Understanding Anatomy of the Petrous Pyramid-A New

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Anatomy of the Petrous Pyramid-A New Original Article Understanding Anatomy of the Petrous PyramideA New Compartmental Approach Mamdouh Tawfik-Helika1, Patrick Mertens2, Guilherme Ribas3, Michael D. Cusimano4, Martin Catala5, Ramez Kirollos6, Timothe´ e Jacquesson2,7 - BACKGROUND: Learning surgical anatomy of the - CONCLUSIONS: This new compartmental approach al- petrous pyramid can be a challenge, especially in the lows a comprehensive understanding of the distribution of beginning of the training process. Providing an easier, petrous pyramid contents. Dividing it into anatomic com- holistic approach can be of help to everyone with interest partments, and then navigating this mental map along in learning and teaching skull base anatomy. We present specific reference points, lines, spaces, and segments, the complex organization of petrous pyramid anatomy using could create a useful tool to teach or learn its complex a new compartmental approach that is simple to under- tridimensional anatomy. stand and remember. - METHODS: The surfaces of the petrous pyramid of two temporal bones were examined; and the contents of the petrous pyramid of 8 temporal bones were exposed through INTRODUCTION progressive drilling of the superior surface. he temporal bone belongs to the skull base and is known to be a complex bone, because of the large number of - RESULTS: The petrous pyramid is made up of a bony T named contents, and its particular tridimensional shape. container, and its contents were grouped into 4 compart- The unique anatomic construction of the temporal bone reflects ments (mucosal, cutaneous, neural, and vascular). Two its particular development process and connections. The temporal reference lines were identified (mucosal and external- bone is composed of 5 parts: squamous, petrous, mastoid, styloid, 1 internal auditory canal lines) intersecting at the level of and tympanic. Some researchers have described it as being composed of 32 or 4 parts, by considering the mastoid as an the middle ear. The localization of contents relative to 3-5 these reference lines was then described, and 2 methods of extension from both the petrous and squamous parts. All 5 parts contribute to the middle ear walls, with the petrous part segmentation (the X method and the V method) were then medially, the squamous part laterally, the mastoid part posteriorly, proposed. This description was then used to describe and both styloid and tympanic parts inferiorly.2,4-6 The middle and middle ear relationships, facial nerve anatomy, and air cell posterior cranial fossae are built on a large pyramid-shaped bone, distribution. called the petrous pyramid by Pellet et al.,2 which houses the Key words SCC: Semicircular canal - Anatomy TMJ: Temporomandibular joint - Middle ear - Petrous From the 1Department of Neurosurgery, Beaujon University Hospital, Assistance publique - Pyramid hopitaux de Paris, Clichy, France; 2Department of Anatomy, University of Lyon 1, Lyon, - Segmentation France; 3Department of Surgery, University of São Paulo Medical School, São Paulo, Brazil; - Space 4Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, - Temporal bone Canada; 5Sorbonne Université, CNRS UMR 7622, INSERM ERL 1156, IBPS, Paris, France; 6Senior Consultant, National Neuroscience Institute, Singapore; and 7Skull Base Multi- Abbreviations and Acronyms disciplinary Unit, Department of Neurosurgery B, Neurological Hospital Pierre Wertheimer, CSF: Cerebrospinal fluid Hospices Civils de Lyon, Lyon Cedex, France EAC: External auditory canal To whom correspondence should be addressed: Mamdouh Tawfik-Helika, M.D. ET: Eustachian tube [E-mail: [email protected]] FO: Foramen ovale Citation: World Neurosurg. (2019) 124:e65-e80. FS: Foramen spinosum https://doi.org/10.1016/j.wneu.2018.11.234 GSPN: Greater superficial petrosal nerve Journal homepage: www.journals.elsevier.com/world-neurosurgery IAC: Internal auditory canal ICA: Internal carotid artery Available online: www.sciencedirect.com MA: Mastoid antrum 1878-8750/$ - see front matter ª 2019 Elsevier Inc. All rights reserved. WORLD NEUROSURGERY 124: e65-e80, APRIL 2019 www.journals.elsevier.com/world-neurosurgery e65 ORIGINAL ARTICLE MAMDOUH TAWFIK-HELIKA ET AL. PETROUS COMPARTMENTAL APPROACH organs of hearing and equilibrium and is crossed by cranial nerves vestibule and semicircular canals [SCCs]). The ICA was freed at and the internal carotid artery (ICA). The petrous pyramid is the the petrous apex, medial to the ET, below the GSPN and tri- area of interest in this work. geminal ganglion, toward its exit through the upper part of the Segmentation of the petrous pyramid has rarely been described foramen lacerum into the cavernous sinus. The major space- for surgical purposes.2,7,8 However, better understanding of its occupying contents of the petrous pyramid were then grouped into tridimensional architecture could further help teaching, imaging, four groups, or compartments, having different composition, and surgical planning. Despite seeming complexity, the petrous lining, and connections. These are the mucosal, cutaneous, neural pyramid structure shows certain patterns that can be better and vascular compartments; respectively. The other parts of the appreciated from a superior view. These patterns can simplify petrous pyramid, not occupied by any of the four compartments, understanding the anatomic architecture of intrapetrous contents. have also been adressed. Traditional description of temporal bone anatomy starts with its parts and goes directly into details; such as middle ear contents RESULTS and the facial nerve. Yet, having a clear understanding of the general plan, while facing a large number of details, may be The petrous pyramid can be described as being composed of 2 difficult in the beginning of the training process, which is already parts: the bony container and the contents, which are described in time limited. This may even make it harder to step up into use for terms of compartments. Four compartments are thus described clinical applications, especially for young surgical trainees. Having based on their nature and connections: mucosal, cutaneous, a holistic plan may provide an easier way to start learning. neural, and vascular. The mucosal compartment or line consists of Breaking down a complex map into smaller parts and under- the ET, middle ear, and MA and is used as the axis of reference. It standing their relative positions, before analyzing each of them, is drawn obliquely anteromedially, pointing to, and opening into might provide a useful way to conceptualize, learn, and navigate. the pharynx. The mucosal line is considered as the central piece of Like any map, it needs to have reference points and directions for this approach because the terms anterior, posterior, medial, and orientation purposes; as well as landmarks; for proper use. lateral are used relative to this axis, also called the mucosal axis; We propose a new anatomic compartmental approach to the not to the midsagittal plane. All major anatomic structures were petrous pyramid that could ease understanding and navigation thus located relative to the mucosal axis: the mucosal compart- along simple landmarks, lines, and spaces. As a result of different ment lies along the axis, the cutaneous compartment (EAC) lateral þ methods of segmentation, we aim to provide an educational tool to the middle ear, the neural compartment (IAC anterior laby- þ for surgeons; as one advances progressively from creating the rinth or cochlea posterior labyrinth made up of vestibule and map, to its use and applications. SCCs) medial to the middle ear, and the vascular compartment (ICA) medial to the ET. Then, 2 methods of segmentation were developed. These blueprints were used to describe the anatomy of METHODS the middle ear, facial nerve, and air cells. One dry head (2 temporal bones) was used to study the walls of the petrous pyramid. In addition, 4 fresh cadaver heads (8 temporal The Container: General Form and Location of the Petrous Pyramid bones) were harvested in the anatomy laboratory of University The petrous pyramid is the partition separating the middle and Lyon 1 (Lyon, France), prepared with 3% formaldehyde, and then posterior cranial fossae, as shown in Figure 1. It is pyramid shaped injected with colored latex (Aérographe Colorex Technics, with 3 lateral surfaces and a base, all triangular; and is surrounded Magenta and Cyan [Phocéenne de chimie, Marseille, France]). The by cortical bone. The base of the pyramid faces laterally whereas vertex and the whole brain were removed, including the brain- the apex faces the midline. The superior/anterior surface forms stem. Cranial nerves IIeXII were carefully left in place, as well as the posterior part of the floor of the middle cranial fossa and the ICA. The dura was gently removed at each side and the skull faces the temporal lobe, whereas the apical part faces Meckel’s base was then exposed with cisternal segments of all cranial cave. We adopted the description of its anterior limit as was nerves of the middle and posterior cranial fossa. proposed by Ribas et al.9 It is composed of a horizontal line Drilling (Midas Rex [Medtronic, Fort Worth, Texas, USA]) starting laterally at a preauricular burrhole, located just anterior started at the center of the superior aspect of the petrous pyramid, to the tragus, facing the dorsum sella medially, and passing to unroof the middle ear, removing the tegmen tympani, and through the FS. The posterior limit is the petrous ridge, exposing the malleus and incus.
Recommended publications
  • Temporal Bone Trauma Effects on Auditory Anatomical Structures in Mastoid Obliteration
    European Archives of Oto-Rhino-Laryngology (2019) 276:513–520 https://doi.org/10.1007/s00405-018-5227-6 HEAD & NECK Temporal bone trauma effects on auditory anatomical structures in mastoid obliteration Aranka Ilea1 · Anca Butnaru2 · Silviu Andrei Sfrângeu2 · Mihaela Hedeșiu3 · Cristian Mircea Dudescu4 · Bianca Adina Boșca5 · Veronica Elena Trombitaș6 · Radu Septimiu Câmpian7 · Silviu Albu6 Received: 8 August 2018 / Accepted: 28 November 2018 / Published online: 3 December 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Purpose The risk of temporal bone fractures in head trauma is not negligible, as injuries also depend on the resistance and integrity of head structures. The capacity of mastoid cells to absorb part of the impact kinetic energy of the temporal bone is diminished after open cavity mastoidectomy, even if the surgical procedure is followed by mastoid obliteration. The aim of our study was to evaluate the severity of lesions in auditory anatomical structures after a lateral impact on cadaveric tem- poral bones in which open cavity mastoidectomy followed by mastoid obliteration was performed, compared to cadaveric temporal bones with preserved mastoids. Methods The study was carried out on 20 cadaveric temporal bones, which were randomly assigned to two groups. In the study group, open cavity mastoidectomy followed by mastoid obliteration with heterologous materials was performed. All temporal bones were impacted laterally under the same conditions. Temporal bone fractures were evaluated by CT scan. Results External auditory canal fractures were six times more seen in the study group. Tympanic bone fractures were present in 80% of the samples in the study group and 10% in the control group (p = .005).
    [Show full text]
  • The Morphometric Study of Occurrence and Variations of Foramen Ovale S
    Research Article The morphometric study of occurrence and variations of foramen ovale S. Ajrish George*, M. S. Thenmozhi ABSTRACT Background: Foramen vale is one of the important foramina present in the sphenoid bone. Anatomically it is located in the greater wing of the sphenoid bone. The foramen ovale is situated posterolateral to the foramen rotundum and anteromedial to the foramen spinosum. The foramen spinosum is present posterior to the foramen ovale. The carotid canal is present posterior and medial to the foramen spinosum and the foramen rotundum is present anterior to the foramen ovale. The structures which pass through the foramen ovale are the mandibular nerve, emissary vein, accessory middle meningeal artery, and lesser petrosal nerve. The sphenoid bone has a body, a pair of greater wing, pair of lesser wing, pair of lateral pterygoid plate, and a pair of medial pterygoid plate. Aim: The study involves the assessment of any additional features in foramen ovale in dry South Indian skulls. Materials and Methods: This study involves examination of dry adult skulls. First, the foramen ovale is located, and then it is carefully examined for presence of alterations and additional features, and is recorded following computing the data and analyzing it. Results: The maximum length of foramen ovale on the right and left was 10.1 mm, 4.3 mm, respectively. The minimum length of the foramen in right and left was 9.1 mm, 3.2 mm, respectively. The maximum width of foramen ovale on the right and left was 4.8 mm and 2.3 mm, respectively. The minimum width of the foramen in the right and the left side was 5.7 mm and 2.9 mm, respectively.
    [Show full text]
  • The Normal Dimensions of the Sella Turcica in North Karnataka Region- a Computed Tomographic Study Lohit V Shaha*, Babasaheb G Patil**, Sanjeev I Kolagi***
    Original Article Pravara Med Rev 2018;10(3) The normal dimensions of the Sella Turcica in North Karnataka region- A Computed tomographic study Lohit V Shaha*, Babasaheb G Patil**, Sanjeev I Kolagi*** Abstract Aim of the study: Sella turcica is an important structure in middle cranial fossa. It is a saddle shaped concavity in the body of sphenoid bone. It is bounded by dura of cavernous sinuses bilaterally, the lamina dura and dorsum sellae posteriorly and the tuberculum sellae and planum sphenoidale anteriorly. The present study was undertaken to study the normal dimensions of sella turcica morphometry. Material and methods: This observational study was conducted in S Nijalingappa medical college and HSK hospital, Bagalkot. 1650 computed tomographic images of healthy Indians aged 21-70 years were collected. Radiant Dicom viewer software was used to determine the linear dimensions of sella turcica. Data was analysed using t test and ANOVA with Epi Info software. Results: The mean values (in millimeter) of length, width and height of sella turcica in different age groups was 8.80 ± 1.65, 10.83 ± 1.35 and 8.52 ± 1.50. Conclusion: The dimensions of sella turcica vary in different populations and these findings could form an initial database for Indian population which may provide a good anatomical knowledge during objective evaluation and detection of pathological conditions of sella turcica and hypophysis cerebri. Key words: Sphenoid bone, Linear dimensions, Hypophysis cerebri Introduction Sella turcica is an important structure in middle cranial fossa. It is safe treatment of various pituitary disorders such as a saddle shaped concavity in the body of sphenoid bone.
    [Show full text]
  • Gross Anatomy Assignment Name: Olorunfemi Peace Toluwalase Matric No: 17/Mhs01/257 Dept: Mbbs Course: Gross Anatomy of Head and Neck
    GROSS ANATOMY ASSIGNMENT NAME: OLORUNFEMI PEACE TOLUWALASE MATRIC NO: 17/MHS01/257 DEPT: MBBS COURSE: GROSS ANATOMY OF HEAD AND NECK QUESTION 1 Write an essay on the carvernous sinus. The cavernous sinuses are one of several drainage pathways for the brain that sits in the middle. In addition to receiving venous drainage from the brain, it also receives tributaries from parts of the face. STRUCTURE ➢ The cavernous sinuses are 1 cm wide cavities that extend a distance of 2 cm from the most posterior aspect of the orbit to the petrous part of the temporal bone. ➢ They are bilaterally paired collections of venous plexuses that sit on either side of the sphenoid bone. ➢ Although they are not truly trabeculated cavities like the corpora cavernosa of the penis, the numerous plexuses, however, give the cavities their characteristic sponge-like appearance. ➢ The cavernous sinus is roofed by an inner layer of dura matter that continues with the diaphragma sellae that covers the superior part of the pituitary gland. The roof of the sinus also has several other attachments. ➢ Anteriorly, it attaches to the anterior and middle clinoid processes, posteriorly it attaches to the tentorium (at its attachment to the posterior clinoid process). Part of the periosteum of the greater wing of the sphenoid bone forms the floor of the sinus. ➢ The body of the sphenoid acts as the medial wall of the sinus while the lateral wall is formed from the visceral part of the dura mater. CONTENTS The cavernous sinus contains the internal carotid artery and several cranial nerves. Abducens nerve (CN VI) traverses the sinus lateral to the internal carotid artery.
    [Show full text]
  • Aberrant Hyperpneumatization from Mastoid Cells to Skull Cervicalarea
    Acta Medica Mediterranea, 2007, 23: 43 ABERRANT HYPERPNEUMATIZATION FROM MASTOID CELLS TO SKULL CERVICALAREA AGOSTINO SERRA - CALOGERO GRILLO - RITA CHIARAMONTE - CATERINA GRILLO - LUIGI MAIOLINO Università degli Studi di Catania - Dipartimento di Specialità Medico Chirurgiche - Sezione di Otorinolaringoiatria (Direttore: A. Serra) [Iperpneumatizzazione aberrante delle celle mastoidee alla regione cranio-cervicale] SUMMARY RIASSUNTO Authors report the observation of a patient who has Gli autori riportano l’osservazione di un paziente sotto - u n d e rgone an encephalon’s C.A.T. examination for ingrave- posto ad esame TC encefalo per cefalea ingravescente e verti - scent headache and dizziness. gini. The C.A.T. examination of the skull highlighted a L’esame TC del cranio evidenziò una marcata pneuma - marked pneumatization of mastoid cell and temporal bone pre- tizzazione delle celle mastoidee e dell’osso temporale prevalen - valently on the right side, and also pneumatization of the right temente a destra, ed altresì pneumatizzazione della parte squa - pars squamosa ossis occipitalis that spreads also to the condilo mosa destra dell’osso occipitale che si estendeva anche al con - and the lateral atlantis mass. dilo ed alla massa laterale dell’atlante. Authors sustain that the abnormal pneumatization origi- Gli autori ritengono che l’abnorme pneumatizzazione nated from normal cellular bands, deriving from the primary originatasi dalle normali strie cellulari derivante dall’asse pneumatic axis, then probably spreaded with a valve mechani- pneumatico primario si siano poi estese mediante un possibile sm. meccanismo a valvola. Key words: Mastoid hyperpneumatization, dizziness, TC Parole chiave: Iperpneumatizzazione mastoidea, vertigine, TC Introduction We have also highlighted a bleb of enphysema inside the spino-canalis lateral to the dens axis.
    [Show full text]
  • Full-Text (PDF)
    J Babol Univ Med Sci Original Article Vol 20, Issu 2; Feb 2018. P:27-32 Relationship between Severity of Nasal Septum Deviation and Pneumatization of Mastoid Cells and Chronic Otitis Media E. Shobeiri (MD)1, M. Gharib Salehi (MD)* 1, A. Jalalvandian (MD) 1 1.Department of Radiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, I.R.Iran J Babol Univ Med Sci; 20(2); Feb 2018; PP: 27-32 Received: Oct 15th 2017, Revised: Jan 23th 2018, Accepted: Mar 3rd 2018. ABSTRACT BACKGROUND AND OBJECTIVE: Nasal septum deviation (NSD) is one of the leading causes of chronic otitis media and pneumatization of mastoid air cells. In this study, the effect of NSD on pneumatization of mastoid cells and the relationship between NSD and chronic otitis media were investigated using CT scan. METHODS: In this cross-sectional study, 75 paranasal sinus CT scans with NSD and mastoid view were investigated. Patients were divided into three groups based on the severity of NSD: mild (deviation less than 9 degrees, 25 patients), moderate (deviation from 9 to 15 degrees, 25 patients) and severe (deviation equal to or greater than 15 degrees, 25 patients). Chronic otitis media is defined as the presence of bone destruction or sclerosis accompanied by mass fluid or structural changes in temporal bone air cells. The pneumatization of mastoid cells was determined visually and as formation of mastoid air cells. FINDINGS: There was no significant difference in the frequency of pneumatization of mastoid cells between mild (25 patients, 100%), moderate (25 patients, 100%) and severe (23 patients, 92%) nasal septum deviation (p = 0.128).
    [Show full text]
  • Septation of the Sphenoid Sinus and Its Clinical Significance
    1793 International Journal of Collaborative Research on Internal Medicine & Public Health Septation of the Sphenoid Sinus and its Clinical Significance Eldan Kapur 1* , Adnan Kapidžić 2, Amela Kulenović 1, Lana Sarajlić 2, Adis Šahinović 2, Maida Šahinović 3 1 Department of anatomy, Medical faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina 2 Clinic for otorhinolaryngology, Clinical centre University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina 3 Department of histology and embriology, Medical faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina * Corresponding Author: Eldan Kapur, MD, PhD Department of anatomy, Medical faculty, University of Sarajevo, Bosnia and Herzegovina Email: [email protected] Phone: 033 66 55 49; 033 22 64 78 (ext. 136) Abstract Introduction: Sphenoid sinus is located in the body of sphenoid, closed with a thin plate of bone tissue that separates it from the important structures such as the optic nerve, optic chiasm, cavernous sinus, pituitary gland, and internal carotid artery. It is divided by one or more vertical septa that are often asymmetric. Because of its location and the relationships with important neurovascular and glandular structures, sphenoid sinus represents a great diagnostic and therapeutic challenge. Aim: The aim of this study was to assess the septation of the sphenoid sinus and relationship between the number and position of septa and internal carotid artery in the adult BH population. Participants and Methods: A retrospective study of the CT analysis of the paranasal sinuses in 200 patients (104 male, 96 female) were performed using Siemens Somatom Art with the following parameters: 130 mAs: 120 kV, Slice: 3 mm.
    [Show full text]
  • Morfofunctional Structure of the Skull
    N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V.
    [Show full text]
  • Microscopic Anatomy of the Carotid Canal and Its Relations with Cochlea
    Rev Bras Otorrinolaringol. V.71, n.4, 410-4, jul./ago. 2005 ARTIGO ORIGINAL ORIGINAL ARTICLE Anatomia microscópica do canal Microscopic anatomy of the carótico e suas relações com a carotid canal and its relations cóclea e a cavidade timpânica with cochlea and middle ear Norma de Oliveira Penido1, Andrei Borin2, 3 4 Palavras-chave: anatomia, osso temporal, Yotaka Fukuda , Cristina Navarro Santos Lion artéria carótida interna, cóclea, orelha. Key words: anatomy, temporal bone, internal carotid artery, cochlea, ear. Resumo / Summary s relações entre as diversas estruturas nobres e vitais he knowledge of the relations between the noble and queA se apresentam na intimidade do osso temporal consti- vitalT structures of temporal bone is still a great challenge for tuem ainda hoje um grande desafio para o cirurgião otológico. the otologic surgeon. The microscopic anatomic studies of Os estudos micro-anatômicos do mesmo se encontram en- the temporal bone are one of the greatest help to prevent tre as grandes armas na busca deste entendimento. Objeti- lesions during surgical intervention. Aim: To study the vo: Estudar as correlações anatômicas entre o canal carótico anatomic correlations between the carotid canal and the e a cóclea, e a ocorrência de deiscências do mesmo junto à cochlea, and the occurrence of dehiscence of the carotid cavidade timpânica. Material e Método: Estudo microscó- canal in the middle ear tympanic cavity. Material and pico de 122 ossos temporais humanos. Resultados: As dis- Methods: Microscopic study of 122 human temporal bones. tâncias médias entre o canal carótico e os giros cocleares RESULTS: The average distance between the carotid canal foram: no local de menor distância 1,05mm; no giro basal, and the cochlea were: the shortest distance, 1.05mm; basal 2,04mm; no giro médio, 2,32mm; e no giro apical, 5,7mm.
    [Show full text]
  • A 'Clear View of the N,Eglected Mastoid Aditus
    1380 S.A. MEDICAL JOURNAL 11 December 1971 A 'Clear View of the N,eglected Mastoid Aditus G. C. C. BURGER, M.MED. (RAD.D.), Department of Diagnostic Radiology, H. F. Verwoerd Hospital, Pretoria SUMMARY By placing the head with the aditus vertical to the casette an X-ray tomographic cross-section of the aditus The aditus is the central link between the attic and the can be produced, which also allows the integrity of the mastoid antrum. Its patency determines the course of middle fossa floor to be judged with more accuracy than middle ear infections. has been possible in the past. S. Afr. Med. J., 45, 1380 (971). It is possible to make a transverse tomographic 'cut' through the aditus of the ear and at the same time to Fig. 1. Tomographic cross-section of the skull, labelled Fig. 3. Tomographic cross-section of the tympanic cavity with a wire coil insert in a dry skull. with incus in position in a dry skull. Fig. 2. Tomographic cross-section of the aditus in a dry Fig. 4. Tomographic cross-section of aditus in a patient. skull. -Date received: 16 November 1970. 11 Desember 1971 S.-A. MEDIESE TYDSKRIF 1381 demonstrate the thin bony layer which separates it from middle cranial fossa without the advantage of ever seeing the middle cranial fossa (Figs. 1 - 4). its floor in true tangent. One would hesitate to add yet another one to the lono list of radiographic views of the mastoid, but the aditus i;' after all, the passage which controls the course and out­ ANATOMY come of every inflammatory assault on the middle ear and mastoid.
    [Show full text]
  • Surgical Management of Posterior Petrous Meningiomas
    Neurosurg Focus 14 (6):Article 7, 2003, Click here to return to Table of Contents Surgical management of posterior petrous meningiomas JAMES K. LIU, M.D., OREN N. GOTTFRIED, M.D., AND WILLIAM T. COULDWELL, M.D., PH.D. Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah Posterior petrous meningiomas (commonly termed posterior pyramid meningiomas and/or meningiomas of the pos- terior surface of the petrous pyramid) are the most common meningiomas of the posterior cranial fossa. They are locat- ed along the posterior surface of the temporal bone in the region of the cerebellopontine angle. They often mimic vestibular schwannomas, both clinically and on neuroimaging studies. Common clinical symptoms include hearing loss, cerebellar ataxia, and trigeminal neuropathy. The site of dural origin determines the direction of cranial nerve dis- placement. Total resection can be achieved in most cases with a low morbidity rate and an excellent prognosis. The authors review the surgical management of posterior petrous meningiomas. KEY WORDS • meningioma • cerebellopontine angle • skull base surgery • petrous bone Posterior fossa meningiomas comprise approximately In their series Samii and Ammirati18 used the term “pos- 10% of all intracranial meningiomas.8 Castellano and terior pyramid meningiomas” and defined them as tumors Ruggiero4 reviewed Olivecrona’s experience with treat- whose main direction of growth brings them in contact ing posterior fossa meningiomas and classified them with the posterior pyramid, irrespective of their site of based on the site of dural attachment. They described the dural attachment. They also designated those located ante- location as cerebellar convexity (10%), tentorium (30%), rior and those posterior to the internal acoustic meatus.
    [Show full text]
  • The Braincase of Two Late Cretaceous Asian Multituberculates Studied by Serial Sections
    The braincase of two Late Cretaceous Asian multituberculates studied by serial sections J0RN H. HURUM Hurum, J.H. 1998. The braincase of two Late Cretaceous Asian multituberculatesstudied by serial sections. -Acta Palaeontologica Polonica 43, 1, 21-52. The braincase structure of two Late Cretaceous Mongolian djadochtatherian multituber- culates Nemegtbaatar gobiensis and Chulsanbaatar vulgaris from the ?late Campanian of Mongolia is presented based on the two serially sectioned skulls and additional specimens. Reconstructions of the floor of the braincase in both taxa are given. The complete intracranial sphenoid region is reconstructed for the first time in multitubercu- lates. Cavum epiptericum is a separate space with the taenia clino-orbitalis (ossified pila antotica) as the medial wall, anterior lamina of the petrosal and possibly the alisphenoid as the lateral wall, and the basisphenoid, petrosal and possibly alisphenoid ventrally. The fovea hypochiasmatica is shallow, tuberculurn sellae is wide and more raised from the skull base than it is in the genus Pseudobolodon. The dorsal opening of the carotid canal is situated in the fossa hypophyseos. The taenia clino-orbitalis differs from the one described in Pseudobolodon and Lambdopsalis in possessing just one foramen (metoptic foramen). Compared to all extant mammals the braincase in Nemegtbaatar and Chulsan- baatar is primitive in that both the pila antotica and pila metoptica are retained. In both genera the anterior lamina of the petrosal is large with a long anterodorsal process while the alisphenoid is small. A review is given of the cranial anatomy in Nemegtbaatar and Chulsanbaatar. K e y w o r d s : Braincase structure, sphenoid complex, cavum epiptericum,Mammalia, Multituberculata,Djadochtatheria, Cretaceous, Mongolia.
    [Show full text]