Donskoy Cats As a New Model of Oculocutaneous Albinism with the Identification of a Splice- Site Variant in Hermansky-Pudlak Syndrome 5 Gene

Total Page:16

File Type:pdf, Size:1020Kb

Donskoy Cats As a New Model of Oculocutaneous Albinism with the Identification of a Splice- Site Variant in Hermansky-Pudlak Syndrome 5 Gene PROF. MARIE ABITBOL (Orcid ID : 0000-0002-5615-7897) Article type : Original Article Donskoy cats as a new model of oculocutaneous albinism with the identification of a splice- site variant in Hermansky-Pudlak Syndrome 5 gene Running Title: Feline HPS5 splice-site variant Authors Marina Mériot1, Christophe Hitte2, Maud Rimbault2, Caroline Dufaure de Citres3, Vincent Gache4, Marie Abitbol1,4 1Univ Lyon, VetAgro Sup, 1 avenue Bourgelat, Marcy l’Etoile, France 2Univ Rennes, CNRS, IGDR-UMR 6290, Rennes, France 3Antagene, La Tour de Salvagny, France 4Univ Lyon, CNRS UMR5310, INSERM U1217, Université Claude Bernard Lyon I, Institut NeuroMyoGène, 8 avenue Rockefeller, Lyon, France Contact Information Marie Abitbol, VetAgro Sup, 1 avenue Bourgelat, 69280, Marcy l’Etoile, France Email address: [email protected] Abstract Accepted Article In the feline Donskoy breed, a phenotype that breeders call "pink-eye", with associated light- brown skin, yellow irises and red-eye effect, has been described. Genealogical data indicated an autosomal recessive inheritance pattern. A single candidate region was identified by genome-wide association study and SNP-based homozygosity mapping. Within that region, we further identified HPS5 (HPS5 Biogenesis Of Lysosomal Organelles Complex 2 Subunit 2) as a strong candidate gene, since HPS5 variants have been identified in humans and animals with Hermansky-Pudlak syndrome 5 or oculocutaneous albinism. A homozygous c.2571-1G>A acceptor splice-site variant located in intron 16 of HPS5 was identified in pink-eye cats. Segregation of the variant was 100% consistent with the inheritance pattern. Genotyping of 170 cats from 19 breeds failed to identify a single carrier in non-Donskoy cats. The c.2571-1G>A variant leads to HPS5 exon-16 splicing, that is predicted to produce a 52 amino-acids in-frame deletion in the protein. These results support an association of the pink-eye phenotype with the c.2571-1G>A variant. The pink-eye Donskoy cat extends the panel of reported HPS5 variants and offers an opportunity for in-depth exploration of the phenotypic consequences of a new HPS5 variant. Accepted Article Significance Models in large animals, rather than rodents, have proved relevant to model human conditions and to fill the gap between preclinical and clinical research. Companion animals exhibiting spontaneous disease and traits provide potential animal models to better characterize phenotypes and identify new genetic variants. Here we describe the genetic characterization of the first spontaneous model of Hermansky Pudlak Syndrome 5 in the domestic cat (Felis catus). The identification of a new variant in HPS5 will allow further study of the genotype-phenotype correlation in Hermansky Pudlak Syndrome 5. Keywords Felis catus, Hermansky-Pudlak Syndrome 5, albinism, BLOC2S2, ruby-eye 2 Acknowledgments Authors wish to thank owners and breeders for providing samples, test results and pictures, especially Kathryn Eden (Doneden cattery), Anna Kholmska (Donskoy Discovery cattery) and Jackie Gallant-Hawn for their great help. They also thank Dr Abrams and Dr Binder for the eye examination of the kitten and Diana Warwick for editing the manuscript. This work was funded by Genespoir (71VAL0419), the FRB (Fondation pour la Recherche sur la Biodiversité), the LOOF [Livre Officiel des Origines Félines, the French feline studbook, (FeliSeq2)] and the scientific committee of VetAgro Sup. Feline DNA samples are part of the Feli-DNA biobank, which is part of the CRB-Anim infrastructure [ANR-11-INBS-0003, in the framework of the "Investing for the Future" program (PIA)]. Funding information This work was funded by Genespoir (71VAL0419), the FRB [Fondation pour la Recherche sur la Biodiversité (FeliSeq)], the LOOF [Livre Officiel des Origines Félines, the French feline studbook, (FeliSeq2)] and the scientific committee of VetAgro Sup. Feline DNA samples are part of the Feli-DNA biobank, which is part of the CRB-Anim infrastructure [ANR-11-INBS-0003, in the framework of the "Investing for the Future" program (PIA)]. Accepted Article Donskoy cats as a new model of oculocutaneous albinism with the identification of a splice- site variant in Hermansky-Pudlak Syndrome 5 gene Abstract In the feline Donskoy breed, a phenotype that breeders call "pink-eye", with associated light- brown skin, yellow irises and red-eye effect, has been described. Genealogical data indicated an autosomal recessive inheritance pattern. A single candidate region was identified by genome-wide association study and SNP-based homozygosity mapping. Within that region, we further identified HPS5 (HPS5 Biogenesis Of Lysosomal Organelles Complex 2 Subunit 2) as a strong candidate gene, since HPS5 variants have been identified in humans and animals with Hermansky-Pudlak syndrome 5 or oculocutaneous albinism. A homozygous c.2571-1G>A acceptor splice-site variant located in intron 16 of HPS5 was identified in pink-eye cats. Segregation of the variant was 100% consistent with the inheritance pattern. Genotyping of 170 cats from 19 breeds failed to identify a single carrier in non-Donskoy cats. The c.2571-1G>A variant leads to HPS5 exon-16 splicing, that is predicted to produce a 52 amino-acids in-frame deletion in the protein. These results support an association of the pink-eye phenotype with the c.2571-1G>A variant. The pink-eye Donskoy cat extends the panel of reported HPS5 variants and offers an opportunity for in-depth exploration of the phenotypic consequences of a new HPS5 variant. Keywords Felis catus, Hermansky-Pudlak Syndrome 5, albinism, BLOC2S2, ruby-eye 2 1 Introduction Pedigree cats have been selected for aesthetic traits including coat colour, and progress has been made over the past twenty years to identify the genes involved in these traits. Initial strategies used candidate gene approaches and feline linkage maps developed at the end of the nineties. Several variants were identified by genome-wide linkage analysis, but this approach have some limitation. Individuals from large extended pedigrees need to be genotyped for the markers. Thus, classical linkage studies are often impossible to conduct in feline breeds with small size population or when a limited number of individuals exhibit the trait of interest. Tremendous progress was made in 2007 when the first cat genome sequence obtained from an Abyssinian female was published Accepted Article (Pontius et al., 2007). Additional sequencing of numerous cats let to the identification of millions of SNPs (single nucleotide polymorphisms) that were then used to develop a feline SNP array, which became available in 2012 (Illumina 63K SNP array). Since this decisive breakthrough, genome-wide association studies (GWAS) became the standard method to search for genes and variants underlying feline traits. Indeed, GWAS requires fewer cases and controls, compared to linkage analyses. Finally, whole-genome sequencing became affordable. This new genomic tool allows to characterize variants by sequencing a single case and comparing it to a reference database of genomes (Gandolfi et al., 2015). By using a candidate gene strategy, five variants have been shown to cause non-syndromic complete or partial albinism in cats. All these variants lie within the TYR (tyrosinase) gene. Three variants cause temperature-sensitive tyrosinase activity with peripheral pigmentation (Lyons et al., 2005a; Schmidt-Küntzel et al., 2005; Yu et al., 2019), similar to the oculocutaneous albinism (OCA) reported in a patient in 1991 (King et al., 1991; OCA1B, OMIM: 606952). The other two alleles are loss-of-function variants that cause complete oculocutaneous albinism (Imes et al., 2006; Abitbol et al., 2017), a phenotype homologous to human OCA1A (OMIM: 203100). Seven loci are involved in non-syndromic oculocutaneous albinism in humans (OCA1 to OCA7, Frederico et al., 2019). Syndromic OCA includes Chediak-Higashi Syndrome (OMIM: 214500), Hermansky-Pudlak Syndrome (HPS, OMIM: 203300), Griscelli Syndrome (OMIM: 214450), Elejalde Syndrome (OMIM: 256710) and Cross Syndrome (OMIM: 257800). HPS associates OCA and various features including a bleeding diathesis, and, in some patients, pulmonary fibrosis, granulomatous colitis, or immunodeficiency. Variants in AP3B1 (Adaptor Related Protein Complex 3 Subunit Beta 1, HPS2), AP3D1 (AP3 Subunit Delta 1, HPS10), BLOC1S3 (Biogenesis Of Lysosomal Organelles Complex 1 Subunit 3, HPS8), BLOC1S6 (HPS9), BLOC2S1 (Biogenesis Of Lysosomal Organelles Complex 2 Subunit 1, HPS3), BLOC2S2 (HPS5), BLOC2S3 (HPS6), BLOC3S1 (Biogenesis Of Lysosomal Organelles Complex 3 Subunit 1, HPS1), BLOC3S2 (HPS4) and DTNBP1 (Dystrobrevin Binding Protein 1, HPS7) human genes have been identified (OMIM: 203300). HPS5 is described as a mild form of HPS since patients lack the severe complications present in other HPS, in particular pulmonary fibrosis. The typical clinical presentation includes hypopigmentation, reduced visual acuity and mild prolonged bleeding time. Accepted Article In animals, HPS5 has been described in the mouse (ruby-eye2, Zhang et al., 2003, MGI:1856144), stickleback fish (Hart et al., 2017), zebrafish (Daly et al., 2013), silkworm (Fujii et al., 2012) and drosophila (Falcón-Pérez et al., 2007, Syrzycka et al., 2007). A new coat colour was reported in 2007 in Donskoy cats in Ukraine and in 2015 in the United States of America (USA). Cats showed reduced pigmentation, yellow irises with red-eye effect under direct light, suggesting a new phenotype of OCA. The Donskoy (or Don Sphynx) is a Russian breed
Recommended publications
  • Aberrant Colourations in Wild Snakes: Case Study in Neotropical Taxa and a Review of Terminology
    SALAMANDRA 57(1): 124–138 Claudio Borteiro et al. SALAMANDRA 15 February 2021 ISSN 0036–3375 German Journal of Herpetology Aberrant colourations in wild snakes: case study in Neotropical taxa and a review of terminology Claudio Borteiro1, Arthur Diesel Abegg2,3, Fabrício Hirouki Oda4, Darío Cardozo5, Francisco Kolenc1, Ignacio Etchandy6, Irasema Bisaiz6, Carlos Prigioni1 & Diego Baldo5 1) Sección Herpetología, Museo Nacional de Historia Natural, Miguelete 1825, Montevideo 11800, Uruguay 2) Instituto Butantan, Laboratório Especial de Coleções Zoológicas, Avenida Vital Brasil, 1500, Butantã, CEP 05503-900 São Paulo, SP, Brazil 3) Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, Programa de Pós-Graduação em Zoologia, Travessa 14, Rua do Matão, 321, Cidade Universitária, 05508-090, São Paulo, SP, Brazil 4) Universidade Regional do Cariri, Departamento de Química Biológica, Programa de Pós-graduação em Bioprospecção Molecular, Rua Coronel Antônio Luiz 1161, Pimenta, Crato, Ceará 63105-000, CE, Brazil 5) Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Felix de Azara 1552, CP 3300, Posadas, Misiones, Argentina 6) Alternatus Uruguay, Ruta 37, km 1.4, Piriápolis, Uruguay Corresponding author: Claudio Borteiro, e-mail: [email protected] Manuscript received: 2 April 2020 Accepted: 18 August 2020 by Arne Schulze Abstract. The criteria used by previous authors to define colour aberrancies of snakes, particularly albinism, are varied and terms have widely been used ambiguously. The aim of this work was to review genetically based aberrant colour morphs of wild Neotropical snakes and associated terminology. We compiled a total of 115 cases of conspicuous defective expressions of pigmentations in snakes, including melanin (black/brown colour), xanthins (yellow), and erythrins (red), which in- volved 47 species of Aniliidae, Boidae, Colubridae, Elapidae, Leptotyphlopidae, Typhlopidae, and Viperidae.
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Index to the NLM Classification 2011
    National Library of Medicine Classification 2011 Index Disease see Tyrosinemias 1-8 5,12-diHETE see Leukotriene B4 1,2-Benzopyrones see Coumarins 5,12-HETE see Leukotriene B4 1,2-Dibromoethane see Ethylene Dibromide 5-HT see Serotonin 1,8-Dihydroxy-9-anthrone see Anthralin 5-HT Antagonists see Serotonin Antagonists 1-Oxacephalosporin see Moxalactam 5-Hydroxytryptamine see Serotonin 1-Propanol 5-Hydroxytryptamine Antagonists see Serotonin Organic chemistry QD 305.A4 Antagonists Pharmacology QV 82 6-Mercaptopurine QV 269 1-Sar-8-Ala Angiotensin II see Saralasin 7S RNA see RNA, Small Nuclear 1-Sarcosine-8-Alanine Angiotensin II see Saralasin 8-Hydroxyquinoline see Oxyquinoline 13-cis-Retinoic Acid see Isotretinoin 8-Methoxypsoralen see Methoxsalen 15th Century History see History, 15th Century 8-Quinolinol see Oxyquinoline 16th Century History see History, 16th Century 17 beta-Estradiol see Estradiol 17-Ketosteroids WK 755 A 17-Oxosteroids see 17-Ketosteroids A Fibers see Nerve Fibers, Myelinated 17th Century History see History, 17th Century Aardvarks see Xenarthra 18th Century History see History, 18th Century Abate see Temefos 19th Century History see History, 19th Century Abattoirs WA 707 2',3'-Cyclic-Nucleotide Phosphodiesterases QU 136 Abbreviations 2,4-D see 2,4-Dichlorophenoxyacetic Acid Chemistry QD 7 2,4-Dichlorophenoxyacetic Acid General P 365-365.5 Organic chemistry QD 341.A2 Library symbols (U.S.) Z 881 2',5'-Oligoadenylate Polymerase see Medical W 13 2',5'-Oligoadenylate Synthetase By specialties (Form number 13 in any NLM
    [Show full text]
  • Linking Melanism to Brain Development: Expression of a Melanism-Related Gene in Barn Owl Feather Follicles Covaries with Sleep O
    Scriba et al. Frontiers in Zoology 2013, 10:42 http://www.frontiersinzoology.com/content/10/1/42 RESEARCH Open Access Linking melanism to brain development: expression of a melanism-related gene in barn owl feather follicles covaries with sleep ontogeny Madeleine F Scriba1,2†, Anne-Lyse Ducrest2†, Isabelle Henry2, Alexei L Vyssotski3, Niels C Rattenborg1*† and Alexandre Roulin2*† Abstract Background: Intra-specific variation in melanocyte pigmentation, common in the animal kingdom, has caught the eye of naturalists and biologists for centuries. In vertebrates, dark, eumelanin pigmentation is often genetically determined and associated with various behavioral and physiological traits, suggesting that the genes involved in melanism have far reaching pleiotropic effects. The mechanisms linking these traits remain poorly understood, and the potential involvement of developmental processes occurring in the brain early in life has not been investigated. We examined the ontogeny of rapid eye movement (REM) sleep, a state involved in brain development, in a wild population of barn owls (Tyto alba) exhibiting inter-individual variation in melanism and covarying traits. In addition to sleep, we measured melanistic feather spots and the expression of a gene in the feather follicles implicated in melanism (PCSK2). Results: As in mammals, REM sleep declined with age across a period of brain development in owlets. In addition, inter-individual variation in REM sleep around this developmental trajectory was predicted by variation in PCSK2 expression in the feather follicles, with individuals expressing higher levels exhibiting a more precocial pattern characterized by less REM sleep. Finally, PCSK2 expression was positively correlated with feather spotting. Conclusions: We demonstrate that the pace of brain development, as reflected in age-related changes in REM sleep, covaries with the peripheral activation of the melanocortin system.
    [Show full text]
  • Orphanet Report Series Rare Diseases Collection
    Marche des Maladies Rares – Alliance Maladies Rares Orphanet Report Series Rare Diseases collection DecemberOctober 2013 2009 List of rare diseases and synonyms Listed in alphabetical order www.orpha.net 20102206 Rare diseases listed in alphabetical order ORPHA ORPHA ORPHA Disease name Disease name Disease name Number Number Number 289157 1-alpha-hydroxylase deficiency 309127 3-hydroxyacyl-CoA dehydrogenase 228384 5q14.3 microdeletion syndrome deficiency 293948 1p21.3 microdeletion syndrome 314655 5q31.3 microdeletion syndrome 939 3-hydroxyisobutyric aciduria 1606 1p36 deletion syndrome 228415 5q35 microduplication syndrome 2616 3M syndrome 250989 1q21.1 microdeletion syndrome 96125 6p subtelomeric deletion syndrome 2616 3-M syndrome 250994 1q21.1 microduplication syndrome 251046 6p22 microdeletion syndrome 293843 3MC syndrome 250999 1q41q42 microdeletion syndrome 96125 6p25 microdeletion syndrome 6 3-methylcrotonylglycinuria 250999 1q41-q42 microdeletion syndrome 99135 6-phosphogluconate dehydrogenase 67046 3-methylglutaconic aciduria type 1 deficiency 238769 1q44 microdeletion syndrome 111 3-methylglutaconic aciduria type 2 13 6-pyruvoyl-tetrahydropterin synthase 976 2,8 dihydroxyadenine urolithiasis deficiency 67047 3-methylglutaconic aciduria type 3 869 2A syndrome 75857 6q terminal deletion 67048 3-methylglutaconic aciduria type 4 79154 2-aminoadipic 2-oxoadipic aciduria 171829 6q16 deletion syndrome 66634 3-methylglutaconic aciduria type 5 19 2-hydroxyglutaric acidemia 251056 6q25 microdeletion syndrome 352328 3-methylglutaconic
    [Show full text]
  • Chediak‑Higashi Syndrome in Three Indian Siblings
    Case Report Silvery Hair with Speckled Dyspigmentation: Chediak‑Higashi Access this article online Website: Syndrome in Three Indian Siblings www.ijtrichology.com Chekuri Raghuveer, Sambasiviah Chidambara Murthy, DOI: Mallur N Mithuna, Tamraparni Suresh 10.4103/0974-7753.167462 Quick Response Code: Department of Dermatology and Venereology, Vijayanagara Institute of Medical Sciences, Bellary, Karnataka, India ABSTRACT Silvery hair is a common feature of Chediak-Higashi syndrome (CHS), Griscelli syndrome, and Elejalde syndrome. CHS is a rare autosomal recessive disorder characterized by partial oculocutaneous albinism, frequent pyogenic infections, and the presence of abnormal large granules in leukocytes and other granule containing cells. A 6-year-old girl had recurrent Address for correspondence: respiratory infections, speckled hypo- and hyper-pigmentation over exposed areas, and Dr. Chekuri Raghuveer, silvery hair since early childhood. Clinical features, laboratory investigations, hair microscopy, Department of Dermatology and skin biopsy findings were consistent with CHS. Her younger sisters aged 4 and 2 years and Venereology, Vijayanagara had similar clinical, peripheral blood picture, and hair microscopy findings consistent with Institute of Medical Sciences, CHS. This case is reported for its rare occurrence in all the three siblings of the family, prominent pigmentary changes, and absent accelerated phase till date. Awareness, early Bellary ‑ 583 104, recognition, and management of the condition may prevent the preterm morbidity associated. Karnataka, India. E‑mail: c_raghuveer@ yahoo.com Key words: Partial albinism, primary immunodeficiency, silvery hair syndrome INTRODUCTION frontal scalp, eyebrows, eyelashes [Figure 1], and ocular pigmentary dilution was present. Other systems including hediak‑Higashi syndrome (CHS) is a rare, autosomal neurological findings were normal.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub
    US 2010O2.10567A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0210567 A1 Bevec (43) Pub. Date: Aug. 19, 2010 (54) USE OF ATUFTSINASATHERAPEUTIC Publication Classification AGENT (51) Int. Cl. A638/07 (2006.01) (76) Inventor: Dorian Bevec, Germering (DE) C07K 5/103 (2006.01) A6IP35/00 (2006.01) Correspondence Address: A6IPL/I6 (2006.01) WINSTEAD PC A6IP3L/20 (2006.01) i. 2O1 US (52) U.S. Cl. ........................................... 514/18: 530/330 9 (US) (57) ABSTRACT (21) Appl. No.: 12/677,311 The present invention is directed to the use of the peptide compound Thr-Lys-Pro-Arg-OH as a therapeutic agent for (22) PCT Filed: Sep. 9, 2008 the prophylaxis and/or treatment of cancer, autoimmune dis eases, fibrotic diseases, inflammatory diseases, neurodegen (86). PCT No.: PCT/EP2008/007470 erative diseases, infectious diseases, lung diseases, heart and vascular diseases and metabolic diseases. Moreover the S371 (c)(1), present invention relates to pharmaceutical compositions (2), (4) Date: Mar. 10, 2010 preferably inform of a lyophilisate or liquid buffersolution or artificial mother milk formulation or mother milk substitute (30) Foreign Application Priority Data containing the peptide Thr-Lys-Pro-Arg-OH optionally together with at least one pharmaceutically acceptable car Sep. 11, 2007 (EP) .................................. O7017754.8 rier, cryoprotectant, lyoprotectant, excipient and/or diluent. US 2010/0210567 A1 Aug. 19, 2010 USE OF ATUFTSNASATHERAPEUTIC ment of Hepatitis BVirus infection, diseases caused by Hepa AGENT titis B Virus infection, acute hepatitis, chronic hepatitis, full minant liver failure, liver cirrhosis, cancer associated with Hepatitis B Virus infection. 0001. The present invention is directed to the use of the Cancer, Tumors, Proliferative Diseases, Malignancies and peptide compound Thr-Lys-Pro-Arg-OH (Tuftsin) as a thera their Metastases peutic agent for the prophylaxis and/or treatment of cancer, 0008.
    [Show full text]
  • Blueprint Genetics Bone Marrow Failure Syndrome Panel
    Bone Marrow Failure Syndrome Panel Test code: HE0801 Is a 135 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of inherited bone marrow failure syndromes. The genes on this panel are included in the Comprehensive Hematology Panel. About Bone Marrow Failure Syndrome Inherited bone marrow failure syndromes (IBMFS) are a diverse set of genetic disorders characterized by the inability of the bone marrow to produce sufficient circulating blood cells. Bone marrow failure can affect all blood cell lineages causing clinical symptoms similar to aplastic anemia, or be restricted to one or two blood cell lineages. The clinical presentation may include thrombocytopenia or neutropenia. Hematological manifestations may be accompanied by physical features such as short stature and abnormal skin pigmentation in Fanconi anemia and dystrophic nails, lacy reticular pigmentation and oral leukoplakia in dyskeratosis congenita. Patients with IBMFS have an increased risk of developing cancer—either hematological or solid tumors. Early and correct disease recognition is important for management and surveillance of the diseases. Currently, accurate genetic diagnosis is essential to confirm the clinical diagnosis. The most common phenotypes that are covered by the panel are Fanconi anemia, Diamond-Blackfan anemia, dyskeratosis congenita, Shwachman-Diamond syndrome and WAS-related disorders. Availability 4 weeks Gene Set Description Genes in the Bone Marrow Failure Syndrome Panel and their clinical significance
    [Show full text]
  • Title How Common Is Albinism Really? Colour Aberrations in Indian Birds Reviewed
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Natural History Museum Repository Title How common is albinism really? Colour aberrations in Indian birds reviewed Authors Van Grouw, H; Mahabal, A; Sharma, RM; Thakur, S Description The file attached is the Published/publisher’s pdf version of the article. How common is albinism really? Colour aberrations in Indian birds reviewed Anil Mahabal, Hein van Grouw, Radheshyam Murlidhar Sharma & Sanjay Thakur eople have always been intrigued by aberrant­ cluding galliforms Galliformes, nightjars Capri­ Ply coloured birds, and therefore sightings of mulgidae, bustards Otididae, owls Strigidae and these individuals are often reported in the litera­ turacos Musophagidae. ture. Contrary to popular belief, birds with a col­ Melanins can be divided into two forms; eu­ our aberration do not necessarily fall victim to melanin and phaeomelanin. Depending on con­ natural predators and often survive for a long time centration and distribution within the feather, (van Grouw 2012). This also increases their chance eumelanin is responsible for black, grey and/or of being seen and recorded by birders. dark brown colours. Phaeomelanin is responsible In general, plumage colour is the result of bio­ for warm, reddish­brown to pale buff colours, de­ logical pigments (biochromes), structural colour pending on concentration and distribution. Both (selective light reflection due to the structure of melanins together can give a wide range of grey­ the feather), or a combination of the two. The two ish­brown colours. In skin and eyes, only eu­ most common pigments that determine plumage melanin is present (Lubnow 1963, van Grouw colour in birds are melanins and carotenoids (Fox 2006, 2013).
    [Show full text]
  • Malformation Syndromes: a Review of Mouse/Human Homology
    J Med Genet: first published as 10.1136/jmg.25.7.480 on 1 July 1988. Downloaded from Joalrn(ll of Medical Genetics 1988, 25, 480-487 Malformation syndromes: a review of mouse/human homology ROBIN M WINTER Fromii the Kennetivdy Galton Centre, Clinlicail Research Centre, Northiwick Park Hospital, Harrow, Middlesex HAI 3UJ. SUMMARY The purpose of this paper is to review the known and possible homologies between mouse and human multiple congenital anomaly syndromes. By identifying single gene defects causing similar developmental abnormalities in mouse and man, comparative gene mapping can be carried out, and if the loci in mouse and man are situated in homologous chromosome segments, further molecular studies can be performed to show that the loci are identical. This paper puts forward tentative homologies in the hope that some will be investigated and shown to be true homologies at the molecular level, thus providing mouse models for complex developmental syndromes. The mouse malformation syndromes are reviewed according to their major gene effects. X linked syndromes are reviewed separately because of the greater ease of establishing homology for these conditions. copyright. The purpose of this paper is to review the known even phenotypic similarity would be no guarantee and possible homologies between mouse and human that such genes in man and mouse are homologous". genetic malformation syndromes. Lalley and By identifying single gene defects causing similar following criteria for developmental abnormalities in mouse and man, McKusick' recommend the http://jmg.bmj.com/ identifying gene homologies between species: comparative gene mapping can be carried out, and if (1) Similar nucleotide or amino acid sequence.
    [Show full text]
  • Endogenous Retrovirus Insertion in the KIT Oncogene Determines White and White Spotting in Domestic Cats Victor A
    Nova Southeastern University NSUWorks Biology Faculty Articles Department of Biological Sciences 9-1-2014 Endogenous Retrovirus Insertion in the KIT Oncogene Determines White and White spotting in Domestic Cats Victor A. David National Cancer Institute at Frederick Marilyn Menotti-Raymond National Cancer Institute at Frederick Andrea Coots Wallace National Cancer Institute at Frederick Melody E. Roelke National Cancer Institute at Frederick; Bethesda Leidos Biomedical Research James Kehler National Institute of Diabetes and Digestive and Kidney Diseases See next page for additional authors Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facarticles Part of the Genetics and Genomics Commons NSUWorks Citation David, Victor A.; Marilyn Menotti-Raymond; Andrea Coots Wallace; Melody E. Roelke; James Kehler; Robert Leighty; Eduardo Eizirik; Steven S. Hannah; George Nelson; Alejandro A. Schaffer; Catherine J. Connelly; Stephen J. O'Brien; and David K. Ryugo. 2014. "Endogenous Retrovirus Insertion in the KIT Oncogene Determines White and White spotting in Domestic Cats." G3 4, (10): 1881-1891. https://nsuworks.nova.edu/cnso_bio_facarticles/741 This Article is brought to you for free and open access by the Department of Biological Sciences at NSUWorks. It has been accepted for inclusion in Biology Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Authors Victor A. David, Marilyn Menotti-Raymond, Andrea Coots Wallace, Melody E. Roelke, James Kehler, Robert Leighty, Eduardo Eizirik, Steven S. Hannah, George Nelson, Alejandro A. Schaffer, Catherine J. Connelly, Stephen J. O'Brien, and David K. Ryugo This article is available at NSUWorks: https://nsuworks.nova.edu/cnso_bio_facarticles/741 INVESTIGATION Endogenous Retrovirus Insertion in the KIT Oncogene Determines White and White spotting in Domestic Cats Victor A.
    [Show full text]
  • Moecular and Genetic Insights On
    MOECULAR AND GENETIC INSIGHTS ON OCULOCUTANEOUS ALBINISM A thesis submitted to Bahauddin Zakariya University In Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY IN MOLECULAR BIOLOGY & BIOTECHNOLOGY By TASLEEM KAUSAR September 2013 INSTITUTE OF MOLECULAR BIOLOGY AND BIOTECHNOLOGY BAHAUDDIN ZAKARIYA UNIVERSITY MULTAN, PAKISTAN I lovingly Dedicate To My FAMILY For their endless support, love and encouragement TABLE OF CONTENTS Title Page No. Dedication i Certificate from the Supervisor ii Supervisory Board iii Contents vi List of Tables vii List of Figures vii Acknowledgements xi Summery xii CHAPTER: 1 LITERATURE REVIEW 01 Section 1: Brief overview of Albinism 01 1.1 Brief overview of albinism 01 1.2 Inheritance pattern 01 1.2.1 Dominant OCA 02 1.2.2 Recessive OCA 02 1.2.3 X-linked recessive inheritance 02 1.3 Types of Oculocutaneous Albinism 02 1.4 Risk Factors 07 1.5 Clinical description 07 1.6 Symptoms 08 1.6.1 General Signs and Symptoms 08 1.6.2 Clinical presentation of various types of OCA 09 1.7 Diagnostic methods 11 1.7.1 Prenatal DNA testing 11 1.8 Complications 12 1.9 Melanin 13 1.9.1 Melanin localization in the cell 14 1.9.2 Types of Melanin 14 1.9.3 Stages of melanin synthesis 14 1.9.4 Melanin physiology 15 1.9.5 Hormone regulation 16 1.9.6 Melanin synthesis pathway 16 1.9.7 Tyrosinase enzyme 17 Section 2: Molecular and genetic characterization of OCA 18 1.10 Historic Overview 18 1.11 Epidemiology 19 1.12 Molecular description of OCA types 20 1.13 Syndromes associated with OCA 23 1.13.1 Hermansky–Pudlak
    [Show full text]