University of Florida Thesis Or Dissertation Formatting

Total Page:16

File Type:pdf, Size:1020Kb

University of Florida Thesis Or Dissertation Formatting CHARACTERIZATION OF VOLATILE PYRETHROIDS FOR MOSQUITO MANAGEMENT By CHRISTOPHER STEPHEN BIBBS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2019 © 2019 Christopher Stephen Bibbs To my children, Aerith Liesel Bibbs and Griffin Roderick Bibbs, for being the reason I seek to better myself. To my parents, for enabling my fascination with insects. To my advisors, from my first days as an undergraduate to my last days completing my doctorate, whose friendship changed the way I think about the world. And to all the wonderful people who saw fit to “pay it forward” throughout my journey, even though I was owed nothing. ACKNOWLEDGMENTS I greatly appreciate the Anastasia Mosquito Control District (AMCD) of St. Johns County for allowing me to pursue my education with their employee degree work-study support. If it were not for the policies enacted by the AMCD board of commissioners, the high-quality facilities opened to my research, and most importantly, the strong belief in higher education emphasized by District director Dr. Rui-De Xue, none of this would have been possible. I originally rejected the idea of going to school after my Master of Science. Dr. Xue did not give up on my potential to go farther. Despite the struggles, I am better for it. I hope the work enclosed in this dissertation has helped improve the visibility of AMCD as a profound public health research entity in Florida. Various staff and friends have all walked with me on this path. A special debt of gratitude is owed to former biologist Alice Fulcher, former Education Specialist Jodi Scott-Fiorenzano, Operations Manager Kay Gaines, Data Manager/Business Manager Richard Weaver, former Field Biologist Michael Smith, senior Mechanic James Wynn, former Biological Technician Jennifer Gibson-Corrado, former head of surveillance Dr. Daniel Dixon, Assistant Supervisor Dena Autry, Education Specialist Molly Clark, as well as all the Mosquito Control Technicians, Seasonal Inspector/Sprayers, Visiting Scientists, and Interns. These people have enriched my life, offered their guidance, and taught me public health as a passion and a career. Funding for this research was leveraged in large part from the grants awarded by the Florida Department of Agriculture and Consumer Services, with special mention to National Science Foundation’s Center for Arthropod Management Technology (NSF-CAMTech), whose Industry Advisory Board helped me on my path. When I started this rocky road, I lacked the experience, the notoriety, and the skills to receive even a single grant despite years of attempts prior to my PhD program. Aside from my advisor, Dr. Phillip Kaufman, whom I learned from 4 long before even graduating with my Bachlelor of Science, the contributions of Dr. Jeff Bloomquist, Dr. Daniel Hahn, and Dr. Christopher Batich cannot be understated. Some believed that I may have chosen some of the most difficult committee members possible out of my options at the Entomology and Nematology Department. In my belief, if I was not good enough for them then I was not good enough for myself. We wrote these grant proposals together. We received this funding together. This dissertation was published by all of us together. Your experience, values, and fortitude are part of my own now. My sponsorship as a student has been a joint effort by the University of Florida Entomology and Nematology Department (UF), Florida Mosquito Control Association (FMCA), American Mosquito Control Association (AMCA), the Florida Entomological Society (FES), and the Entomological Society of America (ESA). The entomology department at UF, through Dr. Heather McAuslane, awarded the Grinter Fellowship three years to my PhD program. This great honor provided stability as I sought additional funding to complete my program. The FMCA memorial scholarships of Cy Lesser and T. Wainwright, bestowed graciously by public health role models such as Dr. Roxanne Connelly, Chris Lesser of Manatee County Mosquito Control District, Aaron Lloyd of Pasco County Mosquito Control District, and many others was a powerful support system that ensured I could make it to the finish line. The travel grants, student competition awards, and general student support networks of AMCA, FES, and ESA continuously proved how much the membership base was looking out for me. Dr.’s Ary Faraji, Isik Unlu, Seth Britch, Mike Breidenbaugh, Michael Turrell, Stan Cope, Kristy Burkhalter, Rajeev Vaidyanathan, Mustapha Debboun, Heather McAuslane, Blair Siegfried, Jawwad Qureshi, and many other members have all been a wonderful part of my life as they have demonstrated how to be a good entomologists, even better scientists, and great human beings. 5 This series of projects was made possible by collaborations through the United States Department of Agriculture – Agricultural Research Service – Center for Medical, Agricultural, and Veterinary entomology, McLoughlin Gormley King Corporation (MGK), Sumitomo Corporation, and Sigma Scientific, LLC. Dr.’s Dan Kline, Bradley Willenberg, Maia Tsikolia, Uli Bernier, Nurhayat Tabanca and Ken Linthicum have all been wonderful partners as we learn how to advance vector management. Dr. Jennifer Williams, Hitoshi Kawada, Takao Ishiwatari, and others affiliated with MGK and Sumitomo have been insightful collaborators that provided the tools that were needed to advance our understanding of my research topics. And finally, Rudolph Strohschein and Jim Estaver have been inspirational creatives whose ingenuity and deep history with scientific process will be a lasting influence in my career. They may declare themselves just two hicks in Micanopy, FL, but Sigma will always be a beautiful cover for such diamonds in the rough. To my advisors through time, Dr. Phillip Kaufman, Dr. Dawn Gouge, and Dr. Rebecca Baldwin: this dissertation is proof your faith was not misplaced. I met all three of you when I was only an undergraduate at the University of Florida. I am glad that I have been able to keep you in my life and learn from you both before and after my various stepping stones. My very first attempt at being an entomologist was only successful because Dr. Baldwin rescued me, mentored me, and looked out for me as I navigated college life and my early learning as a researcher. When no other graduate program I applied for would give me a chance, Dr. Gouge offered a place in her piece of Arizona because she believed I could succeed. I hope I can give back to you even now that I have left your laboratory. Since the beginning, my greatest professional role model has always been Dr. Phillip Kaufman. When I did not know what to do, I would think back to my crowded, tiny work spaces shared with Dr. Dale Halbritter and Dr. Chris 6 Holderman and ask myself what Kaufman would say I needed to do. I emulated you and your values from the beginning. When I did what I thought Dr. Kaufman would tell me, I aced my medical, veterinary, biosecurity, and forensic entomology subjects. When I did what I thought Dr. Kaufman would tell me, I completed my Master of Science at University of Arizona on time, with publications in print, and a job offer at AMCD waiting for me out the door. When I did what I thought Dr. Kaufman needed me to do, I accomplished the work in my PhD program despite being a non-traditional student, working a full-time job, and not having the benefit of being surrounded by peer students at a University office every day. I was always part of Dr. Kaufman’s laboratory, even if I did not occupy a desk. Thank you for being there. 7 TABLE OF CONTENTS page ACKNOWLEDGMENTS ........................................................................................................... 4 LIST OF TABLES .................................................................................................................... 11 LIST OF FIGURES .................................................................................................................. 12 LIST OF ABBREVIATIONS.................................................................................................... 15 ABSTRACT ............................................................................................................................. 18 CHAPTER 1 INTRODUCTION.................................................................................................................. 20 1.1 Preface ......................................................................................................................... 20 1.2 Literature Review ......................................................................................................... 24 1.2.1 Repellency .......................................................................................................... 24 1.2.2 Acute Symptoms and Toxicity ............................................................................ 29 1.2.3 Sub-Lethal Effects .............................................................................................. 33 1.2.4 Evaluation Methods ............................................................................................ 38 1.3 Objectives .................................................................................................................... 42 1.4 Discolsures ................................................................................................................... 43 1.5 Figures ........................................................................................................................
Recommended publications
  • (Tectona Grandis) Expressing a Cry1ab Genefor Control of the Skeletoniser
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/288593702 Development of transgenic teak (Tectona grandis) expressing a cry1AB genefor control of the skeletoniser Article in Asia-Pacific Journal of Molecular Biology and Biotechnology · October 2011 CITATION READS 1 50 5 authors, including: A. Norwati Norlia Basherudin 8 PUBLICATIONS 6 CITATIONS Forest Research Institute Malaysia (FRIM) 18 PUBLICATIONS 24 CITATIONS SEE PROFILE SEE PROFILE H. Mohd Rosli Norwati Muhammad Forest Research Institute Malaysia (FRIM) Forest Research Institute Malaysia (FRIM) 17 PUBLICATIONS 72 CITATIONS 143 PUBLICATIONS 715 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Malaysia-MIT Biotechnology Partnership Programme View project Kajian Rantaian Nilai Industri Herba di Semenanjung Malaysia View project All content following this page was uploaded by Norlia Basherudin on 01 July 2016. The user has requested enhancement of the downloaded file. AsPac J. Mol. Biol.Biol. Biotechnol. Biotechnol. 2011 Vol. 19 (4), 2011 Genetic transformation of teak 149 Vol. 19 (4) : 149 - 156 Development of Transgenic Teak (Tectona grandis) Expressing a cry1Ab Gene for Control of the Skeletoniser A. Norwati1, B. Norlia1, H. Mohd Rosli1, M. Norwati1 and R. Abdullah2 1Forest Research Institute Malaysia, 52109 Kepong, Selangor Darul Ehsan, Malaysia 2R&D Centre, Carey Island, Lot 2664, Jalan Pulau Carey, 42960 Carey Island, Selangor Darul Ehsan, Malaysia Received 11 Feb 2011 / Accepted 1 June 2011 Abstract. Teak (Tectona grandis) is one of the exotic forest species that has been planted in Malaysia. Teak skeletoniser, Paliga damastesalis, causes minor to considerable damage to teak trees in plantations.
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS THAILAND January 2007 Forest Resources Development Service Working Paper FBS/32E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests – Thailand DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Thailand. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests – Thailand TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]
  • THE BIONOMICS of the TEAK SKELETONISER, Paliga Damastesalis Walker (LEPIDOPTERA: CRAMBIDAE) and ITS DEFOLIATION IMPACT on YOUNG TEAK, Tectona Grandis Linnaeus
    THE BIONOMICS OF THE TEAK SKELETONISER, Paliga damastesalis Walker (LEPIDOPTERA: CRAMBIDAE) AND ITS DEFOLIATION IMPACT ON YOUNG TEAK, Tectona grandis Linnaeus By GRACE TABITHA LIM WUI OI Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Agricultural Science July 2004 Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master of Agricultural Science THE BIONOMICS OF THE TEAK SKELETONISER, Paliga damastesalis Walker (LEPIDOPTERA: CRAMBIDAE) AND ITS DEFOLIATION IMPACT ON YOUNG TEAK, Tectona grandis Linnaeus By GRACE TABITHA LIM WUI OI July 2004 Chairman: Professor Yusof Ibrahim, Ph.D. Faculty: Agriculture The distribution and feeding behaviour of a teak skeletoniser, Paliga damastesalis Walker, and the impact of its defoliation on the growth of young teak was investigated in a series of laboratory and field studies in Malaysia. A laboratory study on feeding behaviour showed that instar II to V larvae of P. damastesalis significantly preferred consuming leaf disks cut from young, expanding leaves of nodes 1 to 2 on two year-old trees, instead of leaf disks cut from mature, fully expanded leaves of nodes 3 to 5. Also, larvae that were confined to young leaves on pollarded two year-old trees a field study, fed and developed normally on those whole young leaves, indicating that secondary metabolites present in young whole leaves do not deter feeding or retard the growth of this insect significantly. Additionally, in that field study, larvae that were caged over mature leaves consumed a significantly larger leaf area in the fifth instar and had a significantly longer larval period than larvae caged over young leaves, while adult dry weights were not significantly different than that of larvae caged over young leaves.
    [Show full text]
  • Insect Pests of Important Trees Species in South India and Their Management Information
    Insect pests of important trees species in South India and their management information Mylabris pustulata Thunberg N. SENTHILKUMAR S. MURUGESAN Division of Bioprospecting Institute of Forest Genetics and Tree Breeding (Indian Council of Forestry Research and Education) Forest Campus, R. S. Puram Coimbatore—641 002, Tamilnadu 2 Insect pests of important trees species in South India and their management information N. SENTHILKUMAR S. MURUGESAN Division of Bioprospecting Institute of Forest Genetics and Tree Breeding (Indian Council of Forestry Research and Education) Forest Campus, R. S. Puram Coimbatore—641 002, Tamilnadu Copy Rights © 2015 Institute of Forest Genetics and Tree Breeding (IFGTB) (Indian Council of Forestry Research & Education) Forest Campus, R.S. Puram, Coimbatore - 641 002, Tamilnadu Published by The Director Institute of Forest Genetics and Tree Breeding (IFGTB) (Indian Council of Forestry Research & Education – An autonomous body of Ministry of Environment & Forests, Govt. of India) Forest Campus, R.S. Puram, Coimbatore - 641 002, Tamilnadu 4 S. No. Content Page nos. Acknowledgements Preface 1 Insect pests of Gmelina arborea (Roxb.) 8-19 2 Insect pests of bamboo 20-39 3 Insect pests of Tectona grandis L. f 40 -59 4 Insect pests of Leucaena leucocephala (Lam.) 60-61 de Wit. 5 Insect pests of Pterocarpus marsupium 62-63 Roxburgh 6 Insect pests of Albizia odoratissima (L.f.) 64-69 Benth. 7 Insect pests of Syzygium cuminii Skeels 70-71 8 Insect pests of Mitragyna speciosa Korth 72-73 9 Insect pests of Dolichandrone crispa Seem 74-75 10 Insect pests of Melia dubia Cav. 76-77 11 Insect pests of Anthocephalus cadamba 78-79 (Roxb.) 12 Insect pests of Aquilaria malaccensis Lamk 80-83 13 Insect pests of Emblica officinalis Gaertn.
    [Show full text]
  • Status of Paliga Auratalis (Lepidoptera: Crambidae) As Black
    ORIGINAL RESEARCH ARTICLE Current Research on Biosciences and Biotechnology 2 (2) 2021 121-125 Current Research on Biosciences and Biotechnology www.crbb-journal.com Status of Paliga auratalis (Lepidoptera: Crambidae) as black potato pest and its control strategy using natural enemies Erniwatia*, Tiara Sayustib, Woro Anggraitoningsih Noerdjitoa aZoology Division, Research Center for Biology, Indonesian Institute of Science, bAnimal Bioscience Program, Department of Biology, IPB University ABSTRACT Plectranthus rotundifolius (Lamiales: Lamiaceae) is an edible tuber that is widely distributed in Article history: Asia, covering India, Sri Lanka, Malaysia, and Indonesia. P. rotundifolius, which is commonly Received 23 Jul 2020 called black potato in Indonesia, has the potential to be developed for national food Revised 19 Dec 2020 diversification due to its high carbohydrates. However, one of the challenges in black potato Accepted 13 Jan 2021 cultivation is the existence of leaf-eating caterpillar. This study aimed to evaluate the status of Available online 28 Feb 2021 Paliga auratalis (Lepidoptera: Crambidae) larva as an insect pest in black potato plant and to develop the control strategy by using parasitoid as the natural enemies. Observation and Keywords: collection of P. auratalis and other potential insect pests were conducted in 12 black potato plantations located in five provinces of Java island. The life cycle of P. auratalis was observed Paliga auratalis in the laboratory of Zoology Division, Research Centre for Biology, Indonesian Institute of Plectranthus rotundifolius Cryptopimpla Science. Rearing of unhealthy P. auratalis larvae was also conducted to observe the parasitoid. insect pest We identified five moth larvae species that infested black potato plants: Argyrograma sp., parasitoid Pycnarmon cribata, Pleuroptya punctimarginalis, Rehimena diemenalis, and Paliga auratalis.
    [Show full text]
  • Lepidoptera: Pyraloidea: Crambidae) Inferred from DNA and Morphology 141-204 77 (1): 141 – 204 2019
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2019 Band/Volume: 77 Autor(en)/Author(s): Mally Richard, Hayden James E., Neinhuis Christoph, Jordal Bjarte H., Nuss Matthias Artikel/Article: The phylogenetic systematics of Spilomelinae and Pyraustinae (Lepidoptera: Pyraloidea: Crambidae) inferred from DNA and morphology 141-204 77 (1): 141 – 204 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. The phylogenetic systematics of Spilomelinae and Pyraustinae (Lepidoptera: Pyraloidea: Crambidae) inferred from DNA and morphology Richard Mally *, 1, James E. Hayden 2, Christoph Neinhuis 3, Bjarte H. Jordal 1 & Matthias Nuss 4 1 University Museum of Bergen, Natural History Collections, Realfagbygget, Allégaten 41, 5007 Bergen, Norway; Richard Mally [richard. [email protected], [email protected]], Bjarte H. Jordal [[email protected]] — 2 Florida Department of Agriculture and Consumer Ser- vices, Division of Plant Industry, 1911 SW 34th Street, Gainesville, FL 32608 USA; James E. Hayden [[email protected]] — 3 Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany; Christoph Neinhuis [[email protected]] — 4 Senckenberg Naturhistorische Sammlungen Dresden, Museum für Tierkunde, Königsbrücker Landstraße 159, 01109 Dresden, Germany; Matthias Nuss [[email protected]] — * Corresponding author Accepted on March 14, 2019. Published online at www.senckenberg.de/arthropod-systematics on May 17, 2019. Published in print on June 03, 2019. Editors in charge: Brian Wiegmann & Klaus-Dieter Klass. Abstract. Spilomelinae and Pyraustinae form a species-rich monophylum of Crambidae (snout moths). Morphological distinction of the two groups has been diffcult in the past, and the morphologically heterogenous Spilomelinae has not been broadly accepted as a natural group due to the lack of convincing apomorphies.
    [Show full text]
  • Part III. Pests of Selected Forest Tree Species
    PART III Pests of selected forest tree species PART III Pests of selected forest tree species 143 Abies grandis Order and Family: Pinales: Pinaceae Common names: grand fir; giant fir NATURAL DISTRIBUTION Abies grandis is a western North American (both Pacific and Cordilleran) species (Klinka et al., 1999). It grows in coastal (maritime) and interior (continental) regions from latitude 39 to 51 °N and at a longitude of 125 to 114 °W. In coastal regions, it grows in southern British Columbia (Canada), in the interior valleys and lowlands of western Washington and Oregon (United States), and in northwestern California (United States). Its range extends to eastern Washington, northern Idaho, western Montana, and northeastern Oregon (Foiles, 1965; Little, 1979). This species is not cultivated as an exotic to any significant extent. PESTS Arthropods in indigenous range The western spruce budworm (Choristoneura occidentalis) and Douglas-fir tussock moth (Orgyia pseudotsugata) have caused widespread defoliation, top kill and mortality to grand fir. Early-instar larvae of C. occidentalis mine and kill the buds, while late- instar larvae are voracious and wasteful feeders, often consuming only parts of needles, chewing them off at their bases. The western balsam bark beetle (Dryocoetes confusus) and the fir engraver (Scolytus ventralis) are the principal bark beetles. Fir cone moths (Barbara spp.), fir cone maggots (Earomyia spp.), and several seed chalcids destroy large numbers of grand fir cones and seeds. The balsam woolly adelgid (Adelges piceae) is a serious pest of A. grandis in western Oregon, Washington and southwestern British Columbia (Furniss and Carolin, 1977). Feeding by this aphid causes twigs to swell or ‘gout’ at the nodes and the cambium produces wide, irregular annual growth rings consisting of reddish, highly lignified, brittle wood (Harris, 1978).
    [Show full text]
  • Pest Outbreaks in Tropical Forest Plantations
    cover 04202 3/5/02 7:39 AM Page 1 CIFOR The success of exotic tree species in plantations has generally been attributed to P e s effective species-site matching and their t O O freedom from insect pests and diseases. u t b Nevertheless, there is a fear that catastrophic r e a outbreaks of pests and diseases may occur k s I suddenly in exotic plantations. There are two I n T opposing views: that plantations of exotic T r o species are at greater risk compared to p i c indigenous species and conversely that exotics a l F are at lesser risk. This report provides a critical F o r assessment of the risk of insect pest outbreaks e s t P in exotic plantations using an empirical P l a approach. Nine commonly planted species in n t a the tropics, Acacia mangium, Eucalyptus spp., t i o Gmelina arborea, Hevea brasiliensis, Leucaena n s leucocephala, Paraserianthes falcataria, Pinus caribaea, Swietenia macrophylla and Tectona grandis, were selected and their pest problems in natural forest stands, in indigenous species plantations and in exotic plantations were Pest Outbreaks in compared. Growing trees in monoculture increases the pest problem but the risk of pest Tropical Forest Plantations: outbreaks is not solely dependent on the exotic or indigenous status of a species. Pest outbreaks also occur in native plantations. The Is There a Greater Risk for Exotic Tree Species? theory relating to insect population dynamics and causes of pest outbreaks is discussed and several factors are identified that determine the risk of pest outbreaks in exotic monoculture plantations.
    [Show full text]
  • Preliminary Report on Crambid Moths (Lepidopterta: Pyraloidea
    Journal of Entomology and Zoology Studies 2017; 5(6): 778-781 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Preliminary report on crambid moths JEZS 2017; 5(6): 778-781 © 2017 JEZS (Lepidopterta: Pyraloidea: Crambidae) from Received: 11-09-2017 Accepted: 14-10-2017 different places in Tamil Nadu S Rathikannu Ph.D Scholar, Department of Agricultural Entomology, Tamil S Rathikannu and N Chitra Nadu Agricultural University, Coimbatore, Tamil Nadu, India Abstract A preliminary study on the occurrence of crambid moths in various locations of Tamil Nadu viz., N Chitra Kodaikanal (10°12.329’N 077°20.257’E), Ooty (11°24.87’N 76°44.122’E), Yercaud (11°47.73’N Associate Professor, Department 078°12.710’E) and Coimbatore (76°55.759N 11°00.986’E) was carried out. A total of 42 species of of Agricultural Entomology, Tamil Nadu Agricultural Crambidae were recorded. Among them, the subfamily Spilomelinae was the dominant group with 37 University, Coimbatore, Tamil species followed by Pyraustinae, Crambinae and Cybalomiinae. Nadu, India Keywords: pyraloidea, crambidae, light trap, forest ecosystem, Distribution 1. Introduction The order Lepidoptera is the second largest order with over 1, 60,000 [1] described species of which over 12,000 species are recorded from India [2]. The superfamily Pyraloidea is the third [3] largest-having more than 16,000 described species worldwide . The familial composition of the Pyraloidea has changed markedly over the past 30 years, with a general decrease in the number of families and currently with only two families, Pyralidae and Crambidae. At the generic level, the family Pyralidae contains 1,067 genera and 6,233 described species and [4] Crambidae contains 9,654 species classified into 1,018 genera but many more species are undescribed, especially in the tropics.
    [Show full text]
  • Role of Foliar Protein and Polyphenol and Their
    Journal of Tropical Forest Science 12(2):221-226 (2000) ROL FOLIAF O E R PROTEI POLYPHENOD NAN D LAN THEIR RELATIONSHIP TO CLONAL RESISTANCE IN TEAK AGAINS E LEATTH F SKELETONISER, PALIGA MACHOERAL1S WALKER (LEPIDOPTERA: PYRALIDAE) Avinash Jain . RoychoudhuryN , Alk*& a Bhargava Chemistry of Forest Produce Division, *Forest Entomology Division, Tropical Forest Research Institute, Jabalpur 482021 (M.P.), India Received June 1997____________________________________________________ JAIN, A., ROYCHOUDHURY, N. & BHARGAVA, A. 2000. Role of foliar protein and polyphenol and their relationship to clonal resistance in teak against the leaf skeletoniser, Paliga machoeralis Walker (Lepidoptera: Pyralidae). Leaf protein and polyphenol contents were estimate r selectefo d d resistant (ORANR-2, ORANR-3, ORANR-4, ORANP-7 and MHSC-A3) and susceptible (APT-8, APT-14, TNT-2 and ORPB-15) clones of teak to the leaf skeletoniser, Paliga machoeralis. The results were correlated wit degree hth f resistance/susceptibilityo e e protei Th .polypheno d nan l contents of clonal leaves were directly and inversely proportional respectively, to amoune th leaf o t f damage e rati Th f .proteio o o polyphenot n l playe decisiva d e role in determining the degree of resistance. Alow ratio indicates higher resistance vicd an e versa. Key words: Teak - clonal resistance - skeletoniser - leaf - protein - polyphenol JAIN, A., ROYCHOUDHURY, N. & BHARGAVA, A. 2000. Peranan protein dan polif enol daun serta kaitannya dengan kerintangan klon dalam pokok jati terhadap ulat perangka daun, Paliga machoeralis Walker (Lepidoptera: Pyralidae). Kandungan protein dan polifenol dianggarkan bagi klon rintangyang terpilih (ORANR-2, ORANR- 3, ORANR-4, ORANP-7 dan MHSC-A3) dan klon rentan (APT-8, APT-14, TNT-2 dan ORPB-15) bagi jati terhadap perangka daun, Paliga machoeralis.
    [Show full text]
  • Order Family Subfamily Genus Species Subspecies Author Year Series Region Units Lepidoptera Crambidae Acentropinae Acentria Ephe
    Order Family Subfamily Genus species subspecies author year series region units Lepidoptera Crambidae Acentropinae Acentria ephemerella (Denis & Schiffermüller) 1C, 1D Nearctic, Palearctic trays Lepidoptera Crambidae Acentropinae Anydraula glycerialis (Walker) 1D Australasian trays Lepidoptera Crambidae Acentropinae Argyractis berthalis (Schaus) 1C Neotropical trays Lepidoptera Crambidae Acentropinae Argyractis dodalis Schaus 1B Neotropical trays Lepidoptera Crambidae Acentropinae Argyractis elphegalis (Schaus) 1B Neotropical trays Lepidoptera Crambidae Acentropinae Argyractis flavalis (Warren) 1B Neotropical trays Lepidoptera Crambidae Acentropinae Argyractis iasusalis (Walker) 1D Neotropical trays Lepidoptera Crambidae Acentropinae Argyractis paulalis (Schaus) 1D Neotropical trays Lepidoptera Crambidae Acentropinae Argyractis sp. 1C, 1D Neotropical trays Lepidoptera Crambidae Acentropinae Argyractis tetropalis Hampson 1D African trays Lepidoptera Crambidae Acentropinae Argyractis triopalis Hampson 1D African trays Lepidoptera Crambidae Acentropinae Argyractoides catenalis (Guenée 1D Neotropical trays Lepidoptera Crambidae Acentropinae Argyractoides chalcistis (Dognin) 1D Neotropical trays Lepidoptera Crambidae Acentropinae Argyractoides gontranalis (Schaus) 1D Neotropical trays Lepidoptera Crambidae Acentropinae Aulacodes acroperalis Hampson 1D Australasian trays Lepidoptera Crambidae Acentropinae Aulacodes adiantealis (Walker) 1D Neotropical trays Lepidoptera Crambidae Acentropinae Aulacodes aechmialis Guenée 1D Neotropical trays Lepidoptera
    [Show full text]
  • Dynamic Inventory of Moths of Savitribai Phule Pune University (Pune, India) Through Crowdsourcing Via Inaturalist
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.01.454690; this version posted August 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Dynamic inventory of moths of Savitribai Phule Pune University (Pune, India) through crowdsourcing via iNaturalist. Bhalchandra Pujari1 Department of scientific computing modeling and simulation, Savitribai Phule Pune University, Ganeshkhind, Pune 411007 1 Address for correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.08.01.454690; this version posted August 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract We present here the checklist of moths (Lepidoptera: Heterocera) for the campus of Savitribai Phule Pune University, situated in the metropolis of Pune in the state Maharashra in India. We report identi/ication of 189 unique genera along with 154 unique species. Despite the relative small size of the observation area and the location being at the heart of a busy metropolis, the moths were found to be of diverse variety, with 26 different families and 76 tribes. The identifications of the species was crowd-sourced via iNaturalist.org. An automated program was developed to fetch the identi/ication and generate the list.
    [Show full text]