Effect of Grassland Restoration Programs on Ecosystem Services Of

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Grassland Restoration Programs on Ecosystem Services Of Chengsi Li MSc Thesis in Environmental Sciences May 2018 HOW DO GRASSLAND RESTORATION PROGRAMS IN INNER MONGOLIA AFFECT ECOSYSTEM SERVICES? OF THREE INNER MONGOLIAN CASE Supervised by: Dr. Rudolf de Groot STUDIES? And Bingzhen Du Course code: ESA-80436 Environmental Systems Analysis Cover Figures: Background photo: Inner Mongolia Autonomous Region in China. Small photos: Landscape in RGTG program area of Inner Mongolia Other photos are from The Grassland monitoring report of the Inner Mongolia Autonomous Region in 2012, published by General Office of the government of Inner Mongolia Autonomous Region. http://www.nmg.gov.cn/fabu/tjxx/tjsj/201506/t20150616_457887.html How do Grassland Restoration programs in Inner Mongolia affect Ecosystem services of three Inner Mongolian case studies? MSc Thesis Environmental Sciences May 2018 “No part of this thesis may be reproduced without contacting the Environmental Systems Analysis Group” Supervisors: Dr. Ru dolf De Groot Environmental Systems Analysis Group Wageningen University, P.O.Box 47, 6700AA, Wageningen The Netherlands E-mail: [email protected] Bingzhen Du Environmental Systems Analysis Group Wageningen University The Geographic Sciences and Natural Resources Research of Chinese Academy University 100101, Beijing China E-mail: [email protected] Examiners: Dr. Rudolf De Groot Environmental Systems Analysis Group Wageningen University, P.O.Box 47, 6700AA, Wageningen The Netherlands E-mail: [email protected] Prof. Dr. Rik Leemans Environmental Systems Analysis Group Wageningen University, P.O.Box 47, 6700AA, Wageningen The Netherlands E-mail: [email protected] 3 List of Abbreviations 3-Grazing Policy 3GP Balance of Fodder and Livestock program BOF L Banning Grazing BG Ecosystem Service ES Millennium Ecosystem Assessment MA Payment of Ecosystem Service PES Resting Grazing EG Return grazing land to grassland Program RGTG Rotational Grazing RG Wageningen University and Research WUR Grassland degradation GD Institute of Geographic Sciences and Natural Resources Research, Chinese IGSNRR, Academy University CAS 4 List of Figures: Figure 1. Inner Mongolia Autonomous Region in China ........................................................ 13 Figure 2. Concept framework of this thesis (only the yellow-marked part were studied) (Based on De Groot et al., 2002; Zhange, 2012). ........................................................................ 16 Figure 3. Traditional rotational grazing way (Based on Bai, 2016). ....................................... 16 Figure 4. The normal and traditional name of different administrative rank of government in ......................................................................................................................................... 21 Figure 5. Integrated implementation process that included BOFL and RGTG ....................... 22 Figure 6. How to calculate available fodder of grassland with different grassland utilization rate ................................................................................................................................... 24 Figure 7. The annual average hay yield of Chenbarhu (grey) and the whole Hulun Buir (black) from ................................................................................................................................. 29 Figure 8. Time-series of vegetation fraction of Chenbarhu banner. Source:(Peng et al., 2017). ......................................................................................................................................... 29 Figure 9. Available grassland and degraded grassland area in Xilin Gol from 1981 to 2010 . 32 Figure 10. Grassland degradation rate of West Ujimqin (the 3rd one) and other 11 Banners of ......................................................................................................................................... 33 Figure 11. ‘Grade’ evaluation of the third, fourth, fifth grassland census in Xilin Gol. Source: (Ma and Qiao, 2015) ....................................................................................................... 34 Figure 14. The location of CAS investigation in Hulun Buir and Chenbarhu. Based on Google map .................................................................................................................................. 38 Figure 15. The location of CAS investigation in Xilin Gol and West Ujimqin. Based on Google map .................................................................................................................................. 39 Figure 16. The two locations of CAS investigation in Ordos (include Otog). Based on Google map .................................................................................................................................. 39 Figure 17. The average value of soil organic matter in Hulun Buir. ....................................... 41 Figure 18. The average value of soil organic matter in Xilin Gol. .......................................... 41 Figure 19. The average value of soil organic matter in Ordos. ............................................... 41 Figure 20. Comparing the aboveground biomass yield of 3 cases. ......................................... 42 Figure 21. The Shannon’s diversity index of 3 cases .............................................................. 43 Figure 22. Leymus chinensis and Stipa grandis. Source: (Morigen and Aoqier, 2008). ......... 43 Figure 23. The specie important index of 5 dominated-species of background area and light use area in Hulun Buir. .......................................................................................................... 44 Figure 24. The specie important index of 5 dominated-species of background area and light use area in Xilin Gol. ............................................................................................................. 45 Figure 25. The specie important index of 5 dominated-species of background area and light use area in Ordos. .................................................................................................................. 45 Figure 26. The 5 dominated-species of Hulun Buir. ............................................................... 46 Figure 27. The 5 dominated-species of Xilin Gol. .................................................................. 46 Figure 28. The 5 dominated-species s of Ordos. ..................................................................... 47 Figure 29. The orange negative cycle (GD) and the blue positive cycle (RGTG) of grassland degradation and restoration ............................................................................................. 57 5 List of Tables: Table 1. The differences of 3 grazing systems ........................................................................ 20 Table 2. Indicators to determine the condition of different degrees of grassland degradation 23 Table 3. How to transfer other livestock to sheep unit ............................................................ 24 Table 4. Subsidy of 3-grazing policy (unit: 1 Mu ≈ 666.7 m2)................................................ 26 Table 5. Hay yield of August (yield peak) in 3 Sumus’ grassland in Chenbarhu (unit: g/m2). 29 Table 6. The 5 grades grassland standard of grass community quality based on bio yield ..... 34 Table 7. The definition comparison between of 5 class grassland in investigation. ................ 40 Table 11. The related indicator species list of grassland degradation (when remit). ............... 44 Table 9. Basic information of 3 case study. ............................................................................ 49 Table 10. The ecosystem service value of grassland in Chenbarhu banner (unit: million yuan) ......................................................................................................................................... 49 Table 11. Comparing the RGTG effect of 3 case studies. ....................................................... 52 6 Table of Contents Summary.................................................................................................................................... 9 1. Introduction ......................................................................................................................... 11 1.1 Background ................................................................................................................ 11 1.2 Problem statement ..................................................................................................... 12 1.3 Research aims and Questions .................................................................................... 12 1.4 Study area .................................................................................................................. 13 1.5 Outline ....................................................................................................................... 14 2. Methodology ........................................................................................................................ 15 2.1 Conceptual framework .............................................................................................. 15 2.2 Concepts used in this thesis ....................................................................................... 16 2.2.1 Traditional Rotational grazing ........................................................................ 16 2.2.2 Ecosystem services ........................................................................................
Recommended publications
  • Multi-Scale Analysis of Green Space for Human Settlement Sustainability in Urban Areas of the Inner Mongolia Plateau, China
    sustainability Article Multi-Scale Analysis of Green Space for Human Settlement Sustainability in Urban Areas of the Inner Mongolia Plateau, China Wenfeng Chi 1,2, Jing Jia 1,2, Tao Pan 3,4,5,* , Liang Jin 1,2 and Xiulian Bai 1,2 1 College of resources and Environmental Economics, Inner Mongolia University of Finance and Economics, Inner Mongolia, Hohhot 010070, China; [email protected] (W.C.); [email protected] (J.J.); [email protected] (L.J.); [email protected] (X.B.) 2 Resource Utilization and Environmental Protection Coordinated Development Academician Expert Workstation in the North of China, Inner Mongolia University of Finance and Economics, Inner Mongolia, Hohhot 010070, China 3 College of Geography and Tourism, Qufu Normal University, Shandong, Rizhao 276826, China 4 Department of Geography, Ghent University, 9000 Ghent, Belgium 5 Land Research Center of Qufu Normal University, Shandong, Rizhao 276826, China * Correspondence: [email protected]; Tel.: +86-1834-604-6488 Received: 19 July 2020; Accepted: 18 August 2020; Published: 21 August 2020 Abstract: Green space in intra-urban regions plays a significant role in improving the human habitat environment and regulating the ecosystem service in the Inner Mongolian Plateau of China, the environmental barrier region of North China. However, a lack of multi-scale studies on intra-urban green space limits our knowledge of human settlement environments in this region. In this study, a synergistic methodology, including the main process of linear spectral decomposition, vegetation-soil-impervious surface area model, and artificial digital technology, was established to generate a multi-scale of green space (i.e., 15-m resolution intra-urban green components and 0.5-m resolution park region) and investigate multi-scale green space characteristics as well as its ecological service in 12 central cities of the Inner Mongolian Plateau.
    [Show full text]
  • Of the People's Liberation Army
    Understanding the “People” of the People’s Liberation Army A Study of Marriage, Family, Housing, and Benefits Marcus Clay, Ph.D. Printed in the United States of America by the China Aerospace Studies Institute ISBN-13: 978-1724626929 ISBN-10: 1724626922 To request additional copies, please direct inquiries to Director, China Aerospace Studies Institute, Air University, 55 Lemay Plaza, Montgomery, AL 36112 Cover art is licensed under the Creative Commons Attribution-Share Alike 4.0 International license. E-mail: [email protected] Web: http://www.airuniversity.af.mil/CASI https://twitter.com/CASI_Research @CASI_Research https://www.facebook.com/CASI.Research.Org https://www.linkedin.com/company/11049011 Disclaimer The views expressed in this academic research paper are those of the authors and do not necessarily reflect the official policy or position of the U.S. Government or the Department of Defense. In accordance with Air Force Instruction 51-303, Intellectual Property, Patents, Patent Related Matters, Trademarks and Copyrights; this work is the property of the US Government. Limited Print and Electronic Distribution Rights Reproduction and printing is subject to the Copyright Act of 1976 and applicable treaties of the United States. This document and trademark(s) contained herein are protected by law. This publication is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal, academic, or governmental use only, as long as it is unaltered and complete however, it is requested that reproductions credit the author and China Aerospace Studies Institute (CASI). Permission is required from the China Aerospace Studies Institute to reproduce, or reuse in another form, any of its research documents for commercial use.
    [Show full text]
  • Pizu Group Holdings Limited 比優集團控股有限公司 (Incorporated in the Cayman Islands with Limited Liability) (Stock Code: 8053)
    Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, makes no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. This announcement appears for information purposes only and does not constitute an invitation or offer to acquire, purchase or subscribe for the Shares. Pizu Group Holdings Limited 比優集團控股有限公司 (Incorporated in the Cayman Islands with limited liability) (Stock Code: 8053) (1) VERY SUBSTANTIAL ACQUISITION AND CONNECTED TRANSACTION IN RELATION TO ACQUISITION OF THE SHARES IN, AND SHAREHOLDER’S LOAN DUE BY, AMPLE OCEAN HOLDINGS LIMITED INVOLVING ISSUE OF CONVERTIBLE BONDS (2) INCREASE IN AUTHORISED SHARE CAPITAL OF THE COMPANY (3) NON-EXEMPT CONTINUING CONNECTED TRANSACTION (4) RESUMPTION OF TRADING ACQUISITION OF THE SHARES IN, AND SHAREHOLDER’S LOAN DUE BY, AMPLE OCEAN HOLDINGS LIMITED INVOLVING ISSUE OF CONVERTIBLE BONDS After the close of trading hours on 19 January 2015, the Company, the Vendors and Shiny Ocean entered into the SP Agreement pursuant to which the Vendors and Shiny Ocean have conditionally agreed to sell and the Company conditionally agreed to purchase the Sale Shares and the Sale Loan at the aggregate consideration of HK$837 million. The total consideration for the acquisition of the Sale Shares is HK$774 million, which shall be satisfied by the Company issuing to each of the Vendors or (in respect of Mr. Ma Qiang and Mr.
    [Show full text]
  • Considerable Model–Data Mismatch in Temperature Over China During the Mid-Holocene: Results of PMIP Simulations
    15 JUNE 2012 J I A N G E T A L . 4135 Considerable Model–Data Mismatch in Temperature over China during the Mid-Holocene: Results of PMIP Simulations DABANG JIANG Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, and Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, and Climate Change Research Center, Chinese Academy of Sciences, Beijing, China XIANMEI LANG International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China ZHIPING TIAN Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, and Graduate University of Chinese Academy of Sciences, Beijing, China TAO WANG Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China (Manuscript received 16 February 2011, in final form 8 January 2012) ABSTRACT Using the experiments undertaken by 36 climate models participating in the Paleoclimate Modeling In- tercomparison Project (PMIP), this study examines annual and seasonal surface temperatures over China during the mid-Holocene. Compared to the present or preindustrial climate, 35 out of the 36 PMIP models reproduced colder-than-baseline annual temperature, with an average cooling of 0.4 K, during that period. Seasonal temperature change followed closely the change in incoming solar radiation at the top of the at- mosphere over China during the mid-Holocene. Temperature was reduced (elevated) in boreal winter and spring (summer) in all of the PMIP models, with an average of 1.4 K (1.0 K) at the national scale. Colder (warmer)-than-baseline temperatures were derived from 14 of the 16 atmosphere-only (18 of the 20 coupled) models during the mid-Holocene boreal autumn.
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 17 July 2014 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Innes, J.B. and Zong, Y. and Wang, Z. and Chen, Z. (2014) 'Climatic and palaeoecological changes during the mid- to Late Holocene transition in eastern China : high-resolution pollen and non-pollen palynomorph analysis at Pingwang, Yangtze coastal lowlands.', Quaternary science reviews., 99 . pp. 164-175. Further information on publisher's website: http://dx.doi.org/10.1016/j.quascirev.2014.06.013 Publisher's copyright statement: NOTICE: this is the author's version of a work that was accepted for publication in Quaternary Science Reviews. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reected in this document. Changes may have been made to this work since it was submitted for publication. A denitive version was subsequently published in Quaternary Science Reviews, 99, 2014, 10.1016/j.quascirev.2014.06.013. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
    [Show full text]
  • Spatiotemporal Patterns of Desertification Dynamics And
    sustainability Article Spatiotemporal Patterns of Desertification Dynamics and Desertification Effects on Ecosystem Services in the Mu Us Desert in China Qingfu Liu 1,†, Yanyun Zhao 1,†, Xuefeng Zhang 1,2, Alexander Buyantuev 3 ID , Jianming Niu 1,* and Xiaojiang Wang 4,* 1 School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; [email protected] (Q.L.); [email protected] (Y.Z.); [email protected] (X.Z.) 2 College of Resources and Environment, Baotou Normal College, Inner Mongolia University of Science and Technology, Baotou 014030, China 3 Department of Geography and Planning, University at Albany, State University of New York, Albany, NY 12222, USA; [email protected] 4 Inner Mongolia Academy of Forestry Science, Hohhot 010010, China * Correspondence: [email protected] (J.N.); [email protected] (X.W.); Tel.: +86-471-499-2735 (J.N.) † These authors contributed equally to this work and should be considered co-first authors. Received: 30 December 2017; Accepted: 23 February 2018; Published: 26 February 2018 Abstract: Degradation of semi-arid and arid ecosystems due to desertification is arguably one of the main obstacles for sustainability in those regions. In recent decades, the Mu Us Desert in China has experienced such ecological degradation making quantification of spatial patterns of desertification in this area an important research topic. We analyzed desertification dynamics for seven periods from 1986 to 2015 and focused on five ecosystem services including soil conservation, water retention, net primary productivity (NPP), crop productivity, and livestock productivity, all assessed for 2015. Furthermore, we examined how ecosystem services relate to each other and are impacted by desertification.
    [Show full text]
  • Continuing Crackdown in Inner Mongolia
    CONTINUING CRACKDOWN IN INNER MONGOLIA Human Rights Watch/Asia (formerly Asia Watch) CONTINUING CRACKDOWN IN INNER MONGOLIA Human Rights Watch/Asia (formerly Asia Watch) Human Rights Watch New York $$$ Washington $$$ Los Angeles $$$ London Copyright 8 March 1992 by Human Rights Watch All rights reserved. Printed in the United States of America. ISBN 1-56432-059-6 Human Rights Watch/Asia (formerly Asia Watch) Human Rights Watch/Asia was established in 1985 to monitor and promote the observance of internationally recognized human rights in Asia. Sidney Jones is the executive director; Mike Jendrzejczyk is the Washington director; Robin Munro is the Hong Kong director; Therese Caouette, Patricia Gossman and Jeannine Guthrie are research associates; Cathy Yai-Wen Lee and Grace Oboma-Layat are associates; Mickey Spiegel is a research consultant. Jack Greenberg is the chair of the advisory committee and Orville Schell is vice chair. HUMAN RIGHTS WATCH Human Rights Watch conducts regular, systematic investigations of human rights abuses in some seventy countries around the world. It addresses the human rights practices of governments of all political stripes, of all geopolitical alignments, and of all ethnic and religious persuasions. In internal wars it documents violations by both governments and rebel groups. Human Rights Watch defends freedom of thought and expression, due process and equal protection of the law; it documents and denounces murders, disappearances, torture, arbitrary imprisonment, exile, censorship and other abuses of internationally recognized human rights. Human Rights Watch began in 1978 with the founding of its Helsinki division. Today, it includes five divisions covering Africa, the Americas, Asia, the Middle East, as well as the signatories of the Helsinki accords.
    [Show full text]
  • Comparative Analysis on Bairin Left Banner Rural Residence Transformation Scheme
    Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(7):1352-1358 ISSN : 0975-7384 Research Article CODEN(USA) : JCPRC5 Comparative analysis on Bairin left banner rural residence transformation scheme Chenxia Suo 1 and Yong Yang 2 1Beijing Institute of Petrochemical Technology, China 2Zhejiang Gongshang University, China _____________________________________________________________________________________________ ABSTRACT This paper compares and optimizes the effect of rural residence energy saving transformation by means of several important indexes on the basis of analyzing the relation of various transformation measures and amount of energy saving and indoor temperature through the field survey to Inner Mongolia Bairin Left Banner rural residence energy saving transformation. The efficient energy saving transformation schemes are obtained according to the results of comparison and optimization. Key words: Rural residence, energy saving transformation, scheme comparison _____________________________________________________________________________________________ INTRODUCTION China has put forward a strategic decision of constructing resource-saving society after the deep research on domestic and overseas political economy and social development history. ‘12th Five-Year Plan’ clearly presents that we should implement the target of “the transformation area of existing residence architecture of northern area with heating provision increases to 0.58 billion m2 from 0.18 billion m2 within 2010-2015”proposed by 12th Five-Year Plan for Energy Saving and Emission Reduction No. 40 Document in 2012 of the State Council. [1] [2]With the popularization of building energy saving transformation, different regions carry out rural residence energy saving transformation according to the characteristics of natural and architecture of respective region by use of the combination of various transformation items. Such transformation in which some differencesexist is known as transformation scheme.
    [Show full text]
  • Empirical and Model-Based Estimates of Spatial and Temporal Variations in Net Primary Productivity in Semi-Arid Grasslands of Northern China
    RESEARCH ARTICLE Empirical and model-based estimates of spatial and temporal variations in net primary productivity in semi-arid grasslands of Northern China Shengwei Zhang1,2, Rui Zhang1, Tingxi Liu1*, Xin Song3, Mark A. Adams4 1 College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, China, 2 Centre for Carbon, Water and Food, University of Sydney, Sydney, Australia, 3 College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 4 Swinburne University of a1111111111 Technology, Faculty of Science Engineering and Technology, Hawthorn, Victoria, Australia a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Spatiotemporal variations in net primary productivity (NPP) reflect the dynamics of water and carbon in the biosphere, and are often closely related to temperature and precipitation. OPEN ACCESS We used the ecosystem model known as the Carnegie-Ames-Stanford Approach (CASA) to Citation: Zhang S, Zhang R, Liu T, Song X, A. Adams M (2017) Empirical and model-based estimate NPP of semiarid grassland in northern China counties between 2001 and 2013. estimates of spatial and temporal variations in net Model estimates were strongly linearly correlated with observed values from different coun- primary productivity in semi-arid grasslands of ties (slope = 0.76 (p < 0.001), intercept = 34.7 (p < 0.01), R2 = 0.67, RMSE = 35 g CÁm-2Á Northern China. PLoS ONE 12(11): e0187678. year-1, bias = -0.11 g CÁm-2Áyear-1). We also quantified inter-annual changes in NPP over https://doi.org/10.1371/journal.pone.0187678 the 13-year study period. NPP varied between 141 and 313 g CÁm-2Áyear-1, with a mean of Editor: Ben Bond-Lamberty, Pacific Northwest 240 g CÁm-2Áyear-1.
    [Show full text]
  • Lake-Level Oscillation Based on Sediment Strata and Geochemical Proxies Since 11,000 Year from Tengger Nuur, Inner Mongolia, China
    feart-08-00314 August 6, 2020 Time: 22:43 # 1 ORIGINAL RESEARCH published: 07 August 2020 doi: 10.3389/feart.2020.00314 Lake-Level Oscillation Based on Sediment Strata and Geochemical Proxies Since 11,000 Year From Tengger Nuur, Inner Mongolia, China Zhang Chengjun*, Zhang Li, Zhang Wanyi, Tao Yunhan, Liu Yang, Wan Xiangling, Zhang Zhen and Safarov Khomid College of Earth Sciences & Key Laboratory of Mineral Resources in Western China (Gansu Province), Lanzhou University, Lanzhou, China A 794-cm section was collected from Tengger Nuur in the Inner Mongolian Plateau. Accelerator mass spectrometry 14C data were determined to set an age-depth model after removing about 1920 years of the carbon reservoir effect. Based on the multi- proxies grain size, carbonate-content, total organic carbon-content, ratio of C/N, ratios Edited by: Liangcheng Tan, of Mg/Ca and Sr/Ca, and carbonate carbon and oxygen isotopes, paleoenvironmental Institute of Earth Environment, changes since the last deglaciation were reconstructed. Tengger Nuur was very shallow Chinese Academy of Sciences, China during the last deglaciation under a cool and wet climate, especially during the interval Reviewed by: of the cold Younger Dryas event. Although, temperature and humidity increased from Hao Long, Nanjing Institute of Geography the early Holocene (∼10,450–8750 cal a BP), low lake levels indicated that the summer and Limnology (CAS), China monsoon was not sufficiently strong to reach the modern monsoon boundary in Inner Qianli Sun, East China Normal University, China Mongolia. High monsoon precipitation caused lake expansion during 8750–5000 cal a *Correspondence: BP, but the lake level oscillated in a shallow state under high evaporation.
    [Show full text]
  • SIS) – 2017 Version
    Information Sheet on EAA Flyway Network Sites Information Sheet on EAA Flyway Network Sites (SIS) – 2017 version Available for download from http://www.eaaflyway.net/about/the-flyway/flyway-site-network/ Categories approved by Second Meeting of the Partners of the East Asian-Australasian Flyway Partnership in Beijing, China 13-14 November 2007 - Report (Minutes) Agenda Item 3.13 Notes for compilers: 1. The management body intending to nominate a site for inclusion in the East Asian - Australasian Flyway Site Network is requested to complete a Site Information Sheet. The Site Information Sheet will provide the basic information of the site and detail how the site meets the criteria for inclusion in the Flyway Site Network. When there is a new nomination or an SIS update, the following sections with an asterisk (*), from Questions 1-14 and Question 30, must be filled or updated at least so that it can justify the international importance of the habitat for migratory waterbirds. 2. The Site Information Sheet is based on the Ramsar Information Sheet. If the site proposed for the Flyway Site Network is an existing Ramsar site then the documentation process can be simplified. 3. Once completed, the Site Information Sheet (and accompanying map(s)) should be submitted to the Flyway Partnership Secretariat. Compilers should provide an electronic (MS Word) copy of the Information Sheet and, where possible, digital versions (e.g. shapefile) of all maps. -----------------------------------------------------------------------------------------------------------------------------
    [Show full text]
  • Chinese Herbal Medicine: Materia Medica
    PDF Contents Chinese Herbal Medicine: Materia Medica 2 Title page 3-4 Table of Contents 5-7 Preface to 3rd edition 9-14 Sample herb entry 15-16 Sample from Table 2: Summary Table of Herb Actions and Indications 17-19 Table 3: The Effects of Taste Combinations 20 Sample from color photo section on adulterants ©Eastland Press 2004, 2015 CHINESE HERBAL MEDICINE . Materia Medica PORTABLE 3rd EDITION COMPILED AND TRANSLATED BY Dan Bensky, Steven Clavey, and Erich Stõger with Andrew Gamble ILLUSTRATIONS ADAPTED BY Lilian Lai Bensky ©Eastland Press 2004, 2015 General Contents preface to third edition .... ix introduction .... xiii chapter 1 Herbs that Release the Exterior .... 3 chapter 2 Herbs that Clear Heat .... 89 chapter 3 Downward-Draining Herbs .... 235 chapter 4 Herbs that Drain Dampness .... 267 chapter 5 Herbs that Dispel Wind-Dampness .... 323 chapter 6 Herbs that Transform Phlegm and Stop Coughing .... 375 chapter 7 Aromatic Herbs that Transform Dampness .... 467 chapter 8 Herbs that Relieve Food Stagnation .... 493 chapter 9 Herbs that Regulate the Qi .... 509 chapter 10 Herbs that Regulate the Blood .... 559 chapter 11 Herbs that Warm the Interior and Expel Cold .... 673 chapter 12 Tonifying Herbs .... 709 chapter 13 Herbs that Stabilize and Bind .... 857 chapter 14 Substances that Calm the Spirit .... 909 chapter 15 Aromatic Substances that Open the Orifices .... 947 chapter 16 Substances that Extinguish Wind and Stop Tremors .... 967 ©Eastland Press 2004, 2015 viii Table of Contents chapter 17 Herbs that Expel Parasites .... 997 chapter 18 Substances for Topical Application .... 1021 chapter 19 Obsolete Substances .... 1045 table 1 Herbs Associated with Pathologies of the Five Yin Organs ...
    [Show full text]