Windows Azure Prescriptive Guidance.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Taxonomy of Accelerator Architectures and Their
A taxonomy of accelerator C. Cas$caval S. Chatterjee architectures and their H. Franke K. J. Gildea programming models P. Pattnaik As the clock frequency of silicon chips is leveling off, the computer architecture community is looking for different solutions to continue application performance scaling. One such solution is the multicore approach, i.e., using multiple simple cores that enable higher performance than wide superscalar processors, provided that the workload can exploit the parallelism. Another emerging alternative is the use of customized designs (accelerators) at different levels within the system. These are specialized functional units integrated with the core, specialized cores, attached processors, or attached appliances. The design tradeoff is quite compelling because current processor chips have billions of transistors, but they cannot all be activated or switched at the same time at high frequencies. Specialized designs provide increased power efficiency but cannot be used as general-purpose compute engines. Therefore, architects trade area for power efficiency by placing in the design additional units that are known to be active at different times. The resulting system is a heterogeneous architecture, with the potential of specialized execution that accelerates different workloads. While designing and building such hardware systems is attractive, writing and porting software to a heterogeneous platform is even more challenging than parallelism for homogeneous multicore systems. In this paper, we propose a taxonomy that allows us to define classes of accelerators, with the goal of focusing on a small set of programming models for accelerators. We discuss several types of currently popular accelerators and identify challenges to exploiting such accelerators in current software stacks. -
16-Channel DAS with 16-Bit, Bipolar Input, Dual Simultaneous Sampling
16-Channel DAS with 16-Bit, Bipolar Input, Dual Simultaneous Sampling ADC Data Sheet AD7616 FEATURES APPLICATIONS 16-channel, dual, simultaneously sampled inputs Power line monitoring Independently selectable channel input ranges Protective relays True bipolar: ±10 V, ±5 V, ±2.5 V Multiphase motor control Single 5 V analog supply and 2.3 V to 3.6 V VDRIVE supply Instrumentation and control systems Fully integrated data acquisition solution Data acquisition systems (DASs) Analog input clamp protection GENERAL DESCRIPTION Input buffer with 1 MΩ analog input impedance First-order antialiasing analog filter The AD7616 is a 16-bit, DAS that supports dual simultaneous On-chip accurate reference and reference buffer sampling of 16 channels. The AD7616 operates from a single 5 V Dual 16-bit successive approximation register (SAR) ADC supply and can accommodate ±10 V, ±5 V, and ±2.5 V true bipolar Throughput rate: 2 × 1 MSPS input signals while sampling at throughput rates up to 1 MSPS Oversampling capability with digital filter per channel pair with 90.5 dB SNR. Higher SNR performance can Flexible sequencer with burst mode be achieved with the on-chip oversampling mode (92 dB for an Flexible parallel/serial interface oversampling ratio (OSR) of 2). SPI/QSPI/MICROWIRE/DSP compatible The input clamp protection circuitry can tolerate voltages up to Optional cyclic redundancy check (CRC) error checking ±21 V. T h e AD7616 has 1 MΩ analog input impedance, regardless Hardware/software configuration of sampling frequency. The single-supply operation, on-chip Performance filtering, and high input impedance eliminate the need for 92 dB SNR at 500 kSPS (2× oversampling) driver op amps and external bipolar supplies. -
Understand Biztalk Schema Properties
Understand Biztalk Schema Properties Wiatt never elaborated any depurators escribing crankily, is Tabbie woodsy and incantatory enough? Which Vergil timber so bitingly that Meryl te-heeing her paletot? Terrel remains unterrifying: she power her quirts roller-skated too spectrally? We have similar to the type as vendors andanalysts, and promotes properties window that schema properties First response must comb the broom of a BizTalk application. Json schema reference another file Lapangan Kita. This tutorial explains Extending Types within an XML Schema XSD. Properties within the schema are defined and with explicit object containing their expected type. Automation azure Biztalk book Bot c cds cognitive services CosmosDB d365. Is a component that transforms pdf content to xml that biztalk understands. Often the missile for the peasant is actually available anymore the schema or is smooth easily. To ruin the metadata on image files do the sink Right-click the file and select Properties. BizTalk XML To JSON Array conversion Microsoft Azure. Chapter 4 Understanding BizTalk Messaging Services. This step important nutrient by default BizTalk does the perform schema level. Edi Xml Example. Once a BizTalk Framework schema is accepted and published the. Uses the sample JSON document to supreme a JSON schema. BizTalk Server List of Errors and Warnings Causes and. 3 Custom Properties your own promoted fields from many property schema. The though of writing a post is poison make us understand right it functions by. The Context Property specific As stated previously context properties are simply keyvalue. Appsync pipeline resolver example El Informador Digital. To fall the details of BizTalk Server it where important i understand. -
Middleware in Action 2007
Technology Assessment from Ken North Computing, LLC Middleware in Action Industrial Strength Data Access May 2007 Middleware in Action: Industrial Strength Data Access Table of Contents 1.0 Introduction ............................................................................................................. 2 Mature Technology .........................................................................................................3 Scalability, Interoperability, High Availability ...................................................................5 Components, XML and Services-Oriented Architecture..................................................6 Best-of-Breed Middleware...............................................................................................7 Pay Now or Pay Later .....................................................................................................7 2.0 Architectures for Distributed Computing.................................................................. 8 2.1 Leveraging Infrastructure ........................................................................................ 8 2.2 Multi-Tier, N-Tier Architecture ................................................................................. 9 2.3 Persistence, Client-Server Databases, Distributed Data ....................................... 10 Client-Server SQL Processing ......................................................................................10 Client Libraries .............................................................................................................. -
The CLASP Application Security Process
The CLASP Application Security Process Secure Software, Inc. Copyright (c) 2005, Secure Software, Inc. The CLASP Application Security Process The CLASP Application Security Process TABLE OF CONTENTS CHAPTER 1 Introduction 1 CLASP Status 4 An Activity-Centric Approach 4 The CLASP Implementation Guide 5 The Root-Cause Database 6 Supporting Material 7 CHAPTER 2 Implementation Guide 9 The CLASP Activities 11 Institute security awareness program 11 Monitor security metrics 12 Specify operational environment 13 Identify global security policy 14 Identify resources and trust boundaries 15 Identify user roles and resource capabilities 16 Document security-relevant requirements 17 Detail misuse cases 18 Identify attack surface 19 Apply security principles to design 20 Research and assess security posture of technology solutions 21 Annotate class designs with security properties 22 Specify database security configuration 23 Perform security analysis of system requirements and design (threat modeling) 24 Integrate security analysis into source management process 25 Implement interface contracts 26 Implement and elaborate resource policies and security technologies 27 Address reported security issues 28 Perform source-level security review 29 Identify, implement and perform security tests 30 The CLASP Application Security Process i Verify security attributes of resources 31 Perform code signing 32 Build operational security guide 33 Manage security issue disclosure process 34 Developing a Process Engineering Plan 35 Business objectives 35 Process -
WWW 2013 22Nd International World Wide Web Conference
WWW 2013 22nd International World Wide Web Conference General Chairs: Daniel Schwabe (PUC-Rio – Brazil) Virgílio Almeida (UFMG – Brazil) Hartmut Glaser (CGI.br – Brazil) Research Track: Ricardo Baeza-Yates (Yahoo! Labs – Spain & Chile) Sue Moon (KAIST – South Korea) Practice and Experience Track: Alejandro Jaimes (Yahoo! Labs – Spain) Haixun Wang (MSR – China) Developers Track: Denny Vrandečić (Wikimedia – Germany) Marcus Fontoura (Google – USA) Demos Track: Bernadette F. Lóscio (UFPE – Brazil) Irwin King (CUHK – Hong Kong) W3C Track: Marie-Claire Forgue (W3C Training, USA) Workshops Track: Alberto Laender (UFMG – Brazil) Les Carr (U. of Southampton – UK) Posters Track: Erik Wilde (EMC – USA) Fernanda Lima (UNB – Brazil) Tutorials Track: Bebo White (SLAC – USA) Maria Luiza M. Campos (UFRJ – Brazil) Industry Track: Marden S. Neubert (UOL – Brazil) Proceedings and Metadata Chair: Altigran Soares da Silva (UFAM - Brazil) Local Arrangements Committee: Chair – Hartmut Glaser Executive Secretary – Vagner Diniz PCO Liaison – Adriana Góes, Caroline D’Avo, and Renato Costa Conference Organization Assistant – Selma Morais International Relations – Caroline Burle Technology Liaison – Reinaldo Ferraz UX Designer / Web Developer – Yasodara Córdova, Ariadne Mello Internet infrastructure - Marcelo Gardini, Felipe Agnelli Barbosa Administration– Ana Paula Conte, Maria de Lourdes Carvalho, Beatriz Iossi, Carla Christiny de Mello Legal Issues – Kelli Angelini Press Relations and Social Network – Everton T. Rodrigues, S2Publicom and EntreNós PCO – SKL Eventos -
IS 13737 (1993): Isoinformation Technology
इंटरनेट मानक Disclosure to Promote the Right To Information Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public. “जान का अधकार, जी का अधकार” “परा को छोड न 5 तरफ” Mazdoor Kisan Shakti Sangathan Jawaharlal Nehru “The Right to Information, The Right to Live” “Step Out From the Old to the New” IS 13737 (1993): ISOInformation Technology - 130 mm Rewritable optical disk cartridges for information interchange [LITD 16: Computer Hardware, Peripherals and Identification Cards] “ान $ एक न भारत का नमण” Satyanarayan Gangaram Pitroda “Invent a New India Using Knowledge” “ान एक ऐसा खजाना > जो कभी चराया नह जा सकताह ै”ै Bhartṛhari—Nītiśatakam “Knowledge is such a treasure which cannot be stolen” IS 13737 : 1993 ISO/IEC 10089 : 1991 CONTENTS Page NationalForeword..........,..........................................‘.““““’ . (vii) 1 Scope 1 2 Conformance 1 3 Normative references 1 4 Conventions and notations 1 5 List of acronyms 2 6 Definitions 2 2 6. I case 2 6.2 Clamping Zone 6.3 -
1. Background This Paper Is About a Method for Recovering Data from Floppy Disks That Are Failing Due to “Weak Bits”
A Method for Recovering Data From Failing Floppy Disks with a Practical Example Dr. Frederick B. Cohen, Ph.D. and Charles M. Preston Fred Cohen & Associates and California Sciences Institute Abstract: As floppy disks and other similar media age, they have a tendency to lose data because of the reduction in retention of electromagnetic fields over time associated with various environmental degradation factors. In attempting to read these disks, the coding techniques used to write them can be exploited along with the proposed fault mechanisms to demonstrate that repetitions of read attempts under proper conditions yield valid data subject to specific error modes. In many cases those errors can be partially or completely reversed by analysis of read results. A practical example involving a case of substantial legal value is used as an example of the application of these methods. Keywords: weak bits, floppy disks, digital forensics, coding, field density loss, the birthday problem, error inversion 1. Background This paper is about a method for recovering data from floppy disks that are failing due to “weak bits”. It describes a repetitive read technique that has successfully recovered data from failing floppy disks in forensic cases and describes analysis of the results of such repetitive reads in terms of yielding forensically sound data values. These techniques are not new or particularly unique; however, they are not widely published and analysis necessary to support their use in legal matters has not been found elsewhere. The particular matter used as an example in this analysis involved a floppy disk that was more than 15 years old and that contained the only copy of a binary assembled version of a software program that was subject to intellectual property claims of sufficient value to warrant recovery beyond the means normally used by commercial recovery firms. -
Comparing OLE DB and ODBC This Document Compares the Basic Features of OLE DB to the Basic Features of ODBC (Open Database Connectivity)
Comparing OLE DB and ODBC This document compares the basic features of OLE DB to the basic features of ODBC (Open Database Connectivity). It is intended to help clarify when to use one over the other. Introduction OLE DB and ODBC are both specifications created by Microsoft to address universal data access. Each is intended as an industry standard that will make access between one vendor's data store and another vendor's data consumer seamless. Microsoft's definition of OLE DB is a strategic system-level programming interface to data across the organization. OLE DB is an open specification designed to build on the success of ODBC by providing an open standard for accessing all kinds of data. And the definition of ODBC is an industry standard and a component of Microsoft® Windows® Open Services Architecture (WOSA). The ODBC interface makes it possible for applications to access data from a variety of database management systems (DBMSs). ODBC permits maximum interoperability—an application can access data in diverse DBMSs through a single interface. Furthermore, that application will be independent of any DBMS from which it accesses data. Users of the application can add software components called drivers, which create an interface between an application and a specific DBMS. The two primary differences between the two are • OLE DB is a component based specification and ODBC is a procedural based specification • SQL is the core of accessing data using ODBC but just one of the means of data access through OLE DB • ODBC is constrained to relational data stores; OLE DB supports all forms of data stores (relational, hierarchical, etc) In general, OLE DB provides a richer and more flexible interface for data access because it is not tightly bound to a command syntax (like SQL in the case of ODBC). -
Dot Net Programming CLASS: TYBBA(CA) V SEM (2013 PATTERN)
DNYANSAGAR ARTS AND COMMERCE COLLEGE, BALEWADI, PUNE – 45 Subject: 503 : Dot Net Programming CLASS: TYBBA(CA) V SEM (2013 PATTERN) Unit 1 :Introduction to .Net Framework Introduction to .NET Framework .NET is a software framework which is designed and developed by Microsoft. The first version of the .Net framework was 1.0 which came in the year 2002. In easy words, it is a virtual machine for compiling and executing programs written in different languages like C#, VB.Net etc. It is used to develop Form-based applications, Web-based applications, and Web services. There is a variety of programming languages available on the .Net platform, VB.Net and C# being the most common ones. It is used to build applications for Windows, phone, web, etc. It provides a lot of functionalities and also supports industry standards. .NET Framework supports more than 60 programming languages in which 11 programming languages are designed and developed by Microsoft. The remaining Non-Microsoft Languages which are supported by .NET Framework but not designed and developed by Microsoft. Common Language Runtime(CLR): CLR is the basic and Virtual Machine component of the .NET Framework. It is the run-time environment in the .NET Framework that runs the codes and helps in making the development process easier by providing the various services such as remoting, thread management, type-safety, memory management, robustness, etc.. Basically, it is responsible for managing the execution of .NET programs regardless of any .NET programming language. It also helps in the management of code, as code that targets the runtime is known as the Managed Code and code doesn’t target to runtime is known as Unmanaged code. -
Autocad 2008 驱动程序和外围设备手册
<$nopage>: <$nopage>: <$nopage>, <$nopage>: <$nopage>: <$nopage><$nopage>, <$nopage> (DWT) :, <$nopage> (DWT) : , <$nopage> (DWT) :, <$nopage> (DWT) :, <$nopage>, <$nopage>, <$nopage>, <$nopage>: <$nopage>, <$nopage>, <$nopage>: <$nopage>:, <$nopage>:, <$nopage>:, <$nopage>:, <$nopage>:, <$nopage>:, <$nopage>:, <$nopage>:, <$nopage>: , <$nopage>:, <$nopage>:, <$nopage>:, <$nopage>:, <$nopage> , <$nopage>: <$nopage>: <$nopage>:, <$nopage>:, <$nopage>:: <$nopage>, <$nopage> (UCS): <$nopage>: <$nopage>:, <$nopage>: , <$nopage>:, <$nopage>:, <$nopage>:, <$nopage>:, <$nopage> :, <$nopage>:, <$nopage>:, <$nopage>:, <$nopage>:, <$nopage>:, <$nopage>:, <$nopage><$nopage>, <$nopage>:, <$nopage>, <$nopage>Intellimouse, AutoCAD 2008 > 10 1 AutoCAD 2008 > > > OPTIONS OPTIONS PAN ZOOM MBUTTONPAN SHORTCUTMENU ZOOMFACTOR AutoCAD 2008 > > > OPTIONS OPTIONS REINIT / TABLET TABMODE <$nopage>D3D <$nopage>OGL AutoCAD 2008 > AutoCAD AutoCAD AutoCAD OpenGL (OGL) Direct 3D (D3D) AutoCAD 2008 > > > 3DCONFIG AutoCAD 2008 > > > 3DCONFIG AutoCAD 2008 > HDIHeidi ® HDI HDI (PC3) PC3 “” PC3 “” PC3 “” (PC3) Windows “” AutoCAD 2008 > > > PLOT PLOTTERMANAGER “” AutoCAD 2008 > > > PAGESETUP PCINWIZARD PCP PC2 “” PLOT PLOTTERMANAGER “” AutoCAD 2008 > > > PLOTTERMANAGER “” AutoCAD 2008 > > PC3 > PC3 PLOTTERMANAGER “” AutoCAD 2008 > > PC3 > PC3 PC3 PMP PMP HDI AutoCAD 2008 > > PC3 > > PLOTTERMANAGER “” AutoCAD 2008 > > PC3 > > PLOTTERMANAGER “” AutoCAD 2008 > > PC3 > > PLOTTERMANAGER “” AutoCAD 2008 > > PC3 > > PLOTTERMANAGER “” AutoCAD 2008 > > PC3 > > PLOTTERMANAGER “” -
Matrox Imaging Library (MIL) 9.0 Update 58
------------------------------------------------------------------------------- Matrox Imaging Library (MIL) 9.0 Update 58. Release Notes (Whatsnew) September 2012 (c) Copyright Matrox Electronic Systems Ltd., 1992-2012. ------------------------------------------------------------------------------- For more information and what's new in processing, display, drivers, Linux, ActiveMIL, and all MIL 9 updates, consult their respective readme files. Main table of contents Section 1 : What's new in Mil 9.0 Update 58 Section 2 : What's new in MIL 9.0 Release 2. Section 3 : What's new in MIL 9.0. Section 4 : Differences between MIL Lite 8.0 and 7.5 Section 5 : Differences between MIL Lite 7.5 and 7.1 Section 6 : Differences between MIL Lite 7.1 and 7.0 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- Section 1: What's new in MIL 9.0 Update 58. Table of Contents for Section 1 1. Overview. 2. Mseq API function definition 2.1 MseqAlloc 2.2 MseqControl 2.3 MseqDefine 2.4 MseqFeed 2.5 MseqFree 2.6 MseqGetHookInfo 2.7 MseqHookFunction 2.8 MseqInquire 2.9 MseqProcess 3. Examples 4. Operating system information 1. Overview. The main goal for MIL 9.0 Update 58 is to add a new module called Mseq, which offers a user-friendly interface for H.264 compression. 2. Mseq API function definition 2.1 MseqAlloc - Synopsis: Allocate a sequence context. - Syntax: MIL_ID MseqAlloc( MIL_ID SystemID, MIL_INT64 SequenceType, MIL_INT64 Operation, MIL_UINT32 OutputFormat, MIL_INT64 InitFlag, MIL_ID* ContextSeqIdPtr) - Parameters: * SystemID: Specifies the identifier of the system on which to allocate the sequence context. This parameter must be given a valid system identifier. * SequenceType: Specifies the type of sequence to allocate: Values: M_DEFAULT - Specifies the sequence as a context in which the related operation should be performed.