di Pisa, Italy. 1 Introduction If the Higgs boson if sufficiently lighter than the top quark, radiative corrections induced by top loops destabilize the electroweak minimum and the Higgs potential of the Standard Model (SM) becomes unbounded from below at large field values. The requirement that such an unpleasant scenario be avoided, at least up to some scale Λ characteristic of some kind of new physics [1, 2], leads to a lower bound on the Higgs mass mH that depends on the value of the top quark mass mt, and on Λ itself.
    [Show full text]
  • Standard Model & Baryogenesis at 50 Years
    Standard Model & Baryogenesis at 50 Years Rocky Kolb The University of Chicago The Standard Model and Baryogenesis at 50 Years 1967 For the universe to evolve from B = 0 to B ¹ 0, requires: 1. Baryon number violation 2. C and CP violation 3. Departure from thermal equilibrium The Standard Model and Baryogenesis at 50 Years 95% of the Mass/Energy of the Universe is Mysterious The Standard Model and Baryogenesis at 50 Years 95% of the Mass/Energy of the Universe is Mysterious Baryon Asymmetry Baryon Asymmetry Baryon Asymmetry The Standard Model and Baryogenesis at 50 Years 99.825% of the Mass/Energy of the Universe is Mysterious The Standard Model and Baryogenesis at 50 Years Ω 2 = 0.02230 ± 0.00014 CMB (Planck 2015): B h Increasing baryon component in baryon-photon fluid: • Reduces sound speed. −1 c 3 ρ c =+1 B S ρ 3 4 γ • Decreases size of sound horizon. η rdc()η = ηη′′ ( ) SS0 • Peaks moves to smaller angular scales (larger k, larger l). = π knrPEAKS S • Baryon loading increases compression peaks, lowers rarefaction peaks. Wayne Hu The Standard Model and Baryogenesis at 50 Years 0.021 ≤ Ω 2 ≤0.024 BBN (PDG 2016): B h Increasing baryon component in baryon-photon fluid: • Increases baryon-to-photon ratio η. • In NSE abundance of species proportional to η A−1. • D, 3He, 3H build up slightly earlier leading to more 4He. • Amount of D, 3He, 3H left unburnt decreases. Discrepancy is fake news The Standard Model and Baryogenesis at 50 Years = (0.861 ± 0.005) × 10 −10 Baryon Asymmetry: nB/s • Why is there an asymmetry between matter and antimatter? o Initial (anthropic?) conditions: .
    [Show full text]
  • Exciting an Avalanche Mohammad Maghrebi and Colleagues Have Nature Photon
    research highlights Shrink from tension closely related to networks characterized by be created from nothing. Hawking radiation Nature Mater. 11, 608–613 (2012) suboptimal equilibria that can be optimized via and the dynamical Casimir effect are structural constraints — like a traffic network examples of the macroscopic manifestation that profits from the removal of a road. In the of quantum vacuum fluctuations — near case of the proposed metamaterials, however, black-hole event horizons or accelerating the optimization occurs spontaneously, in boundaries, photons pop out of the vacuum. response to a change in applied force. AK Such spontaneous emission is also expected to occur in the presence of spinning bodies: Exciting an avalanche Mohammad Maghrebi and colleagues have Nature Photon. 6, 455–458 (2012) uncovered a new twist. Spontaneous emission from rotating An individual electron does not have a large objects was predicted in the 1970s, but influence on the world around it, which Maghrebi et al. have revisited the theory makes detection tricky. One successful and introduced an exact theoretical approach is to use avalanche amplification: treatment of vacuum fluctuations in one seed electron generates two ‘daughter’ the presence of a spinning body. Their electrons; this is repeated to create four, scattering-theory approach not only © JUPITERIMAGES/GETTY IMAGES/THINKSTOCK © JUPITERIMAGES/GETTY and so on, until a measurable current is confirms that energy is emitted by the produced. Gabriele Bulgarini and colleagues spinning object even at zero temperature, Squeezing a material between your fingers have now applied this idea to the charge but also signals a previously unknown ordinarily results in compression.
    [Show full text]
  • Standard Model of Particle Physics, Or Beyond?
    Standard Model of Particle Physics, or Beyond? Mariano Quir´os High Energy Phys. Inst., BCN (Spain) ICTP-SAIFR, November 13th, 2019 Outline The outline of this colloquium is I Standard Model: reminder I Electroweak interactions I Strong interactions I The Higgs sector I Experimental successes I Theoretical and observational drawbacks I Beyond the Standard Model I Supersymmetry I Large extra dimensions I Warped extra dimensions/composite Higgs I Concluding remarks Disclaimer: I will not discuss any technical details. With my apologies to my theorist (and experimental) colleagues The Standard Model: reminder I The knowledge of the Standard Model of strong and electroweak interactions requires (as any other physical theory) the knowledge of I The elementary particles or fields (the characters of the play) I How particles interact (their behavior) The characters of the play I Quarks: spin-1/2 fermions I Leptons: spin-1/2 fermions I Higgs boson: spin-0 boson I Carriers of the interactions: spin-1 (gauge) bosons I All these particles have already been discovered and their mass, spin, and charge measured \More in detail the characters of the play" - Everybody knows the Periodic Table of the Elements - Compare elementary particles with some (of course composite) very heavy nuclei What are the interactions between the elementary building blocks of the Standard Model? I Interactions are governed by a symmetry principle I The more symmetric the theory the more couplings are related (the less of them they are) and the more predictive it is Strong interactions:
    [Show full text]
  • Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013
    Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Rogerio Rosenfeld IFT-UNESP Lecture 1: Motivation/QFT/Gauge Symmetries/QED/QCD Lecture 2: QCD tests/Electroweak Sector/Symmetry Breaking Lecture 3: Sucesses/Shortcomings of the Standard Model Lecture 4: Beyond the Standard Model New Horizons in Lattice QCD 1 • Quigg: Gauge Theories of Strong, Weak, and Electromagnetic Interactions • Halzen and Martin: Quarks and Leptons • Peskin and Schroeder: An Introduction to Quantum Field Theory • Donoghue, Golowich and Holstein: Dynamics of the Standard Model • Barger and Phillips: Collider Physics • Rosenfeld: http://www.sbfisica.org.br/~evjaspc/xvi/ • Hollik: arXiv:1012.3883 • Buchmuller and Ludeling: arXiv:hep-ph/0609174 • Rosner’s Resource Letter: arXiv:hep-ph/0206176 • Quigg: arXiv:0905.3187 • Altarelli: arXiv:1303.2842 New Horizons in Lattice QCD 2 New Horizons in Lattice QCD 3 • 1906: Electron (J. J. Thomson, 1897) • 33: QED (Dirac) • 36: Positron (Anderson, 1932) • 57: Parity violation (Lee and Yang, 56) • 65: QED (Feynman, Schwinger and Tomonaga) • 69: Eightfold way (Gell-Mann, 63) • 74: Charm (Richter and Ting, 74) • 79: SM (Glashow, Weinberg and Salam, 67-68) • 80: CP violation (Cronin and Fitch, 64) • 84: W&Z (Rubbia and Van der Meer, 83) • 88: b quark (Lederman, Schwartz and Steinberger, 77) • 90: Quarks (Friedman, Kendall and Taylor, 67-73) • 95: Neutrinos (Reines, 56); Tau (Perl, 77) • 99: Renormalization (Veltman and ‘t Hooft, 71) • 02: Neutrinos from the sky (Davis and Koshiba) • 04: Asymptotic freedom (Gross, Politzer and Wilczek) • 08: CP violation (KM) and SSB (Nambu) New Horizons in Lattice QCD 4 The Nobel Prize in Physics 2008 Y.
    [Show full text]
  • The Quantum Vacuum and the Cosmological Constant Problem
    The Quantum Vacuum and the Cosmological Constant Problem S.E. Rugh∗and H. Zinkernagely To appear in Studies in History and Philosophy of Modern Physics Abstract - The cosmological constant problem arises at the intersection be- tween general relativity and quantum field theory, and is regarded as a fun- damental problem in modern physics. In this paper we describe the historical and conceptual origin of the cosmological constant problem which is intimately connected to the vacuum concept in quantum field theory. We critically dis- cuss how the problem rests on the notion of physically real vacuum energy, and which relations between general relativity and quantum field theory are assumed in order to make the problem well-defined. 1. Introduction Is empty space really empty? In the quantum field theories (QFT’s) which underlie modern particle physics, the notion of empty space has been replaced with that of a vacuum state, defined to be the ground (lowest energy density) state of a collection of quantum fields. A peculiar and truly quantum mechanical feature of the quantum fields is that they exhibit zero-point fluctuations everywhere in space, even in regions which are otherwise ‘empty’ (i.e. devoid of matter and radiation). These zero-point fluctuations of the quantum fields, as well as other ‘vacuum phenomena’ of quantum field theory, give rise to an enormous vacuum energy density ρvac. As we shall see, this vacuum energy density is believed to act as a contribution to the cosmological constant Λ appearing in Einstein’s field equations from 1917, 1 8πG R g R Λg = T (1) µν − 2 µν − µν c4 µν where Rµν and R refer to the curvature of spacetime, gµν is the metric, Tµν the energy-momentum tensor, G the gravitational constant, and c the speed of light.
    [Show full text]
  • The Elusive Gluon
    CAFPE-185/14 CERN-PH-TH-2014-216 DESY 14-213 SISSA 60/2014/FISI UG-FT-315/14 The Elusive Gluon Mikael Chala1,2, José Juknevich3,4, Gilad Perez5 and José Santiago1,6 1CAFPE and Departamento de Física Teórica y del Cosmos, Universidad de Granada, E-18071 Granada, Spain 2 DESY, Notkestrasse 85, 22607 Hamburg, Germany 3SISSA/ISAS, I-34136 Trieste, Italy 4INFN - Sezione di Trieste, 34151 Trieste, Italy 5Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel 6CERN, Theory Division, CH1211 Geneva 23, Switzerland Abstract We study the phenomenology of vector resonances in the context of natural com- posite Higgs models. A mild hierarchy between the fermionic partners and the vector resonances can be expected in these models based on the following arguments. Both di- rect and indirect (electroweak and flavor precision) constraints on fermionic partners are milder than the ones on spin one resonances. Also the naturalness pressure coming from the top partners is stronger than that induced by the gauge partners. This observation implies that the search strategy for vector resonances at the LHC needs to be modified. In particular, we point out the importance of heavy gluon decays (or other vector res- onances) to top partner pairs that were overlooked in previous experimental searches at the LHC. These searches focused on simplified benchmark models in which the only new particle beyond the Standard Model was the heavy gluon. It turns out that, when kinematically allowed, such heavy-heavy decays make the heavy gluon elusive, and the bounds on its mass can be up to 2 TeV milder than in the simpler models considered so arXiv:1411.1771v2 [hep-ph] 9 Jan 2015 far for the LHC14.
    [Show full text]