Lecture 4: Integral Domain and Subrings Dr

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 4: Integral Domain and Subrings Dr Ring Theory Oct. 10th, 2016 Lecture 4: Integral Domain and Subrings Dr. Ruma Kareem K. Ajeena Math. Dept., Class: 3 Definition 1.1 (Integral Domain). An integral domain is a commutative ring with identity which does not have divisors of zero. Remark 1.2 The cancellation law for multiplication is satisfied in any integral domain. 1.0.1 Subrings Definition 1.3 (Subring). Let (R; +; ·) be a ring and S ⊆ R be a nonempty subset of R. If the triple (S; +; ·) is itself a ring, then (S; +; ·) is said to be a subring of (R; +; ·). Here, one needs to apply the definition of a ring to show that the triple (S; +; ·) is a ring. But both the distributive and associative laws hold automatically in S as a consequence of their validity in R. Since these laws are inherited from R, there is no need to satisfy them in the definition of a subring. So, we can give alternative definition of a subring as follows: 1. S is a nonempty subset of R; 2. (S; +) is a subgroup of (R; +); 3. S is closed under multiplication. Furthermore, the definition of a subring can be improved as follows: Definition 1.4 Let (R; +; ·) be a ring and Φ =6 S ⊆ R. Then the triple (S; +; ·) is a subring of (R; +; ·) iff 1. a − b 2 S, where a; b 2 S (closed under differences), 2. a · b 2 S, where a; b 2 S (closed under multiplication). Example 1.5 Every ring (R; +; ·) has two trivial subrings, if 0 is a zero element in a ring (R; +; ·), then both (f0g; +; ·) and (R; +; ·) are subrings of (R; +; ·). Example 1.6 In the ring of integers (Z; +; ·), the triple (Ze; +; ·) is a subring, while (Z0; +; ·) is not. In particular, we can deduce that in a ring with identity, a subring does not need to contain the identity element. Example 1.7 Let (Z6; +6; ·6), the ring of integers modulo 6. If S = f0; 2; 4g, then (S6; +6; ·6) which has operation tables are given as follows: (S6; +6; ·6) is a subring of (Z6; +6; ·6). p Example 1.8 Let S = fa + b 3 : a; b 2 Zg. Then (S; +; ·) is a subring of (R; +; ·). For a; b; c; d 2 Z then p p p (a + b 3) − (c + d 3) = (a − c) + (b − d) 3 2 S; p p p (a + b 3) · (c + d 3) = (ac + 3bd) + (bc − ad) 3 2 S: This means that the set S is closed under both differences and products 1-1 1-2 Lecture 2: Ring Theory Table 1.1: +6 0 2 4 0 0 2 4 2 2 4 0 4 4 0 2 Table 1.2: ·6 0 2 4 0 0 0 0 2 0 4 2 4 0 2 4 Remark 1.9 One can point out to the following situations: 1. When a ring has an identity, this need not be true of its subrings. 2. Some subring has multiplicative identity, but the entire ring does not. 3. Both the ring and one of its subrings have identity elements which are distinct. The identity for the subring must be a divisor of zero in the parent ring in each of these cases. To justify that, let 10 is the identity element of the subring (S; +; ·), we assume 10 is not identity for the entire ring (R; +; ·). So, there exists an element a 2 R for which a · 10 =6 a. It is clear that (a · 10) · 10 = a · (10 · 10) = a · 10 or (a · 10 − a) · 10 = 0: Since neither a · 10 − a nor 10 is zero, the ring (r; +; ·) has zero divisors, so, 10 is a zero divisor of (R; +; ·). Example 1.10 The possibility (3) can be illustrated as follows. Remember the system (R × R; +; ·) as given in Example (??), this system is a ring. The triple (R × 0; +; ·) forms a subring with identity element (1,0), in this case, the element (1,0) differs from the identity for the parent ring which is (1,1). Definition 1.11 Let (R; +; ·) be an arbitrary ring. If there exists a positive integer n such that na for all a 2 R, then the least positive integer with this property is called the characteristic of the ring. If no such positive integer exists (that is, na = 0 for all a 2 R implies n = 0), then we say (R; +; ·) has characteristic zero. Example 1.12 The rings of integers, rational numbers and real numbers are examples of systems having characteristic zero. Theorem 1.13 Let (R; +; ·) be a ring with identity. Then (R; +; ·) has characteristic n > 0 iff n is the least positive integer for which n1 = 0. Lecture 2: Ring Theory 1-3 Proof ) If the ring (R; +; ·) is of characteristic n > 0, it follows trivially that (from Definition (1.11)) n1 = 0. If m1 = 0, where 0 < m < n, then ma = m(1 · a) = (m1) · a = 0 · a = 0; 8a 2 R: This means that the characteristic of (R; +; ·) is less than n (that is , m). This contradicts our hypothesis, so n is least positive integer for which n1 = 0. The converse (() can be established in much the same way. (Prove that as a H.W.). Corollary 1.14 In an integral domain, all the nonzero elements have the same additive order, which is the characteristic of the domain. Proof. Suppose the integral domain (R; +; ·) has positive characteristic n. From definition of , any a 2 R; a =6 0 will then possess a finite additive order m, with m ≤ n. But 0 = ma = (m1) · a, this means that m1 = 0, since (R; +; ·) is free of zero divisors. We can conclude n ≤ m (from Thm (1.13) n is least positive integer). Hence m = n and every nonzero element of R has additive order n..
Recommended publications
  • Subset Semirings
    University of New Mexico UNM Digital Repository Faculty and Staff Publications Mathematics 2013 Subset Semirings Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy [email protected] Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebraic Geometry Commons, Analysis Commons, and the Other Mathematics Commons Recommended Citation W.B. Vasantha Kandasamy & F. Smarandache. Subset Semirings. Ohio: Educational Publishing, 2013. This Book is brought to you for free and open access by the Mathematics at UNM Digital Repository. It has been accepted for inclusion in Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Subset Semirings W. B. Vasantha Kandasamy Florentin Smarandache Educational Publisher Inc. Ohio 2013 This book can be ordered from: Education Publisher Inc. 1313 Chesapeake Ave. Columbus, Ohio 43212, USA Toll Free: 1-866-880-5373 Copyright 2013 by Educational Publisher Inc. and the Authors Peer reviewers: Marius Coman, researcher, Bucharest, Romania. Dr. Arsham Borumand Saeid, University of Kerman, Iran. Said Broumi, University of Hassan II Mohammedia, Casablanca, Morocco. Dr. Stefan Vladutescu, University of Craiova, Romania. Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/eBooks-otherformats.htm ISBN-13: 978-1-59973-234-3 EAN: 9781599732343 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One INTRODUCTION 7 Chapter Two SUBSET SEMIRINGS OF TYPE I 9 Chapter Three SUBSET SEMIRINGS OF TYPE II 107 Chapter Four NEW SUBSET SPECIAL TYPE OF TOPOLOGICAL SPACES 189 3 FURTHER READING 255 INDEX 258 ABOUT THE AUTHORS 260 4 PREFACE In this book authors study the new notion of the algebraic structure of the subset semirings using the subsets of rings or semirings.
    [Show full text]
  • Exercises and Solutions in Groups Rings and Fields
    EXERCISES AND SOLUTIONS IN GROUPS RINGS AND FIELDS Mahmut Kuzucuo˘glu Middle East Technical University [email protected] Ankara, TURKEY April 18, 2012 ii iii TABLE OF CONTENTS CHAPTERS 0. PREFACE . v 1. SETS, INTEGERS, FUNCTIONS . 1 2. GROUPS . 4 3. RINGS . .55 4. FIELDS . 77 5. INDEX . 100 iv v Preface These notes are prepared in 1991 when we gave the abstract al- gebra course. Our intention was to help the students by giving them some exercises and get them familiar with some solutions. Some of the solutions here are very short and in the form of a hint. I would like to thank B¨ulent B¨uy¨ukbozkırlı for his help during the preparation of these notes. I would like to thank also Prof. Ismail_ S¸. G¨ulo˘glufor checking some of the solutions. Of course the remaining errors belongs to me. If you find any errors, I should be grateful to hear from you. Finally I would like to thank Aynur Bora and G¨uldaneG¨um¨u¸sfor their typing the manuscript in LATEX. Mahmut Kuzucuo˘glu I would like to thank our graduate students Tu˘gbaAslan, B¨u¸sra C¸ınar, Fuat Erdem and Irfan_ Kadık¨oyl¨ufor reading the old version and pointing out some misprints. With their encouragement I have made the changes in the shape, namely I put the answers right after the questions. 20, December 2011 vi M. Kuzucuo˘glu 1. SETS, INTEGERS, FUNCTIONS 1.1. If A is a finite set having n elements, prove that A has exactly 2n distinct subsets.
    [Show full text]
  • Introduction to the P-Adic Space
    Introduction to the p-adic Space Joel P. Abraham October 25, 2017 1 Introduction From a young age, students learn fundamental operations with the real numbers: addition, subtraction, multiplication, division, etc. We intuitively understand that distance under the reals as the absolute value function, even though we never have had a fundamental introduction to set theory or number theory. As such, I found this topic to be extremely captivating, since it almost entirely reverses the intuitive notion of distance in the reals. Such a small modification to the definition of distance gives rise to a completely different set of numbers under which the typical axioms are false. Furthermore, this is particularly interesting since the p-adic system commonly appears in natural phenomena. Due to the versatility of this metric space, and its interesting uniqueness, I find the p-adic space a truly fascinating development in algebraic number theory, and thus chose to explore it further. 2 The p-adic Metric Space 2.1 p-adic Norm Definition 2.1. A metric space is a set with a distance function or metric, d(p, q) defined over the elements of the set and mapping them to a real number, satisfying: arXiv:1710.08835v1 [math.HO] 22 Oct 2017 (a) d(p, q) > 0 if p = q 6 (b) d(p,p)=0 (c) d(p, q)= d(q,p) (d) d(p, q) d(p, r)+ d(r, q) ≤ The real numbers clearly form a metric space with the absolute value function as the norm such that for p, q R ∈ d(p, q)= p q .
    [Show full text]
  • Discriminants and the Monoid of Quadratic Rings
    DISCRIMINANTS AND THE MONOID OF QUADRATIC RINGS JOHN VOIGHT Abstract. We consider the natural monoid structure on the set of quadratic rings over an arbitrary base scheme and characterize this monoid in terms of discriminants. Quadratic field extensions K of Q are characterized by their discriminants. Indeed, there is a bijection 8Separable quadratic9 < = ∼ × ×2 algebras over Q −! Q =Q : up to isomorphism ; p 2 ×2 Q[ d] = Q[x]=(x − d) 7! dQ wherep a separable quadratic algebra over Q is either a quadratic field extension or the algebra Q[ 1] ' Q × Q of discriminant 1. In particular, the set of isomorphism classes of separable quadratic extensions of Q can be given the structure of an elementary abelian 2-group, with identity element the class of Q × Q: we have simply p p p Q[ d1] ∗ Q[ d2] = Q[ d1d2] p × ×2 up to isomorphism. If d1; d2; dp1d2 2pQ n Q then Q( d1d2) sits as the third quadratic subfield of the compositum Q( d1; d2): p p Q( d1; d2) p p p Q( d1) Q( d1d2) Q( d2) Q p Indeed, ifpσ1 isp the nontrivial elementp of Gal(Q( d1)=Q), then therep is a unique extension of σ1 to Q( d1; d2) leaving Q( d2) fixed, similarly with σ2, and Q( d1d2) is the fixed field of the composition σ1σ2 = σ2σ1. This characterization of quadratic extensions works over any base field F with char F 6= 2 and is summarized concisely in the Kummer theory isomorphism H1(Gal(F =F ); {±1g) = Hom(Gal(F =F ); {±1g) ' F ×=F ×2: On the other hand, over a field F with char F = 2, all separable quadratic extensions have trivial discriminant and instead they are classified by the (additive) Artin-Schreier group F=}(F ) where }(F ) = fr + r2 : r 2 F g Date: January 17, 2021.
    [Show full text]
  • The Quotient Field of an Intersection of Integral Domains
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 70, 238-249 (1981) The Quotient Field of an Intersection of Integral Domains ROBERT GILMER* Department of Mathematics, Florida State University, Tallahassee, Florida 32306 AND WILLIAM HEINZER' Department of Mathematics, Purdue University, West Lafayette, Indiana 47907 Communicated by J. DieudonnP Received August 10, 1980 INTRODUCTION If K is a field and 9 = {DA} is a family of integral domains with quotient field K, then it is known that the family 9 may possess the following “bad” properties with respect to intersection: (1) There may exist a finite subset {Di}rzl of 9 such that nl= I Di does not have quotient field K; (2) for some D, in 9 and some subfield E of K, the quotient field of D, n E may not be E. In this paper we examine more closely conditions under which (1) or (2) occurs. In Section 1, we work in the following setting: we fix a subfield F of K and an integral domain J with quotient field F, and consider the family 9 of K-overrings’ of J with quotient field K. We then ask for conditions under which 9 is closed under intersection, or finite intersection, or under which D n E has quotient field E for each D in 9 and each subfield E of K * The first author received support from NSF Grant MCS 7903123 during the writing of this paper. ‘The second author received partial support from NSF Grant MCS 7800798 during the writing of this paper.
    [Show full text]
  • Algebraic Number Theory
    Algebraic Number Theory William B. Hart Warwick Mathematics Institute Abstract. We give a short introduction to algebraic number theory. Algebraic number theory is the study of extension fields Q(α1; α2; : : : ; αn) of the rational numbers, known as algebraic number fields (sometimes number fields for short), in which each of the adjoined complex numbers αi is algebraic, i.e. the root of a polynomial with rational coefficients. Throughout this set of notes we use the notation Z[α1; α2; : : : ; αn] to denote the ring generated by the values αi. It is the smallest ring containing the integers Z and each of the αi. It can be described as the ring of all polynomial expressions in the αi with integer coefficients, i.e. the ring of all expressions built up from elements of Z and the complex numbers αi by finitely many applications of the arithmetic operations of addition and multiplication. The notation Q(α1; α2; : : : ; αn) denotes the field of all quotients of elements of Z[α1; α2; : : : ; αn] with nonzero denominator, i.e. the field of rational functions in the αi, with rational coefficients. It is the smallest field containing the rational numbers Q and all of the αi. It can be thought of as the field of all expressions built up from elements of Z and the numbers αi by finitely many applications of the arithmetic operations of addition, multiplication and division (excepting of course, divide by zero). 1 Algebraic numbers and integers A number α 2 C is called algebraic if it is the root of a monic polynomial n n−1 n−2 f(x) = x + an−1x + an−2x + ::: + a1x + a0 = 0 with rational coefficients ai.
    [Show full text]
  • Ideal Theory in Commutative Ternary A-Semirings
    International Mathematical Forum, Vol. 7, 2012, no. 42, 2085 - 2091 Ideal Theory in Commutative Ternary A-semirings V. R. Daddi Department of Mathematics D. Y. Patil College of Engineering and Technology Kolhapur, India vanita daddi@rediffmail.com Y. S. Pawar Department of Mathematics Shivaji University, Kolhapur, India pawar y [email protected] Abstract In this paper, we analyze some results on ideal theory of commuta- tive ternary semirings with identity. We introduce and study the notion of ternary A-semiring. Mathematics Subject Classification: 16Y30, 16Y99 Keywords: Ternary semiring, ternary A-semiring, maximal ideal, prime ideal, semiprime ideal 1 Introduction Algebraic structures play a prominent role in mathematics with wide ranging applications in many disciplines such as theoretical physics, computer sciences, control engineering, information sciences, coding theory, topological spaces and the like. This provides sufficient motivation to researchers to review various concepts and results. The theory of ternary algebraic system was introduced by D. H. Lehmer [1]. He investigated certain ternary algebraic systems called triplexes which turn out to be commutative ternary groups. The notion of ternary semigroups was introduced by Banach S. He showed by an example that a ternary semigroup does not necessarily reduce to an ordinary semi- groups. In W.G. Lister [6] characterized additive subgroups of rings which are closed under the triple ring product and he called this algebraic system a 2086 V. R. Daddi and Y.S. Pawar ternary ring. T.K.Dutta and S. Kar ([3],[4],[5]) introduced and studied some properties of ternary semirings which is a generealization of ternary ring. Ternary semiring arises naturally as follows, consider the ring of integers Z which plays a vital role in the theory of ring.
    [Show full text]
  • Approximating Rings of Integers in Number Fields
    Journal de Th´eorie des Nombres de Bordeaux 6 (1994), 221–260 Approximating rings of integers in number fields. par J. A. Buchmann and H. W. Lenstra, Jr. Resum´ e.´ – Nous ´etudions dans cet article le probl`eme algorithmique de la d´etermination de l’anneau des entiers d’un corps de nombres alg´ebriques donn´e. En pratique, ce probl`eme est souvent consid´er´ecomme r´esolu mais des r´esultats th´eoriques montrent que sa r´esolution ne peut ˆetre men´ee `a terme lorsque le corps ´etudi´eest d´efini par les ´equations dont les coefficients sont tr`es gros. Or de tels corps apparaissent dans l’algorithme du crible alg´ebrique utilis´epour factoriser les entiers naturels. En appliquant une variante d’un algorithme standard donnant l’anneau des entiers, on obtient un sous-anneau du corps de nombres qui peut ˆetre regard´ecomme le meilleur candidat possible pour l’anneau des entiers. Ce meilleur candidat est probablement souvent le bon. Notre propos est d’exposer ce qui peut ˆetre prouv´e sur ce sous-anneau. Nous montrons que sa structure locale est transparente et rappelle celle des extensions mod´er´ement ramifi´ees de corps locaux. La plus grande partie de cet article est consacr´ee a l’´etude des anneaux qui sont “mod´er´es” en un sens plus g´en´eral que celui habituel. Chemin faisant nous ´etablissons des r´esultats de complexit´equi prolongent un th´eor`eme de Chistov. L’article inclut ´egalement une section qui discute des algorithmes en temps polynomial pour les groupes ab´eliens de type fini.
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • Arxiv:1709.01693V2 [Math.AC] 14 May 2018 Togypiaymnis Rl Ood,C-Monoids
    PUISEUX MONOIDS AND TRANSFER HOMOMORPHISMS FELIX GOTTI Abstract. There are several families of atomic monoids whose arithmetical invari- ants have received a great deal of attention during the last two decades. The factoriza- tion theory of finitely generated monoids, strongly primary monoids, Krull monoids, and C-monoids are among the most systematically studied. Puiseux monoids, which are additive submonoids of Q≥0 consisting of nonnegative rational numbers, have only been studied recently. In this paper, we provide evidence that this family com- prises plenty of monoids with a basically unexplored atomic structure. We do this by showing that the arithmetical invariants of the well-studied atomic monoids men- tioned earlier cannot be transferred to most Puiseux monoids via homomorphisms that preserve atomic configurations, i.e., transfer homomorphisms. Specifically, we show that transfer homomorphisms from a non-finitely generated atomic Puiseux monoid to a finitely generated monoid do not exist. We also find a large family of Puiseux monoids that fail to be strongly primary. In addition, we prove that the only nontrivial Puiseux monoid that accepts a transfer homomorphism to a Krull monoid is N0. Finally, we classify the Puiseux monoids that happen to be C-monoids. 1. Introduction The study of the phenomenon of non-unique factorizations in the ring of integers OK of an algebraic number field K was initiated by L. Carlitz in the 1950’s, and it was later carried out on more general integral domains. As a result, many techniques to measure the non-uniqueness of factorizations in several families of integral domains were sys- tematically developed during the second half of the last century (see [2] and references therein).
    [Show full text]
  • A Brief History of Ring Theory
    A Brief History of Ring Theory by Kristen Pollock Abstract Algebra II, Math 442 Loyola College, Spring 2005 A Brief History of Ring Theory Kristen Pollock 2 1. Introduction In order to fully define and examine an abstract ring, this essay will follow a procedure that is unlike a typical algebra textbook. That is, rather than initially offering just definitions, relevant examples will first be supplied so that the origins of a ring and its components can be better understood. Of course, this is the path that history has taken so what better way to proceed? First, it is important to understand that the abstract ring concept emerged from not one, but two theories: commutative ring theory and noncommutative ring the- ory. These two theories originated in different problems, were developed by different people and flourished in different directions. Still, these theories have much in com- mon and together form the foundation of today's ring theory. Specifically, modern commutative ring theory has its roots in problems of algebraic number theory and algebraic geometry. On the other hand, noncommutative ring theory originated from an attempt to expand the complex numbers to a variety of hypercomplex number systems. 2. Noncommutative Rings We will begin with noncommutative ring theory and its main originating ex- ample: the quaternions. According to Israel Kleiner's article \The Genesis of the Abstract Ring Concept," [2]. these numbers, created by Hamilton in 1843, are of the form a + bi + cj + dk (a; b; c; d 2 R) where addition is through its components 2 2 2 and multiplication is subject to the relations i =pj = k = ijk = −1.
    [Show full text]
  • Formal Power Series Rings, Inverse Limits, and I-Adic Completions of Rings
    Formal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely many variables over a ring R, and show that it is Noetherian when R is. But we begin with a definition in much greater generality. Let S be a commutative semigroup (which will have identity 1S = 1) written multi- plicatively. The semigroup ring of S with coefficients in R may be thought of as the free R-module with basis S, with multiplication defined by the rule h k X X 0 0 X X 0 ( risi)( rjsj) = ( rirj)s: i=1 j=1 s2S 0 sisj =s We next want to construct a much larger ring in which infinite sums of multiples of elements of S are allowed. In order to insure that multiplication is well-defined, from now on we assume that S has the following additional property: (#) For all s 2 S, f(s1; s2) 2 S × S : s1s2 = sg is finite. Thus, each element of S has only finitely many factorizations as a product of two k1 kn elements. For example, we may take S to be the set of all monomials fx1 ··· xn : n (k1; : : : ; kn) 2 N g in n variables. For this chocie of S, the usual semigroup ring R[S] may be identified with the polynomial ring R[x1; : : : ; xn] in n indeterminates over R. We next construct a formal semigroup ring denoted R[[S]]: we may think of this ring formally as consisting of all functions from S to R, but we shall indicate elements of the P ring notationally as (possibly infinite) formal sums s2S rss, where the function corre- sponding to this formal sum maps s to rs for all s 2 S.
    [Show full text]