Hypoparathyroidism and Digeorge Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Hypoparathyroidism and Digeorge Syndrome Endocrinology and Diabetes Clinic Disorders of Calcium 4480 Oak Street, Vancouver, BC V6H 3V4 604-875-2117 1-888-300-3088 x2117 and Phosphorus http://endodiab.bcchildrens.ca Hypoparathyroidism the parathyroid cells. The body has developed cells that destroy some of its Hypoparathyroidism occurs when the body own tissue. This may include other does not produce enough parathyroid organs and endocrine glands, causing hormone (PTH). This hormone is made in 4 type 1 diabetes, Addison disease or or 5 parathyroid glands, located behind the other autoimmune diseases. thyroid tissue in the neck area. They are 2. Surgery or radiation to the thyroid gland very small—the size of peas. Their only job which damages the parathyroid glands. is to produce PTH, which keeps the calcium levels in the blood in the right range. 3. Iron deposits in the parathyroid glands, a side-effect of repeated transfusions to The name “hypo-parathyroid-ism”, means a treat thalassemia or other blood condition of low parathyroid hormone. diseases What does PTH do? How is hypoparathyroidism diagnosed? PTH balances the calcium level in the blood, keeping it in the right range. When the Something will have happened to make your calcium level is low, PTH is produced and it doctor request special blood tests. Perhaps raises the calcium level by: a heart problem is discovered during a routine pregnancy ultrasound or at birth, or 1. Moving calcium from the bones into the perhaps your baby or child became very sick blood. with symptoms of low blood calcium (see 2. Decreasing how much calcium is handout Disorders of Calcium and eliminated from the blood into the urine Phosphorus). Blood tests will be taken, and by the kidneys. if the tests confirm low calcium and PTH 3. Activating vitamin D to increase the levels in the blood, the diagnosis of amount of calcium and phosphorus hypoparathyroidism is made. There is no absorbed from the intestines into the easy way to scan the parathyroid glands. bloodstream. How is hypoparathyroidism treated? What causes hypoparathyroidism? The parathyroid hormone is generally not In some situations, hypoparathyroidism is replaced—it is an extremely expensive present from birth (congenital), such as medication and must be given by injection. occurs with DiGeorge syndrome and other The low calcium level is treated by taking rare inherited conditions (see next section). calcium pills or liquid. However, the calcium In others, hypoparathyroidism develops later itself will not be absorbed into the digestive in life as an acquired condition. system unless the activated form of vitamin D is taken as well. Both calcium and the Acquired hypoparathyroidism can be a result activated form of vitamin D, calcitriol of: (Rocaltrol®) or alfacalcidol (One-Alpha®), must be replaced in just the right amounts 1. An autoimmune process which destroys (see Appendix). The calcium must be taken August 20, 2021 www.bcchildrens.ca/endocrinology-diabetes-site/documents/cpdisorders.pdf Page 1 of 5 frequently, possibly four times each day. If affected child has congenital the child isn’t taking enough calcium, the hypoparathyroidism, with low calcium and level can become so low that the child PTH levels. becomes extremely sick with seizures. This is an emergency, and the calcium will need Dr. Angelo DiGeorge, an to be given by intravenous. endocrinologist in Philadelphia, was the Blood and urine tests must be done first doctor to describe a group of frequently at first (daily or weekly) to be sure patients with these characteristics. that the calcium level is in the right range. This was reported in the mid 1960’s. Even after doses are just right, tests will be done every 2–3 months. Urine tests for What other problems can be seen calcium will show if extra calcium is being in DiGeorge syndrome? flushed from the body through the kidneys into the urine. Extra calcium and activated Other midline parts of the body may not be vitamin D can be harmful, as they can lead formed normally in DiGeorge syndrome. to side-effects such as calcium deposits in These can include: the kidneys (called nephrocalcinosis) or even calcium deposits in the blood vessels. 1. The roof of the mouth, leading to cleft Ultrasound scans of the kidneys may be palate with feeding, hearing and speech recommended every year or two to watch for difficulties. this problem. 2. The heart, leading to a number of serious cardiac malformations. Hypoparathyroidism is almost always a permanent condition, but it tends to be most 3. The thymus (an organ that assists the difficult to treat during periods of rapid bone body with immunity), leading to repeated growth, for example, during infancy and serious infections. during puberty. 4. Learning difficulties, particularly with math and conceptual thinking. There are many reasons for low 5. Certain facial features are characteristic calcium. of DiGeorge syndrome: small, wide-set eyes; small, cup-shaped, low-set ears; Regardless of cause, the small lower jaw; and a blunted nose with treatment is usually the same a bulbous tip. DiGeorge syndrome As a result, many children with DiGeorge syndrome are often followed by a number of DiGeorge syndrome is also known as specialists (craniofacial experts, speech chromosome 22q11.2 deletion syndrome, or therapists, cardiologists, and CATCH-22. The velocardiofacial or immunologists). There are also specialists in Shprintzen syndrome is a closely related non-verbal learning disorders (NVLD) who condition. In DiGeorge syndrome, a small can offer guidance for the child having genetic area is missing from chromosome school problems. It is important to know that 22. This area is responsible for some midline DiGeorge syndrome is quite variable from development when the baby isn’t born yet— child to child. in fact very early in development— between the 2nd and 10th weeks. When this midline development does not occur properly, the parathyroid glands are not formed. As a result, there is no PTH production, and the August 20, 2021 www.bcchildrens.ca/endocrinology-diabetes-site/documents/cpdisorders.pdf Page 2 of 5 How is DiGeorge syndrome Q: Can I change my child’s calcium to a diagnosed? cheaper product? When DiGeorge syndrome is suspected A: Talk with your doctor and pharmacist before clinically, the diagnosis can be confirmed by making a change. Each calcium product (see Appendix) has a different amount of a DNA test. elemental calcium. Some products have a low percentage of elemental calcium, and How is DiGeorge syndrome treated? your child would have to take a large amount. Some products may have more The low calcium levels in DiGeorge side-effects, such as diarrhea. syndrome are treated the same as for simple The calcium that your child takes has to be hypoparathyroidism (see above), using given 4 times each day, before each meal calcium supplementation and either calcitriol and at bedtime, to provide the body with a (Rocaltrol®) or alfacalcidol (One-Alpha®). steady supply of calcium. It cannot be taken all at one time. Is DiGeorge syndrome hereditary? Q: My baby seems very fussy after I give In some cases, DiGeorge syndrome is familial her calcium. (inherited from one parent), but in many cases, it happens by chance. If this is A: Some forms of calcium may be upsetting suspected, your child’s doctor can refer your the stomach. Give the calcium as part of the family to a Medical Geneticist for further feeding, not at the very beginning. It is also evaluation and counselling. possible that your baby has a lax muscular Note: Since DiGeorge syndrome can connection between the esophagus (the food include so many possible aspects, you pipe) and the stomach, allowing the acid may want to start a binder to collect the stomach contents to come up into the information. It is very hard to remember esophagus. This is called reflux. Your doctor so many specialists and so much may recommend a medication for this. information. Q: Can I use non- prescription vitamin Questions from families D instead of calcitriol (Rocaltrol®) or alfacalcidol (One-Alpha®)? Q: How do you give calcium to a baby? A: No! Vitamin D from the drugstore doesn’t A: There are many forms of calcium which may work in the body until is turned into the activated be used (see Appendix). Your doctor is form of vitamin D. Because of his or her medical planning to give your child a certain amount condition, your child’s body is not able to convert of elemental calcium per day. vitamin D into the activated form. Calcium may be in a pre-mixed solution. NOTE THE INFORMATION ON THE Q: My son is booked for a surgical CONTAINER AND SHAKE WELL IF procedure soon. I’ve been told he should INSTRUCTED. This means shaking hard for have nothing to eat or drink before the 2–3 minutes while watching the clock. surgery. Does this include the calcium Otherwise, the calcium settles out, and you are giving your child less than the and calcitriol (Rocaltrol®) or alfacalcidol recommended dose. (One-Alpha®)? Calcium may be in the form of antacid tablets A: Speak with your endocrinologist about such as Tums®. Cut the tablet to the required this— it can be dangerous to miss any doses. If size, crush and dissolve in milk or formula. August 20, 2021 www.bcchildrens.ca/endocrinology-diabetes-site/documents/cpdisorders.pdf Page 3 of 5 the calcium level drops too low, the surgery will Websites and support groups for be cancelled. Often the doctor recommends taking all doses of medication with just a tiny sip disorders of calcium and phosphorus of water. The Hypoparathyroidism Association: Q: What should I do if my child is http://www.hypoparathyroidism.org vomiting and can’t keep his medicine Endocrine Web: Hypoparathyroidism: down? http://www.endocrineweb.com/hypopara.html 22qfamiliesbc (blog) A: Since it can be dangerous to miss doses, http://22qfamiliesbc.blogspot.ca/ you should speak to your endocrinologist about this.
Recommended publications
  • A Left/Right Comparison of Twice-Daily Calcipotriol Ointment and Calcitriol Ointment in Patients with Psoriasis: the Effect on Keratinocyte Subpopulations
    Acta Derm Venereol 2004; 84: 195–200 INVESTIGATIVE REPORT A Left/Right Comparison of Twice-Daily Calcipotriol Ointment and Calcitriol Ointment in Patients with Psoriasis: The Effect on Keratinocyte Subpopulations Mannon E.J. FRANSSEN, Gys J. DE JONGH, Piet E.J. VAN ERP and Peter C.M. VAN DE KERKHOF Department of Dermatology, University Medical Centre Nijmegen, The Netherlands Vitamin D3 analogues are a first-line treatment of Calcipotriol (Daivonex1,50mg/g ointment, Leo chronic plaque psoriasis, but so far, comparative clinical Pharmaceutical Products, Denmark) has been investi- studies on calcipotriol and calcitriol ointment are sparse, gated intensively during the last decade, and has proven and in particular no comparative studies are available on to be a valuable tool in the management of chronic cell biological effects of these compounds in vivo. Using plaque psoriasis. A review by Ashcroft et al. (1), based on flow cytometric assessment, we investigated whether these a large number of randomized controlled trials, showed compounds had different effects on the composition and that calcipotriol was at least as effective as potent DNA synthesis of epidermal cell populations responsible topical corticosteroids, 1a,-25-dihydroxycholecalciferol for the psoriatic phenotype. For 8 weeks, 20 patients with (calcitriol), short-contact dithranol, tacalcitol and coal psoriasis vulgaris were treated twice daily with calcipo- tar. Recently, Scott et al. (2) presented an overview of triol and calcitriol ointment in a left/right comparative studies on the use of calcipotriol ointment in the study. Before and after treatment, clinical assessment of management of psoriasis. They reconfirmed the super- target lesions was performed, together with flow cyto- ior efficacy of a twice-daily calcipotriol ointment metric analysis of epidermal subpopulations with respect regimen to the treatments as mentioned above, and to keratin (K) 10, K6, vimentin and DNA distribution.
    [Show full text]
  • Endocrine System WS19
    Endocrine System Human Physiology Unit 3 Endocrine System • Various glands located throughout the body • Some organs may also have endocrine functions • Endocrine glands/organs synthesize and release hormones • Hormones travel in plasma to target cells Functions of the Endocrine System • Differentiation of nervous and reproductive system during fetal development • Regulation of growth and development • Regulation of the reproductive system • Maintains homeostasis • Responds to changes from resting state Mechanisms of Hormone Regulation • Hormones have different rates and rhythms of secretion • Hormones are regulated by feedback systems to maintain homeostasis • Receptors for hormones are only on specific effector cells • Excretion of hormones vary for steroid hormones and peptide hormones Regulation of Hormone Secretion • Release of hormones occurs in response to • A change from resting conditions • Maintaining a regulated level of hormones or substances • Hormone release is regulated by • Chemical factors (glucose, calcium) • Endocrine factors (tropic hormones, HPA) HPA = Hypothalamic-Pituitary Axis • Neural controls (sympathetic activation) Hormone Feedback Systems Negative feedback maintains hormone concentrations within physiological ranges • Negative feedback • Feedback to one level Loss of • Long-loop Negative Feedback feedback • Feedback to two levels control often leads to • Hypothalamus-Pituitary-Gland Axis pathology Negative Feedback Short-Loop Negative Feedback Long-Loop Negative Feedback Hormone Transport Peptide/Protein Hormones
    [Show full text]
  • The Role of Reproductive Hormones in Epithelial Ovarian Carcinogenesis
    H Gharwan et al. Hormones and epithelial 22:6 R339–R363 Review ovarian cancer The role of reproductive hormones in epithelial ovarian carcinogenesis Helen Gharwan1, Kristen P Bunch2,3 and Christina M Annunziata2 1National Cancer Institute, National Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Correspondence Maryland 20892-1906, USA should be addressed 2Women’s Malignancies Branch, National Cancer Institute, National Institutes of Health, Center for Cancer Research, to H Gharwan Bethesda, Maryland, USA Email 3Department of Gynecologic Oncology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA [email protected] Abstract Epithelial ovarian cancer comprises w85% of all ovarian cancer cases. Despite acceptance Key Words regarding the influence of reproductive hormones on ovarian cancer risk and considerable " ovarian cancer advances in the understanding of epithelial ovarian carcinogenesis on a molecular level, " hormone action complete understanding of the biologic processes underlying malignant transformation of " reproductive ovarian surface epithelium is lacking. Various hypotheses have been proposed over the past " immune several decades to explain the etiology of the disease. The role of reproductive hormones in " endocrine epithelial ovarian carcinogenesis remains a key topic of research. Primary questions in the field of ovarian cancer biology center on its developmental cell of origin, the positive and negative effects of each class of hormones on ovarian cancer initiation and progression, and the role of the immune system in the ovarian cancer microenvironment. The development of the female reproductive tract is dictated by the hormonal milieu during embryogenesis. Endocrine-Related Cancer Intensive research efforts have revealed that ovarian cancer is a heterogenous disease that may develop from multiple extra-ovarian tissues, including both Mu¨ llerian (fallopian tubes, endometrium) and non-Mu¨ llerian structures (gastrointestinal tissue), contributing to its heterogeneity and distinct histologic subtypes.
    [Show full text]
  • (Lcrs) in 22Q11 Mediate Deletions, Duplications, Translocations, and Genomic Instability: an Update and Literature Review Tamim H
    review January/February 2001 ⅐ Vol. 3 ⅐ No. 1 Evolutionarily conserved low copy repeats (LCRs) in 22q11 mediate deletions, duplications, translocations, and genomic instability: An update and literature review Tamim H. Shaikh, PhD1, Hiroki Kurahashi, MD, PhD1, and Beverly S. Emanuel, PhD1,2 Several constitutional rearrangements, including deletions, duplications, and translocations, are associated with 22q11.2. These rearrangements give rise to a variety of genomic disorders, including DiGeorge, velocardiofacial, and conotruncal anomaly face syndromes (DGS/VCFS/CAFS), cat eye syndrome (CES), and the supernumerary der(22)t(11;22) syndrome associated with the recurrent t(11;22). Chromosome 22-specific duplications or low copy repeats (LCRs) have been directly implicated in the chromosomal rearrangements associated with 22q11.2. Extensive sequence analysis of the different copies of 22q11 LCRs suggests a complex organization. Examination of their evolutionary origin suggests that the duplications in 22q11.2 may predate the divergence of New World monkeys 40 million years ago. Based on the current data, a number of models are proposed to explain the LCR-mediated constitutional rearrangements of 22q11.2. Genetics in Medicine, 2001:3(1):6–13. Key Words: duplication, evolution, 22q11, deletion and translocation Although chromosome 22 represents only 2% of the haploid The 22q11.2 deletion syndrome, which includes DGS/ human genome,1 recurrent, clinically significant, acquired, VCFS/CAFS, is the most common microdeletion syndrome. and somatic
    [Show full text]
  • Continuous Rhpth (1–34) Treatment in Chronic Hypoparathyroidism
    ID: 20-0009 -20-0009 C T Fuss and others Continuous rhPTH (1-34) in ID: 20-0009; May 2020 hypoparathyroidism DOI: 10.1530/EDM-20-0009 Continuous rhPTH (1–34) treatment in chronic hypoparathyroidism Carmina Teresa Fuss1, Stephanie Burger-Stritt1, Silke Horn1, Ann-Cathrin Koschker1, Kathrin Frey1, Almuth Meyer2 and Stefanie Hahner1 Correspondence should be addressed 1Division of Endocrinology and Diabetology, Department of Medicine I, University Hospital Würzburg, Würzburg, to S Hahner Germany and 2Division of Endocrinology and Diabetology, Department of Internal Medicine, Helios Klinikum Erfurt, Email Erfurt, Germany [email protected] Summary Standard treatment of hypoparathyroidism consists of supplementation of calcium and vitamin D analogues, which does not fully restore calcium homeostasis. In some patients, hypoparathyroidism is refractory to standard treatment with persistent low serum calcium levels and associated clinical complications. Here, we report on three patients (58-year-oldmale,52-year-oldfemale,and48-year-oldfemale)sufferingfromseveretreatment-refractorypostsurgical hypoparathyroidism. Two patients had persistent hypocalcemia despite oral treatment with up to 4 µg calcitriol and up to 4 g calcium per day necessitating additional i.v. administration of calcium gluconate 2–3 times per week, whereas the third patient presented with high frequencies of hypocalcemic and treatment-associated hypercalcemic episodes. S.c. administration of rhPTH (1–34) twice daily (40 µg/day) or rhPTH (1–84) (100 µg/day) only temporarily increased serum calcium levels but did not lead to long-term stabilization. In all three cases, treatment with rhPTH (1–34) as continuous s.c. infusion via insulin pump was initiated. Normalization of serum calcium and serum phosphate levels was observed within 1 week at daily 1–34 parathyroid hormone doses of 15 µg to 29.4 µg.
    [Show full text]
  • A Clinical Update on Vitamin D Deficiency and Secondary
    References 1. Mehrotra R, Kermah D, Budoff M, et al. Hypovitaminosis D in chronic 17. Ennis JL, Worcester EM, Coe FL, Sprague SM. Current recommended 32. Thimachai P, Supasyndh O, Chaiprasert A, Satirapoj B. Efficacy of High 38. Kramer H, Berns JS, Choi MJ, et al. 25-Hydroxyvitamin D testing and kidney disease. Clin J Am Soc Nephrol. 2008;3:1144-1151. 25-hydroxyvitamin D targets for chronic kidney disease management vs. Conventional Ergocalciferol Dose for Increasing 25-Hydroxyvitamin supplementation in CKD: an NKF-KDOQI controversies report. Am J may be too low. J Nephrol. 2016;29:63-70. D and Suppressing Parathyroid Hormone Levels in Stage III-IV CKD Kidney Dis. 2014;64:499-509. 2. Hollick MF. Vitamin D: importance in the prevention of cancers, type 1 with Vitamin D Deficiency/Insufficiency: A Randomized Controlled Trial. diabetes, heart disease, and osteoporosis. Am J Clin Nutr 18. OPKO. OPKO diagnostics point-of-care system. Available at: http:// J Med Assoc Thai. 2015;98:643-648. 39. Jetter A, Egli A, Dawson-Hughes B, et al. Pharmacokinetics of oral 2004;79:362-371. www.opko.com/products/point-of-care-diagnostics/. Accessed vitamin D(3) and calcifediol. Bone. 2014;59:14-19. September 2 2015. 33. Kovesdy CP, Lu JL, Malakauskas SM, et al. Paricalcitol versus 3. Giovannucci E, Liu Y, Rimm EB, et al. Prospective study of predictors ergocalciferol for secondary hyperparathyroidism in CKD stages 3 and 40. Petkovich M, Melnick J, White J, et al. Modified-release oral calcifediol of vitamin D status and cancer incidence and mortality in men.
    [Show full text]
  • Endocrine Paraneoplastic Syndromes: a Review
    Endocrinology & Metabolism International Journal Review Article Open Access Endocrine paraneoplastic syndromes: a review Abstract Volume 1 Issue 1 - 2015 Paraneoplastic endocrine syndromes result from ectopic production of hormones by Hala Ahmadieh,1 Asma Arabi2 different tumors. Hypercalcemia of malignancy is the most common, mostly caused by 1Division of Endocrinology, American University of Beirut, ectopic parathyroid hormone related peptide (PTHrP) production which increases bone Lebanon resorption. Other causes include the rare ectopic parathyroid hormone (PTH) production, 2Department of Internal Medicine, American University of ectopic production of 1, 25-(OH)2 vitamin D by the tumor and its adjacent macrophages and Beirut-Medical Center, Lebanon bone metastasis which by itself in addition to the local production of PTHrP at the level of the bone lead to bone resorption and thus hypercalcemia. Treatment includes extracellular Correspondence: Asma Arabi, Department of Internal fluid volume repletion, bisphosphonates or denosumab and calcitonin. Ectopic Cushing’s Medicine, Division of Endocrinology, American University of syndrome caused by ectopic ACTH production results in hypokalemia, proximal muscle Beirut-Medical Center, Po Box 11-0236, Riad El-Solh, Beirut, weakness, easy bruisability, hypertension, diabetes and psychiatric abnormalities including Lebanon, Email depression and mood disorders. Different diagnostic measures help to differentiate Cushing’s disease from ectopic Cushing’s syndrome. Treatment includes surgical resection Received: October 26, 2014 | Published: January 02, 2015 of tumor and medical therapy to suppress excess cortisol production. Ectopic secretion of ADH has been associated with different tumor types. The best treatment options include removal of the underlying tumor, chemotherapy, or radiotherapy in addition to free water restriction, demeclocycline and vaptans.
    [Show full text]
  • TGF-Β Signaling Proteins and CYP24A1 May Serve As Surrogate
    1437 Original Article TGF-β signaling proteins and CYP24A1 may serve as surrogate markers for progesterone calcitriol treatment in ovarian and endometrial cancers of different histological types Ana Paucarmayta1, Hannah Taitz1, Yovanni Casablanca1,2,3, Gustavo C. Rodriguez4, G. Larry Maxwell2,3,5, Kathleen M. Darcy2,3,6, Viqar Syed1,3,7 1Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; 2Gynecologic Cancer Center of Excellence, 3John P. Murtha Cancer Center, Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, MD, USA; 4Division of Gynecologic Oncology, NorthShore University HealthSystem, University of Chicago, Evanston, IL, USA; 5Department of Obstetrics and Gynecology, Inova Fairfax Hospital, Falls Church, VA, USA; 6Inova Schar Cancer Institute, Inova Center for Personalized Health, Falls Church, VA, USA; 7Department of Molecular and Cell Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA Contributions: (I) Conception and design: KM Darcy, GL Maxwell, V Syed; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: A Paucarmayta, H Taitz, V Syed; (V) Data analysis and interpretation: A Paucarmayta, H Taitz, KM Darcy, V Syed; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Viqar Syed. John P. Murtha Cancer Center, Department of Obstetrics and Gynecology, Department of Molecular and Cell Biology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Room# A-3080, Bethesda, MD, USA. Email: [email protected]. Background: Strategies are needed to coordinately block drivers and induce suppressors of cancer to reduce incidence and improve outcomes for individuals with inherited or acquired risk.
    [Show full text]
  • Vitamin D3 Constrains Estrogen's Effects and Influences Mammary
    www.nature.com/scientificreports OPEN Vitamin D3 constrains estrogen’s efects and infuences mammary epithelial organization in 3D Received: 16 January 2019 Accepted: 18 April 2019 cultures Published: xx xx xxxx Nafs Hasan 1, Carlos Sonnenschein1,2 & Ana M. Soto 1,2 Vitamin D3 (vitD3) and its active metabolite, calcitriol (1,25-(OH)2D3), afect multiple tissue types by interacting with the vitamin D receptor (VDR). Although vitD3 defciency has been correlated with increased incidence of breast cancer and less favorable outcomes, randomized clinical trials have yet to provide conclusive evidence on the efcacy of vitD3 in preventing or treating breast cancer. Additionally, experimental studies are needed to assess the biological plausibility of these outcomes. The mammary gland of VDR KO mice shows a forid phenotype revealing alterations of developmental processes that are largely regulated by mammotropic hormones. However, most research conducted on vitD3’s efects used 2D cell cultures and supra-physiological doses of vitD3, conditions that spare the microenvironment in which morphogenesis takes place. We investigated the role of vitD3 in mammary epithelial morphogenesis using two 3D culture models. VitD3 interfered with estrogen’s actions on T47D human breast cancer cells in 3D diferently at diferent doses, and recapitulated what is observed in vivo. Also, vitD3 can act autonomously and afected the organization of estrogen-insensitive MCF10A cells in 3D collagen matrix by infuencing collagen fber organization. Thus, vitD3 modulates mammary tissue organization independent of its efects on cell proliferation. Breast cancer remains a major cause of mortality among women worldwide. Epidemiological studies have shown that key stages during breast development are particularly susceptible to the efects of carcinogens.
    [Show full text]
  • Paclitaxel, Carboplatin and 1,25-D3 Inhibit Proliferation of Endometrial
    ANTICANCER RESEARCH 37 : 6575-6581 (2017) doi:10.21873/anticanres.12114 Paclitaxel, Carboplatin and 1,25-D3 Inhibit Proliferation of Endometrial Cancer Cells In Vitro TEA KUITTINEN 1, PÄIVI ROVIO 1, SYNNÖVE STAFF 1,2 , TIINA LUUKKAALA 3,4 , ANNE KALLIONIEMI 5,6 , SEIJA GRÉNMAN 7,8 , MARITA LAURILA 9 and JOHANNA MÄENPÄÄ 1,10 1Department of Obstetrics and Gynaecology, Tampere University Hospital, Tampere, Finland; 2Laboratory of Cancer Biology, BioMediTech Institute, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland; 3Research and Innovation Centre, Tampere University Hospital, Tampere, Finland; 4Health Sciences, Faculty of Social Sciences, University of Tampere, Tampere, Finland; 5BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland; 6Fimlab Ltd, Tampere University Hospital, Tampere, Finland; 7Department of Obstetrics and Gynaecology, Turku University Hospital, Turku, Finland; 8University of Turku, Turku, Finland; 9Department of Pathology, Fimlab Ltd, Tampere University Hospital, Tampere, Finland; 10 Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland Abstract. Background/Aim: Endometrial cancer cells are combination of these compounds. The corresponding numbers known to be sensitive to carboplatin and paclitaxel. in UT-EC-3 were 70%, 33% and 65%, respectively. 1,25-D3 Further more , vitamin D (1,25-D3) has been reported to inhibit suppressed cell growth 88% with paclitaxel, 63% with endometrial cancer cell growth both as a single agent and carboplatin and 87% with their combination in the UT-EC-1 combined with carboplatin. However, there are no studies cell line. Conclusion: In both cell lines, single-agent paclitaxel comparing the effect of paclitaxel and carboplatin as single was as effective as the combination of the compounds and agents vs.
    [Show full text]
  • Hypoparathyroidism, Sensorineural
    Joseph et al. BMC Endocrine Disorders (2019) 19:111 https://doi.org/10.1186/s12902-019-0438-4 CASE REPORT Open Access Hypoparathyroidism, Sensorineural deafness and renal disease (Barakat syndrome) caused by a reduced gene dosage in GATA3: a case report and review of literature Anne D. D. Joseph1* , Nirmala D. Sirisena2, Thirunavukarasu Kumanan1, Vathualan Sujanitha1, Veronika Strelow3, Raina Yamamoto3, Stefan Wieczorek3 and Vajira H. W. Dissanayake2 Abstract Background: Barakat syndrome is an autosomal dominant rare genetic disease caused by haploinsufficiency of the GATA binding protein 3 (GATA3) gene. It is also known as HDR syndrome, and is characterized by varying degrees of hypoparathyroidism, sensorineural deafness and renal disease. This is the first report of a heterozygous GATA3 whole gene deletion causing HDR syndrome in a Sri Lankan family. Case presentation: A 13-year-old boy with an acute febrile illness, hypocalcaemia and bilateral carpopedal spasm was referred for evaluation. A past medical history of treatment for persistent hypocalcaemic symptoms since the age of 7 months was obtained. Biochemical investigations showed persistent low serum corrected calcium levels with hyperphosphataemia, hypomagnesaemia, low parathyroid hormone levels, hypercalciuria, and low total 25-hydroxy vitamin D levels. His renal functions and renal sonography were normal. Audiometry showed bilateral moderate to severe sensorineural hearing loss. On screening, his mother was also found to have asymptomatic hypocalcaemia, hypomagnesaemia, hyperphosphataemia, hypercalciuria and low total 25-hydroxy vitamin D levels. She had impaired renal functions and chronic parenchymal changes in the renal scan. Audiometry showed bilateral profound sensorineural hearing loss. Genetic analysis using multiplex-ligation dependent probe amplification showed a reduced gene dosage for GATA3 that is consistent with a heterozygous whole gene deletion in both the child and mother.
    [Show full text]
  • The Symptom Profile and Experience of Children with Rare Life-Limiting Conditions
    The symptom profile and experience of children with rare life-limiting conditions: Perspectives of their families and key health professionals Document Title The symptom profile and experience of children with rare life-limiting conditions: Perspectives of their families and key health professionals Authors Cari Malcolm, Sally Adams, Gillian Anderson, Faith Gibson, Richard Hain, Anthea Morley, Liz Forbat. Publisher Cancer Care Research Centre, University of Stirling Publication Date 2011 Target Audience Paediatric palliative care staff, paediatric clinicians, policy-makers, service developers, families supporting children with life-limiting conditions. Funded By Children’s Hospice Association Scotland Key Words Advance care planning, Batten disease, expertise, extended family, family, Morquio disease, progressive life-limiting, relationships, Sanfilippo disease, siblings, symptoms. Contact Details www.cancercare.stir.ac.uk Tel: 01786 849260 Email: [email protected] Copyright This publication is copyright CCRC and may be reproduced free of charge in any format or medium. Any material used must be fully acknowledged, and the title of the publication, authors and date of publication specified. The symptom profile and experience of children with rare life- limiting conditions: Perspectives of their families and key health professionals Executive Summary Background Many non-malignant life-limiting conditions are individually extremely rare and little is known, even by professionals in the field, about the actual day-to-day symptomatology or the impact of these symptoms on the child and family. With little recorded in the literature regarding the symptoms that children with rare life-limiting conditions experience, and the associated impact of managing these symptoms on the wider family, an opportunity exists to widen the knowledge base in this area.
    [Show full text]