Mutations in TBX1 Genocopy the 22Q11.2 Deletion and Duplication Syndromes: a New Susceptibility Factor for Mental Retardation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Missense Mutations of MADH4: Characterization of the Mutational Hot Spot and Functional Consequences in Human Tumors
Vol. 10, 1597–1604, March 1, 2004 Clinical Cancer Research 1597 Featured Article Missense Mutations of MADH4: Characterization of the Mutational Hot Spot and Functional Consequences in Human Tumors Christine A. Iacobuzio-Donahue,1 Jason Song,5 Introduction Giovanni Parmiagiani,4 Charles J. Yeo,2,3 Human pancreatic ductal adenocarcinomas inactivate the Ralph H. Hruban,1,2 and Scott E. Kern2 tumor suppressor gene MADH4 (DPC4, SMAD4) with a high frequency (1). This inactivation occurs most commonly by Departments of 1Pathology, 2Oncology, 3Surgery, and 4Public Health, The Johns Hopkins Medical Institutions, Baltimore, Maryland, and homozygous deletion (HD), but some tumors may also inacti- 5Temple University School of Medicine, Philadelphia, Pennsylvania vate the gene by loss of heterozygosity (LOH) coupled with a mutation in the remaining allele. Inactivation by nonsense mu- tation may cause the loss of protein expression by enhanced Abstract proteosomal degradation (2, 3). Even when expressed as protein, Purpose and Experimental Design: The mutational spec- missense mutations may result in loss of a specific function of trum of MADH4 (DPC4/SMAD4) opens valuable insights the Madh4 protein such as DNA binding or Smad protein into the functions of this protein that confer its tumor- interactions (2–9). Thus, the location of these mutations can suppressive nature in human tumors. We present the provide clues to key structural features that mediate the tumor- MADH4 genetic status determined on a new set of pancre- suppressive function of MADH4. atic, biliary, and duodenal cancers with comparison to the Members of the Smad protein family, including Madh4, mutational data reported for various tumor types. -
Gene Discovery and Functional Assessment of Rare Copy-Number Variants in Neurodevelopmental Disorders
bioRxiv preprint doi: https://doi.org/10.1101/011510; this version posted November 17, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Gene discovery and functional assessment of rare copy-number variants in neurodevelopmental disorders Janani Iyer and Santhosh Girirajan Corresponding author: Santhosh Girirajan, 205A Life Sciences Building, Departments of Biochemistry and Molecular Biology and Anthropology, The Pennsylvania State University, University Park, PA 16802, Tel: 814-865-0674, E-mail: [email protected], Word count: 4,608 AUTHOR BIOGRAPHY Janani Iyer is a postdoctoral fellow in the laboratory of Santhosh Girirajan at The Pennsylvania State University. She is studying the role of dosage sensitive genes within rare CNVs using Drosophila melanogaster. Santhosh Girirajan is an Assistant Professor of Biochemistry and Molecular Biology and Anthropology at The Pennsylvania State University. His laboratory is studying the molecular genetic basis of neurodevelopmental disorders by combining work on the discovery of genetic variants in affected children with functional characterization using model organisms. bioRxiv preprint doi: https://doi.org/10.1101/011510; this version posted November 17, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. ABSTRACT Rare copy-number variants (CNVs) are a significant cause of neurodevelopmental disorders. -
(Lcrs) in 22Q11 Mediate Deletions, Duplications, Translocations, and Genomic Instability: an Update and Literature Review Tamim H
review January/February 2001 ⅐ Vol. 3 ⅐ No. 1 Evolutionarily conserved low copy repeats (LCRs) in 22q11 mediate deletions, duplications, translocations, and genomic instability: An update and literature review Tamim H. Shaikh, PhD1, Hiroki Kurahashi, MD, PhD1, and Beverly S. Emanuel, PhD1,2 Several constitutional rearrangements, including deletions, duplications, and translocations, are associated with 22q11.2. These rearrangements give rise to a variety of genomic disorders, including DiGeorge, velocardiofacial, and conotruncal anomaly face syndromes (DGS/VCFS/CAFS), cat eye syndrome (CES), and the supernumerary der(22)t(11;22) syndrome associated with the recurrent t(11;22). Chromosome 22-specific duplications or low copy repeats (LCRs) have been directly implicated in the chromosomal rearrangements associated with 22q11.2. Extensive sequence analysis of the different copies of 22q11 LCRs suggests a complex organization. Examination of their evolutionary origin suggests that the duplications in 22q11.2 may predate the divergence of New World monkeys 40 million years ago. Based on the current data, a number of models are proposed to explain the LCR-mediated constitutional rearrangements of 22q11.2. Genetics in Medicine, 2001:3(1):6–13. Key Words: duplication, evolution, 22q11, deletion and translocation Although chromosome 22 represents only 2% of the haploid The 22q11.2 deletion syndrome, which includes DGS/ human genome,1 recurrent, clinically significant, acquired, VCFS/CAFS, is the most common microdeletion syndrome. and somatic -
Bio 102 Practice Problems Genetic Code and Mutation
Bio 102 Practice Problems Genetic Code and Mutation Multiple choice: Unless otherwise directed, circle the one best answer: 1. Choose the one best answer: Beadle and Tatum mutagenized Neurospora to find strains that required arginine to live. Based on the classification of their mutants, they concluded that: A. one gene corresponds to one protein. B. DNA is the genetic material. C. "inborn errors of metabolism" were responsible for many diseases. D. DNA replication is semi-conservative. E. protein cannot be the genetic material. 2. Choose the one best answer. Which one of the following is NOT part of the definition of a gene? A. A physical unit of heredity B. Encodes a protein C. Segement of a chromosome D. Responsible for an inherited characteristic E. May be linked to other genes 3. A mutation converts an AGA codon to a TGA codon (in DNA). This mutation is a: A. Termination mutation B. Missense mutation C. Frameshift mutation D. Nonsense mutation E. Non-coding mutation 4. Beadle and Tatum performed a series of complex experiments that led to the idea that one gene encodes one enzyme. Which one of the following statements does not describe their experiments? A. They deduced the metabolic pathway for the synthesis of an amino acid. B. Many different auxotrophic mutants of Neurospora were isolated. C. Cells unable to make arginine cannot survive on minimal media. D. Some mutant cells could survive on minimal media if they were provided with citrulline or ornithine. E. Homogentisic acid accumulates and is excreted in the urine of diseased individuals. 5. -
Nonsense and Missense Mutations in Hemophilia A: Estimate of the Relative Mutation Rate at CG Dinucleotides Hagop Youssoufian,* Stylianos E
Am. J. Hum. Genet. 42:718-725, 1988 Nonsense and Missense Mutations in Hemophilia A: Estimate of the Relative Mutation Rate at CG Dinucleotides Hagop Youssoufian,* Stylianos E. Antonarakis,* William Bell,t Anne M. Griffin,4 and Haig H. Kazazian, Jr.* *Genetics Unit, Department of Pediatrics, and tDivision of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore; and tDivision of Hematology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill Summary Hemophilia A is an X-linked disease of coagulation caused by deficiency of factor VIII. Using cloned cDNA and synthetic oligonucleotide probes, we have now screened 240 patients and found CG-to-TG transitions in an exon in nine. We have previously reported four of these patients; and here we report the remaining five, all of whom were severely affected. In one patient a TaqI site was lost in exon 23, and in the other four it was lost in exon 24. The novel exon 23 mutation is a CG-to-TG substitution at the codon for amino acid residue 2166, producing a nonsense codon in place of the normal codon for arginine. Simi- larly, the exon 24 mutations are also generated by CG-to-TG transitions, either on the sense strand produc- ing nonsense mutations or on the antisense strand producing missense mutations (Arg to Gln) at position 2228. The novel missense mutations are the first such mutations observed in association with severe hemo- philia A. These results provide further evidence that recurrent mutations are not uncommon in hemophilia A, and they also allow us to estimate that the extent of hypermutability of CG dinucleotides is 10-20 times greater than the average mutation rate for hemophilia A. -
B-Catenin Deficiency Causes Digeorge Syndrome-Like Phenotypes Through Regulation of Tbx1 Sung-Ho Huh and David M
RESEARCH ARTICLE 1137 Development 137, 1137-1147 (2010) doi:10.1242/dev.045534 © 2010. Published by The Company of Biologists Ltd b-catenin deficiency causes DiGeorge syndrome-like phenotypes through regulation of Tbx1 Sung-Ho Huh and David M. Ornitz* SUMMARY DiGeorge syndrome (DGS) is a common genetic disease characterized by pharyngeal apparatus malformations and defects in cardiovascular, craniofacial and glandular development. TBX1 is the most likely candidate disease-causing gene and is located within a 22q11.2 chromosomal deletion that is associated with most cases of DGS. Here, we show that canonical Wnt–b-catenin signaling negatively regulates Tbx1 expression and that mesenchymal inactivation of b-catenin (Ctnnb1) in mice caused abnormalities within the DGS phenotypic spectrum, including great vessel malformations, hypoplastic pulmonary and aortic arch arteries, cardiac malformations, micrognathia, thymus hypoplasia and mislocalization of the parathyroid gland. In a heterozygous Fgf8 or Tbx1 genetic background, ectopic activation of Wnt–b-catenin signaling caused an increased incidence and severity of DGS- like phenotypes. Additionally, reducing the gene dosage of Fgf8 rescued pharyngeal arch artery defects caused by loss of Ctnnb1. These findings identify Wnt–b-catenin signaling as a crucial upstream regulator of a Tbx1–Fgf8 signaling pathway and suggest that factors that affect Wnt–b-catenin signaling could modify the incidence and severity of DGS. KEY WORDS: b-catenin, Tbx1, Fgf8, Pharyngeal arch, DiGeorge syndrome INTRODUCTION is expressed in the pharyngeal arch endoderm, core mesoderm, DiGeorge syndrome (DGS) is one of the most common genetic anterior heart field and head mesenchyme, but is absent in neural disorders with an incidence of 1 in 4000 live births. -
The Genomics Era: the Future of Genetics in Medicine - Glossary
The Genomics Era: the Future of Genetics in Medicine - Glossary The glossary below provides a list of key terms used throughout the course. You do not need to read them all now; we’ll be linking back to the main glossary step wherever these terms appear, so you may refer back to this list if you are unsure of the terminology being used. Term Definition The process of matching reads back to their original Alignment position in the reference genome. An allele is one of a number of alternative forms of the same gene or genetic locus. We inherit one copy Allele of our genetic code from our mother and one copy of our genetic code from our father. Each copy is known as an allele. Microarray based genomic comparative hybridisation. This is a technique used to detect chromosome imbalances by comparing patient and control DNA and comparing differences between the two sets. It is Array CGH a useful technique for detecting small chromosome deletions and duplications which would not have been detected with more traditional karyotyping techniques. A unit of DNA. There are four bases which form the Base cross links (or rungs) of the DNA double helix: adenine (A), thymine (T), guanine (G) and cytosine (C). Capture see Target enrichment. The process by which a cell becomes specialized in Cell differentiation order to perform a specific function. Centromere The point at which the sister chromatids are joined. #1 FutureLearn A structure located in the nucleus all living cells, comprised of DNA bound around proteins called histones. The normal number of chromosomes in each Chromosome human cell nucleus is 46 and is composed of 22 pairs of autosomes and a pair of sex chromosomes which determine gender: males have an X and a Y chromosome whilst females have two X chromosomes. -
The Symptom Profile and Experience of Children with Rare Life-Limiting Conditions
The symptom profile and experience of children with rare life-limiting conditions: Perspectives of their families and key health professionals Document Title The symptom profile and experience of children with rare life-limiting conditions: Perspectives of their families and key health professionals Authors Cari Malcolm, Sally Adams, Gillian Anderson, Faith Gibson, Richard Hain, Anthea Morley, Liz Forbat. Publisher Cancer Care Research Centre, University of Stirling Publication Date 2011 Target Audience Paediatric palliative care staff, paediatric clinicians, policy-makers, service developers, families supporting children with life-limiting conditions. Funded By Children’s Hospice Association Scotland Key Words Advance care planning, Batten disease, expertise, extended family, family, Morquio disease, progressive life-limiting, relationships, Sanfilippo disease, siblings, symptoms. Contact Details www.cancercare.stir.ac.uk Tel: 01786 849260 Email: [email protected] Copyright This publication is copyright CCRC and may be reproduced free of charge in any format or medium. Any material used must be fully acknowledged, and the title of the publication, authors and date of publication specified. The symptom profile and experience of children with rare life- limiting conditions: Perspectives of their families and key health professionals Executive Summary Background Many non-malignant life-limiting conditions are individually extremely rare and little is known, even by professionals in the field, about the actual day-to-day symptomatology or the impact of these symptoms on the child and family. With little recorded in the literature regarding the symptoms that children with rare life-limiting conditions experience, and the associated impact of managing these symptoms on the wider family, an opportunity exists to widen the knowledge base in this area. -
A Novel Missense Mutation in HSF4 Causes Autosomal-Dominant
Eye (2018) 32, 806–812 © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0950-222X/18 www.nature.com/eye 1,5 1,2,5 3,4 LABORATORY STUDY A novel missense V Berry , N Pontikos , A Moore , ACW Ionides3, V Plagnol2, ME Cheetham1 mutation in HSF4 and M Michaelides1,3 causes autosomal- dominant congenital lamellar cataract in a British family Abstract manifestations and is a predominant feature in 4200 genetic disorders. Congenital cataract may Purpose Inherited cataract, opacification of the lens, is the most common worldwide be familial and display considerable genotypic 4 cause of blindness in children. We aimed to and phenotypic heterogeneity. Inheritance is identify the genetic cause of isolated most commonly autosomal dominant (AD), 1 Department of Genetics, autosomal-dominant lamellar cataract in a usually with complete penetrance but with UCL Institute of five-generation British family. highly variable expressivity. The phenotypic Ophthalmology, London, fi UK Methods Whole exome sequencing (WES) classi cation of the cataract depends on the was performed on two affected individuals of position and type of the lens opacity such as: 2UCL Genetics Institute, the family and further validated by direct anterior polar, posterior polar, nuclear, lamellar, University College London, sequencing in family members. coralliform, blue-dot (cerulean), cortical, London UK Results A novel missense mutation pulverulent, polymorphic, complete cataract, 4 and posterior nuclear cataract.5,6 Significant 3 fi NM_001040667.2:c.190A G;p.K64E was Moor elds Eye Hospital, fi London, UK identi ed in the DNA-binding-domain of progress has been made in identifying the heat-shock transcription factor 4 (HSF4) and molecular genetic basis of human cataract. -
Chromosome 22Q11.2 Deletion Syndrome (Digeorge and Velocardiofacial Syndromes) Elena Perez, MD, Phd, and Kathleen E
Chromosome 22q11.2 deletion syndrome (DiGeorge and velocardiofacial syndromes) Elena Perez, MD, PhD, and Kathleen E. Sullivan, MD, PhD Chromosome 22q11.2 deletion syndrome occurs in Overview approximately 1 of 3000 children. Clinicians have defined the Chromosome 22q11.2 deletion syndrome is the name phenotypic features associated with the syndrome and the given to a heterogeneous group of disorders that share a past 5 years have seen significant progress in determining the common genetic basis. Most patients with DiGeorge frequency of the deletion in specific populations. As a result, syndrome and velocardiofacial syndrome have monoso- caregivers now have a better appreciation of which patients mic deletions of chromosome 22q11.2 [1,2]. Other syn- are at risk for having the deletion. Once identified, patients dromes in which a substantial fraction of patients have with the deletion can receive appropriate multidisciplinary care. been determined to have the deletion are conotruncal We describe recent advances in understanding the genetic anomaly face syndrome,Caylor cardiofacial syndrome, basis for the syndrome, the clinical manifestations of the and autosomal dominant Opitz-G/BBB syndrome. Com- syndrome, and new information on autoimmune diseases in plicating the situation further is the fact that not all pa- this syndrome. Curr Opin Pediatr 2002, 14:678–683 © 2002 Lippincott tients with hemizygous deletions of chromosome Williams & Wilkins, Inc. 22q11.2 have identical deletions. Despite the heteroge- neity of both the clinical manifestations and the chromo- somal deletions,much progress has been made in the last year in understanding the genetic basis of the chromo- some 22q11.2 deletion syndromes. -
Digeorge Syndrome in a Newborn - a Diagnostic Challenge
Carvalho V, et al., J Neonatol Clin Pediatr 2020, 7: 061 DOI: 10.24966/NCP-878X/100061 HSOA Journal of Neonatology and Clinical Pediatrics Case Report manifestations in order to allow anearly multidisciplinary orientation, DiGeorge Syndrome in a as well as to provide genetic counseling to the patient’s relatives. Keywords: 22q11 Deletion syndrome; Combined syndromic immu- Newborn - A Diagnostic no deficiencies; DiGeorge syndrome Challenge Introduction Vasco Carvalho1, Raquel Oliveira1, Joana Vilaça1, Miguel Gonçalves Rocha2, Almerinda Pereira1 and Nicole Silva1 DiGeorge Syndrome (DGS) is mainly caused by the microdeletion of chromosome 22 (22q11.2), being characterized by a broad pheno- 1 Neonatal Intensive Care Unit, Department of Pediatrics, Hospital of Braga, typic spectrum [1-10]. Braga, Portugal 2Genetics Service, Hospital of Braga, Braga, Portugal The microdeletion of chromosome 22q11.2 results in maldevel- opment of both the third and fourth pharyngeal pouches and it is the most common interstitial deletion syndrome, affecting approximate- Abstract ly 1 in every 2.000-6.000 live births, with males and females being Introduction: DiGeorge syndrome is mainly caused by microdele- equally affected [3-5,8-13]. tion of chromosome 22 (22q11.2) and is characterized by a broad phenotypic spectrum. Approximately 90 percent of the patients with DGS have hetero- zygous deletions in chromosome 22q11.2 and typically result from de Description of case: A 35-year-old healthy primigravida was novo microdeletions, therefore supporting a high rate of spontaneous hospitalized due to preterm labor at 29 weeks and four days. deletion. It is important to add that about 10% of the cases are famil- Parents were non-consanguineous with unremarkable family history. -
Niemann-Pick Disease: a Frequent Missense Mutation in the Acid
Proc. Natl. Acad. Sci. USA Vol. 88, pp. 3748-3752, May 1991 Genetics Niemann-Pick disease: A frequent missense mutation in the acid sphingomyelinase gene of Ashkenazi Jewish type A and B patients (lysosomal hydrolase/sphingomyelin/lysosomal storage disease/polymerase chain reaction/heterozygote detection) ORNA LEVRAN, ROBERT J. DESNICK, AND EDWARD H. SCHUCHMAN* Division of Medical and Molecular Genetics, Mount Sinai School of Medicine, New York, NY 10029 Communicated by Donald S. Fredrickson, November 26, 1990 ABSTRACT Although the A and B subtypes of Niemana- sence of neurologic manifestations, and survival into adult- Pick disease (NPD) both result from the deficient activity of ad hood. The nature of the biochemical and molecular defects sphingomyelinase (ASM; sphingomyelin cholinephosphohydro- that underlie the remarkable clinical heterogeneity in the A lase, EC 3.1.4.12) and the lysosomal aumaon of sphingo- and B subtypes remains unknown. Although patients with myelin, they have remarkably distinct phenotypes. Type A dis- both subtypes have residual ASM activity (~1 to 10% of ease s afatal neurodegenerative disorderofinfancy, whereas tpe normal), biochemical analyses cannot reliably distinguish the B disease has no neurologic miestations and is characterized two phenotypes. Moreover, the clinical course of type B primarily by reticuloendothelial involvement and survival into NPD is highly variable, and it is not presently possible to adulthood. Both disorders are more frequent among individuals correlate disease severity with the level of residual ASM of Ashkenai Jewis ancestry than in the general population. The activity. recent isolation and characterization of cDNA and genomic Types A and B NPD occur at least 10 times more frequently sequences encoding ASM has facilitated investigation of the among individuals of Ashkenazi Jewish ancestry than in the molecular lesions causing the NPD subtypes.