Development and Application of Methods Based on Extremely Localized Molecular Orbitals Benjamin Meyer

Total Page:16

File Type:pdf, Size:1020Kb

Development and Application of Methods Based on Extremely Localized Molecular Orbitals Benjamin Meyer Development and application of methods based on extremely localized molecular orbitals Benjamin Meyer To cite this version: Benjamin Meyer. Development and application of methods based on extremely localized molecular orbitals. Theoretical and/or physical chemistry. Université de Lorraine, 2016. English. NNT : 2016LORR0179. tel-01526689 HAL Id: tel-01526689 https://tel.archives-ouvertes.fr/tel-01526689 Submitted on 23 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm Thèse en vue de l’obtention du grade de Docteur de l’Université de Lorraine Mention Chimie Development and Application of Methods Based on Extremely Localized Molecular Orbitals Benjamin MEYER École Doctorale SESAMES Collegium Sciences et Technologies Laboratoire Structure et Réactivité des Systèmes Moléculaires Complexes Thèse présentée et soutenue publiquement le 10 Octobre 2016 Composition du Jury Rapporteurs : Arianna Fornili Research Fellow University of London Simon Grabowsky Professor University of Bremen Examinateurs : Julia Contreras-Garcia Chargé de recherche Université Pierre et Marie Curie Benoit Guillot Professeur Université de Lorraine Directeur de thèse Manuel Ruiz-Lopez Directeur de recherche Université de Lorraine Co-directeur de thèse Alessandro Genoni Chargé de recherche Université de Lorraine i À Justine À ma famille Acknowledgements/Remerciements At first, I would like to express my gratitude to the jury members who have accepted to evaluate this manuscript. I am especially grateful to Prof. Arianna Fornili and Simon Grabowsky for hav- ing reviewed this work. Je tiens à remercier très chaleureusement les docteurs Manuel Ruiz-Lopez et Alessandro Genoni pour leur accompagnement et leur soutien. J’ai vraiment eu la chance de travailler avec deux di- recteurs de thèse très complémentaires qui m’ont appris énormément de choses durant ces 3 années. Ce manuscrit est le fruit de leur constante disponibilité à répondre à mes nombreuses sollicitations. Merci à tous les deux pour votre gentillesse, votre patience et pour ces beaux moments partagés. Je souhaite remercier tous les membres permanents et non-permanents du Laboratoire SRSMC pour m’avoir permis de travailler dans une ambiance chaleureuse. Il m’est malheureusement im- possible d’être exhaustif, mais j’aimerais particulièrement remercier le professeur Jean-Louis Ri- vail avec qui ce fut toujours un plaisir de discuter lors de ses visites au laboratoire ainsi que le professeur Xavier Assfeld pour tous ces formidables moments passés ensemble. Mes pensées vont également vers les professeurs Gérald Monard, Claude Millot, Ugo Ancarani, Claude Dal Cappelo, Jean-Bernard Regnouf de Vains ainsi que les docteurs Mariachiara Pastore Franscesca Ingrosso, Alexandrine Lambert, Marilia Martins-Costa, Nadia Canhilo, Andreea Pasc, Antonio Monari, Sébastien Lebègue, Christophe Chipot, François Dehez, Mounir Tarek, Fabien Pascale, Arnaud Leclerc... J’aimerais également remercier tous membres du laboratoire CITHEFOR pour leur accueil et leur disponibilité durant mes trois années de monitorat à la faculté de pharmacie. Je tiens tout par- ticulièrement à remercier les professeurs Pierre Leroy et Igor Clarot ainsi que les docteurs Ariane Boudier, Caroline Gaucher et Marianne Parent pour leur sympathie et tous les excellents moments passés à les écouter discuter de galénique, culture cellulaire ou d’expérimentations animales. De plus, ce fut un réel plaisir de collaborer avec cette équipe lors de projets en marge de mon travail principal qui sera exposé dans ce manuscrit. iv J’aimerais aussi exprimer mes sincères reconnaissances à un bon nombre de personnes qui m’auront soutenu tant humainement que scientifiquement : Philippe Gros, Marco Marazzi, Julian Garrec, Oleksandr Loboda, Yann Cornaton, Julien Eng, Tim Krah, Alex Domingo, Pierre-François Loos, Yohann Moreau, Philippe Carbonnière, Maura Casciola, Marina Kasimova, Audrey, Pablo, Grace, Renaud, Guillaume, Jérôme, Margaux, les membres de l’association phi science... Bien évidemment, j’ai une très grosse pensée envers mes plus proches compagnons. Je tiens à remercier très chaleureusement Antoine Marion et Ilke Ugur, Daniel Bonhenry, Thibaud Etienne et Hugo Gattuso pour leur complicité, leur aide, leur soutient... mais surtout pour leur amitié! J’ai une pensée toute particulière pour Séverine Bonenberger qui m’a bien aidé pour toutes les démarches administratives mais surtout qui m’a soutenu moralement durant ces trois années. Je tiens aussi à remercier le professeur Vincent Robert pour son encadrement lors de mon stage de master ainsi que tout le personnel du laboratoire de chimie quantique de Strasbourg: Chantal, Sylvie, Paola, Christophe, Emmanuel, Étienne et Roberto L’accomplissement de cette thèse n’aurait jamais été possible sans le soutient infaillible de mes amis et de ma famille. Pour commencer, j’aimerais remercier de tout mon cœur la personne avec qui je partage ma vie depuis plusieurs années, Justine. Merci mon amour pour ton soutient sans faille dans tous les moments difficiles que j’ai passé durant ces trois années. Je tiens également à te remercier d’avoir concédé la poursuite de mon sport en dépit du peu de temps que nous passions ensemble. D’une manière générale, tout simplement merci d’avoir accepté de poursuivre ce bout de chemin, toi et moi, malgré l’éloignement. J’aimerais aussi remercier mes parents Sylvie et Claude, ainsi que Corinne et Yves. Merci Ma- man pour ta gentillesse, pour ton soutient dans les bons comme dans les mauvais moments et merci pour tout ce que tu as fait pour moi avant et pendant cette thèse. Merci Papa pour ta joie de vivre, ton optimisme et ton dynamisme que tu m’as transmis. J’aimerai également exprimer mes remer- ciements à toute ma famille et belle famille: Papy René, Mamie Françoise, Christine et Pierre, Sandrine et Philippe, Magali, Fabien, Timéo et Antonin, Philippe, Renate, Martine, Audrey et Jérémy, Bernard, Chantal, Olivier et sa famille, Monique et Mélanie, les parents, grands-parents ainsi que la sœur de Justine, Annick et Jean-Pierre, Clothilde, Simone, Jaques et Mamie Anna. v Je pense très fort à mon oncle Marcel et à ma grand-mère Yvonne qui ne sont plus là et dont la présence me manque beaucoup. Je tiens à remercier tous les membres du Vélo Club de Dorlisheim et tous mes partenaires d’entraînements. Pour tous les bons moments que nous avons passés ensemble, merci à mes trois supers cousins Mathias, Thibaut et Quentin. Je tiens également tout particulièrement à remercier ce dernier pour avoir concédé de jouer avec un coéquipier éloigné et très peu présent. Durant ces trois années j’ai partagé bon nombre de beaux moments au côté de mes amis notam- ment lors de sorties trails! Je souhaite vivement remercier : Mathilde, Jerem et le petit Gauthier, Joséphine et Thierry, Anthony et Julie, Franz et Julie. Je tiens également à remercier tout partic- ulièrement Alex et Léa, avec qui je me suis lié d’amitié durant cette thèse, pour leur accueil lors de mes derniers mois de thèse ainsi que pour tous les moments (sportifs ou autour d’un bon dîner) conviviaux passés à leur côté. Enfin je tenais à exprimer mes profonds regrets pour toutes les personnes que j’ai omis de citer dans ces quelques lignes. Donc à toutes celles et ceux que j’ai oublié j’aimerai tout de même dire : MERCI !!! vii Contents Acknowledgements/Remerciements iii Introduction 1 I The transferability of the extremely localized molecular orbitals 1 Linear Scaling Methods 9 1.1 Introduction ..................................... 11 1.2 The Divide and Conquer method and the Molecular Tailoring Approach . 14 1.3 The Fragment Molecular Orbital method .................... 23 1.4 The Additive Fuzzy Density Fragmentation approaches . 25 2 Localized Molecular Orbitals 31 2.1 Introduction ..................................... 33 2.2 Unitary Transformation Methods ......................... 34 2.3 Extremely Localized Molecular Orbitals: the Stoll technique . 37 2.4 Rotation ....................................... 42 3 Model molecule approximation and ELMOs transferability 49 3.1 Introduction ..................................... 51 3.2 Methods ....................................... 52 3.2.1 General strategy .............................. 52 3.2.2 Description of the target system ..................... 52 3.2.3 Model molecules approximation ..................... 53 3.2.4 Computational
Recommended publications
  • Density Functional Theory
    Density Functional Theory Fundamentals Video V.i Density Functional Theory: New Developments Donald G. Truhlar Department of Chemistry, University of Minnesota Support: AFOSR, NSF, EMSL Why is electronic structure theory important? Most of the information we want to know about chemistry is in the electron density and electronic energy. dipole moment, Born-Oppenheimer charge distribution, approximation 1927 ... potential energy surface molecular geometry barrier heights bond energies spectra How do we calculate the electronic structure? Example: electronic structure of benzene (42 electrons) Erwin Schrödinger 1925 — wave function theory All the information is contained in the wave function, an antisymmetric function of 126 coordinates and 42 electronic spin components. Theoretical Musings! ● Ψ is complicated. ● Difficult to interpret. ● Can we simplify things? 1/2 ● Ψ has strange units: (prob. density) , ● Can we not use a physical observable? ● What particular physical observable is useful? ● Physical observable that allows us to construct the Hamiltonian a priori. How do we calculate the electronic structure? Example: electronic structure of benzene (42 electrons) Erwin Schrödinger 1925 — wave function theory All the information is contained in the wave function, an antisymmetric function of 126 coordinates and 42 electronic spin components. Pierre Hohenberg and Walter Kohn 1964 — density functional theory All the information is contained in the density, a simple function of 3 coordinates. Electronic structure (continued) Erwin Schrödinger
    [Show full text]
  • Chapter 18 the Single Slater Determinant Wavefunction (Properly Spin and Symmetry Adapted) Is the Starting Point of the Most Common Mean Field Potential
    Chapter 18 The single Slater determinant wavefunction (properly spin and symmetry adapted) is the starting point of the most common mean field potential. It is also the origin of the molecular orbital concept. I. Optimization of the Energy for a Multiconfiguration Wavefunction A. The Energy Expression The most straightforward way to introduce the concept of optimal molecular orbitals is to consider a trial wavefunction of the form which was introduced earlier in Chapter 9.II. The expectation value of the Hamiltonian for a wavefunction of the multiconfigurational form Y = S I CIF I , where F I is a space- and spin-adapted CSF which consists of determinental wavefunctions |f I1f I2f I3...fIN| , can be written as: E =S I,J = 1, M CICJ < F I | H | F J > . The spin- and space-symmetry of the F I determine the symmetry of the state Y whose energy is to be optimized. In this form, it is clear that E is a quadratic function of the CI amplitudes CJ ; it is a quartic functional of the spin-orbitals because the Slater-Condon rules express each < F I | H | F J > CI matrix element in terms of one- and two-electron integrals < f i | f | f j > and < f if j | g | f kf l > over these spin-orbitals. B. Application of the Variational Method The variational method can be used to optimize the above expectation value expression for the electronic energy (i.e., to make the functional stationary) as a function of the CI coefficients CJ and the LCAO-MO coefficients {Cn,i} that characterize the spin- orbitals.
    [Show full text]
  • Arxiv:1902.07690V2 [Cond-Mat.Str-El] 12 Apr 2019
    Symmetry Projected Jastrow Mean-field Wavefunction in Variational Monte Carlo Ankit Mahajan1, ∗ and Sandeep Sharma1, y 1Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80302, USA We extend our low-scaling variational Monte Carlo (VMC) algorithm to optimize the symmetry projected Jastrow mean field (SJMF) wavefunctions. These wavefunctions consist of a symmetry- projected product of a Jastrow and a general broken-symmetry mean field reference. Examples include Jastrow antisymmetrized geminal power (JAGP), Jastrow-Pfaffians, and resonating valence bond (RVB) states among others, all of which can be treated with our algorithm. We will demon- strate using benchmark systems including the nitrogen molecule, a chain of hydrogen atoms, and 2-D Hubbard model that a significant amount of correlation can be obtained by optimizing the energy of the SJMF wavefunction. This can be achieved at a relatively small cost when multiple symmetries including spin, particle number, and complex conjugation are simultaneously broken and projected. We also show that reduced density matrices can be calculated using the optimized wavefunctions, which allows us to calculate other observables such as correlation functions and will enable us to embed the VMC algorithm in a complete active space self-consistent field (CASSCF) calculation. 1. INTRODUCTION Recently, we have demonstrated that this cost discrep- ancy can be removed by introducing three algorithmic 16 Variational Monte Carlo (VMC) is one of the most ver- improvements . The most significant of these allowed us satile methods available for obtaining the wavefunction to efficiently screen the two-electron integrals which are and energy of a system.1{7 Compared to deterministic obtained by projecting the ab-initio Hamiltonian onto variational methods, VMC allows much greater flexibil- a finite orbital basis.
    [Show full text]
  • Iia. Systems of Many Electrons
    EE5 in 2008 Lecture notes Univ. of Iceland Hannes J´onsson IIa. Systems of many electrons Exchange of particle labels Consider a system of n identical particles. By identical particles we mean that all intrinsic properties of the particles are the same, such as mass, spin, charge, etc. Figure II.1 A pairwise permutation of the labels on identical particles. In classical mechanics we can in principle follow the trajectory of each individual particle. They are, therefore, distinguishable even though they are identical. In quantum mechanics the particles are not distinguishable if they are close enough or if they interact strongly enough. The quantum mechanical wave function must reflect this fact. When the particles are indistinguishable, the act of labeling the particles is an arbi- trary operation without physical significance. Therefore, all observables must be unaffected by interchange of particle labels. The operators are said to be symmetric under interchange of labels. The Hamiltonian, for example, is symmetric, since the intrinsic properties of all the particles are the same. Let ψ(1, 2,...,n) be a solution to the Schr¨odinger equation, (Here n represents all the coordinates, both spatial and spin, of the particle labeled with n). Let Pij be an operator that permutes (or ‘exchanges’) the labels i and j: Pijψ(1, 2,...,i,...,j,...,n) = ψ(1, 2,...,j,...,i,...,n). This means that the function Pij ψ depends on the coordinates of particle j in the same way that ψ depends on the coordinates of particle i. Since H is symmetric under interchange of labels: H(Pijψ) = Pij Hψ, i.e., [Pij,H]=0.
    [Show full text]
  • Slater Decomposition of Laughlin States
    Slater Decomposition of Laughlin States∗ Gerald V. Dunne Department of Physics University of Connecticut 2152 Hillside Road Storrs, CT 06269 USA [email protected] 14 May, 1993 Abstract The second-quantized form of the Laughlin states for the fractional quantum Hall effect is discussed by decomposing the Laughlin wavefunctions into the N-particle Slater basis. A general formula is given for the expansion coefficients in terms of the characters of the symmetric group, and the expansion coefficients are shown to possess numerous interesting symmetries. For expectation values of the density operator it is possible to identify individual dominant Slater states of the correct uniform bulk density and filling fraction in the physically relevant N limit. →∞ arXiv:cond-mat/9306022v1 8 Jun 1993 1 Introduction The variational trial wavefunctions introduced by Laughlin [1] form the basis for the theo- retical understanding of the quantum Hall effect [2, 3]. The Laughlin wavefunctions describe especially stable strongly correlated states, known as incompressible quantum fluids, of a two dimensional electron gas in a strong magnetic field. They also form the foundation of the hierarchy structure of the fractional quantum Hall effect [4, 5, 6]. In the extreme low temperature and strong magnetic field limit, the single particle elec- tron states are restricted to the lowest Landau level. In the absence of interactions, this Landau level has a high degeneracy determined by the magnetic flux through the sample [7]. ∗UCONN-93-4 1 Much (but not all) of the physics of the quantum Hall effect may be understood in terms of the restriction of the dynamics to fixed Landau levels [8, 3, 9].
    [Show full text]
  • PART 1 Identical Particles, Fermions and Bosons. Pauli Exclusion
    O. P. Sushkov School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia (Dated: March 1, 2016) PART 1 Identical particles, fermions and bosons. Pauli exclusion principle. Slater determinant. Variational method. He atom. Multielectron atoms, effective potential. Exchange interaction. 2 Identical particles and quantum statistics. Consider two identical particles. 2 electrons 2 protons 2 12C nuclei 2 protons .... The wave function of the pair reads ψ = ψ(~r1, ~s1,~t1...; ~r2, ~s2,~t2...) where r1,s1, t1, ... are variables of the 1st particle. r2,s2, t2, ... are variables of the 2nd particle. r - spatial coordinate s - spin t - isospin . - other internal quantum numbers, if any. Omit isospin and other internal quantum numbers for now. The particles are identical hence the quantum state is not changed under the permutation : ψ (r2,s2; r1,s1) = Rψ(r1,s1; r2,s2) , where R is a coefficient. Double permutation returns the wave function back, R2 = 1, hence R = 1. ± The spin-statistics theorem claims: * Particles with integer spin have R =1, they are called bosons (Bose - Einstein statistics). * Particles with half-integer spins have R = 1, they are called fermions (Fermi − - Dirac statistics). 3 The spin-statistics theorem can be proven in relativistic quantum mechanics. Technically the theorem is based on the fact that due to the structure of the Lorentz transformation the wave equation for a particle with spin 1/2 is of the first order in time derivative (see discussion of the Dirac equation later in the course). At the same time the wave equation for a particle with integer spin is of the second order in time derivative.
    [Show full text]
  • Spin Balanced Unrestricted Kohn-Sham Formalism Artëm Masunov Theoretical Division,T-12, Los Alamos National Laboratory, Mail Stop B268, Los Alamos, NM 87545
    Where Density Functional Theory Goes Wrong and How to Fix it: Spin Balanced Unrestricted Kohn-Sham Formalism Artëm Masunov Theoretical Division,T-12, Los Alamos National Laboratory, Mail Stop B268, Los Alamos, NM 87545. Submitted October 22, 2003; [email protected] The functional form of this XC potential remains unknown to ABSTRACT: Kohn-Sham (KS) formalism of Density the present day. However, numerous approximations had been Functional Theory is modified to include the systems with suggested,4 the remarkable accuracy of KS calculations results strong non-dynamic electron correlation. Unlike in extended from this long quest for better XC functional. One may classify KS and broken symmetry unrestricted KS formalisms, these approximations into local (depending on electron density, or cases of both singlet-triplet and aufbau instabilities are spin density), semilocal (including gradient corrections), and covered, while preserving a pure spin-state. The nonlocal (orbital dependent functionals). In this classification HF straightforward implementation is suggested, which method is just one of non-local XC functionals, treating exchange consists of placing spin constraints on complex unrestricted exactly and completely neglecting electron correlation. Hartree-Fock wave function. Alternative approximate First and the most obvious reason for RKS performance approach consists of using the perfect pairing inconsistency for the “difficult” systems, mentioned above, is implementation with the natural orbitals of unrestricted KS imperfection of the approximate XC functionals. Second, and less method and square roots of their occupation numbers as known reason is the fact that KS approach is no longer valid if configuration weights without optimization, followed by a electron density is not v-representable,5 i.e., there is no ground posteriori exchange-correlation correction.
    [Show full text]
  • 2 Variational Wave Functions for Molecules and Solids
    2 Variational Wave Functions for Molecules and Solids W.M.C. Foulkes Department of Physics Imperial College London Contents 1 Introduction 2 2 Slater determinants 4 3 The Hartree-Fock approximation 11 4 Configuration expansions 14 5 Slater-Jastrow wave functions 21 6 Beyond Slater determinants 27 E. Pavarini and E. Koch (eds.) Topology, Entanglement, and Strong Correlations Modeling and Simulation Vol. 10 Forschungszentrum Julich,¨ 2020, ISBN 978-3-95806-466-9 http://www.cond-mat.de/events/correl20 2.2 W.M.C. Foulkes 1 Introduction Chemists and condensed matter physicists are lucky to have a reliable “grand unified theory” — the many-electron Schrodinger¨ equation — capable of describing almost every phenomenon we encounter. If only we were able to solve it! Finding the exact solution is believed to be “NP hard” in general [1], implying that the computational cost almost certainly scales exponentially with N. Until we have access to a working quantum computer, the best we can do is seek good approximate solutions computable at a cost that rises less than exponentially with system size. Another problem is that our approximate solutions have to be surprisingly accurate to be useful. The energy scale of room-temperature phenomena is kBT ≈ 0.025 eV per electron, and the en- ergy differences between competing solid phases can be as small as 0.01 eV per atom [2]. Quan- tum chemists say that 1 kcal mol−1 (≈ 0.043 eV) is “chemical accuracy” and that methods with errors much larger than this are not good enough to provide quantitative predictions of room temperature chemistry.
    [Show full text]
  • Lecture Notes (Pdf)
    Lecture notes for the course 554017 Advanced Computational Chemistry Pekka Manninen 2009 2 Contents 1 Many-electron wave functions 7 1.1 Molecular Schr¨odinger equation . ..... 7 1.1.1 Helium-likeatom ............................ 9 1.2 Molecular orbitals: the first contact . ...... 10 1.2.1 Dihydrogenion ............................. 10 1.3 Spinfunctions.................................. 12 1.4 Antisymmetry and the Slater determinant . ..... 13 1.4.1 Approximate wave functions for He as Slater determinants ..... 14 1.4.2 Remarkson“interpretation”. 15 1.4.3 Slatermethod.............................. 15 1.4.4 Helium-like atom revisited . 16 1.4.5 Slater’srules .............................. 17 1.5 Furtherreading ................................. 18 1.6 ExercisesforChapter1. .. .. 18 2 Exact and approximate wave functions 19 2.1 Characteristics of the exact wave function . ....... 19 2.2 TheCoulombcusp ............................... 21 2.2.1 HamiltonianforaHe-likeatom . 21 2.2.2 Coulomb and nuclear cusp conditions . .. 21 2.2.3 Electroncorrelation. 22 2.3 Variationprinciple .............................. 23 2.3.1 Linearansatz .............................. 23 2.3.2 Hellmann–Feynman theorem . 24 2.3.3 The molecular electronic virial theorem . ..... 25 2.4 One- and N-electronexpansions . 26 2.5 Furtherreading ................................. 28 2.6 ExercisesforChapter2. .. .. 28 3 Molecular integral evaluation 31 3.1 Atomicbasisfunctions . .. .. 31 3.1.1 TheLaguerrefunctions. 32 3.1.2 Slater-typeorbitals . 33 3 3.1.3 Gaussian-typeorbitals . 34 3.2 Gaussianbasissets ............................... 35 3.3 Integrals over Gaussian basis sets . ..... 37 3.3.1 Gaussian overlap distributions . ... 38 3.3.2 Simple one-electron integrals . ... 38 3.3.3 TheBoysfunction ........................... 39 3.3.4 Obara–Saika scheme for one-electron Coulomb integrals....... 40 3.3.5 Obara–Saika scheme for two-electron Coulomb integrals......
    [Show full text]
  • Arxiv:1605.06002V1 [Quant-Ph] 17 May 2016
    Natural generalization of the ground-state Slater determinant to more than one dimension D. K. Sunko∗ Department of Physics, Faculty of Science, University of Zagreb, Bijeniˇckacesta 32, HR-10000 Zagreb, Croatia. The basic question is addressed, how the space dimension d is encoded in the Hilbert space of N identical fermions. There appears a finite number N!d−1 of many-body wave functions, called shapes, which cannot be generated by trivial combinatorial extension of the one-dimensional ones. A general algorithm is given to list them all in terms of standard Slater determinants. Conversely, excitations which can be induced from the one-dimensional case are bosonised into a system of distinguishable bosons, called Euler bosons, much like the electromagnetic field is quantized in terms of photons distinguishable by their wave numbers. Their wave functions are given explicitly in terms of elementary symmetric functions, reflecting the fact that the fermion sign problem is trivial in one dimension. The shapes act as vacua for the Euler bosons. They are the natural generalization of the single-Slater-determinant form for the ground state to more than one dimension. In terms of algebraic invariant theory, the shapes are antisymmetric invariants which finitely generate the N-fermion Hilbert space as a graded algebra over the ring of symmetric polynomials. Analogous results hold for identical bosons. PACS numbers: 03.65.Ta, 03.65.Fd, 31.15.-p I. INTRODUCTION state is just one particular linear combination of Slater determinants among many. Quantum effects are sometimes counter-intuitive be- In particular, the Kohn-Sham method [1] is a special cause physics happens in the space of wave functions, search in coefficient space, constrained by the require- not in the geometrical \laboratory" space of Newtonian ment that the final linear combination can be written as mechanics.
    [Show full text]
  • Identical Particles Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: March 04, 2017)
    Identical particles Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: March 04, 2017) In classical mechanics, identical particles (such as electrons) do not lose their "individuality", despite the identity of their physical properties. In quantum mechanics, the situation is entirely different. Because of the Heisenberg's principle of uncertainty, the concept of the path of an electron ceases to have any meaning. Thus, there is in principle no possibility of separately following each of a number of similar particles and thereby distinguishing them. In quantum mechanics, identical particles entirely lose their individuality. The principle of the in-distinguishability of similar particles plays a fundamental part in the quantum theory of system composed of identical particles. Here we start to consider a system of only two particles. Because of the identity of the particles, the states of the system obtained from each other by interchanging the two particles must be completely equivalent physically. 1 System of particles 1 and 2 k' , k" k' k" k" k' a 1 2 b 1 2 Even though the two particles are indistinguishable, mathematically a and b are distinct kets for k' k" . In fact we have a b 0 . Suppose we make a measurement on the two particle system. k' : state of one particle and k" : state of the other particle. We do not know a priori whether the state ket is k' k" or k" k' or -for that matter- any a 1 2 b 1 2 linear combination of the two: ca a cb b . 2 Exchange degeneracy A specification of the eigenvalue of a complete set of observables does not completely determine the state ket.
    [Show full text]
  • Multi-Body Problems I
    221B Lecture Notes Many-Body Problems I 1 Quantum Statistics of Identical Particles If two particles are identical, their exchange must not change physical quan- tities. Therefore, a wave function ψ(~x1, ~x2, ··· , ~xN ) of N identical particles should not change the probability density |ψ|2 under exchanging two parti- cles, and hence we need iθ ψ(~x1, ··· , ~xj, ··· , ~xi, ··· , ~xN ) = e ψ(~x1, ··· , ~xi, ··· , ~xj, ··· , ~xN ) (1) where eiθ is a phase factor. This equation should hold for any pairs i, j. What phase can it be? The requirement is that when you interchange a pair of particles twice, it is the same as not interchaning them. Namely (eiθ)2 = 1, and hence eiθ = ±1. The sign +1 is for bosons (particles that obey Bose–Einstein statistics) and −1 for fermions (those that obey Fermi-Dirac statistics). The above argument is actually true only for three spatial dimensions and above. In two dimensions, one can define the orientation in the way you exchange two particles, clockwise or anti-clockwise. Then two clockwise exchanges do not have to give the original wave function. But one clockwise and one anti-clockwise exchange should. (Note that in three dimensions, one can rotate the sheet on which you exchange particles either clockwise or anti-clockwise by 180◦ to make clockwise and anti-clockwise exchanges the same.) Therefore the phase eiθ can be anything, and the particles that obey quantum statistics of this sort are called anyons. They appear in the context of Fractional Quantum Hall Effect. In one dimension, two particles cannot go around each other when exchanged.
    [Show full text]