Catalog of Arp Peculiar Galaxies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
Curriculum Vitae Avishay Gal-Yam
January 27, 2017 Curriculum Vitae Avishay Gal-Yam Personal Name: Avishay Gal-Yam Current address: Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel. Telephones: home: 972-8-9464749, work: 972-8-9342063, Fax: 972-8-9344477 e-mail: [email protected] Born: March 15, 1970, Israel Family status: Married + 3 Citizenship: Israeli Education 1997-2003: Ph.D., School of Physics and Astronomy, Tel-Aviv University, Israel. Advisor: Prof. Dan Maoz 1994-1996: B.Sc., Magna Cum Laude, in Physics and Mathematics, Tel-Aviv University, Israel. (1989-1993: Military service.) Positions 2013- : Head, Physics Core Facilities Unit, Weizmann Institute of Science, Israel. 2012- : Associate Professor, Weizmann Institute of Science, Israel. 2008- : Head, Kraar Observatory Program, Weizmann Institute of Science, Israel. 2007- : Visiting Associate, California Institute of Technology. 2007-2012: Senior Scientist, Weizmann Institute of Science, Israel. 2006-2007: Postdoctoral Scholar, California Institute of Technology. 2003-2006: Hubble Postdoctoral Fellow, California Institute of Technology. 1996-2003: Physics and Mathematics Research and Teaching Assistant, Tel Aviv University. Honors and Awards 2012: Kimmel Award for Innovative Investigation. 2010: Krill Prize for Excellence in Scientific Research. 2010: Isreali Physical Society (IPS) Prize for a Young Physicist (shared with E. Nakar). 2010: German Federal Ministry of Education and Research (BMBF) ARCHES Prize. 2010: Levinson Physics Prize. 2008: The Peter and Patricia Gruber Award. 2007: European Union IRG Fellow. 2006: “Citt`adi Cefal`u"Prize. 2003: Hubble Fellow. 2002: Tel Aviv U. School of Physics and Astronomy award for outstanding achievements. 2000: Colton Fellow. 2000: Tel Aviv U. School of Physics and Astronomy research and teaching excellence award. -
April Constellations of the Month
April Constellations of the Month Leo Small Scope Objects: Name R.A. Decl. Details M65! A large, bright Sa/Sb spiral galaxy. 7.8 x 1.6 arc minutes, magnitude 10.2. Very 11hr 18.9m +13° 05’ (NGC 3623) high surface brighness showing good detail in medium sized ‘scopes. M66! Another bright Sb galaxy, only 21 arc minutes from M65. Slightly brighter at mag. 11hr 20.2m +12° 59’ (NGC 3627) 9.7, measuring 8.0 x 2.5 arc minutes. M95 An easy SBb barred spiral, 4 x 3 arc minutes in size. Magnitude 10.5, with 10hr 44.0m +11° 42’ a bright central core. The bar and outer ring of material will require larger (NGC 3351) aperature and dark skies. M96 Another bright Sb spiral, about 42 arc minutes east of M95, but larger and 10hr 46.8m +11° 49’ (NGC 3368) brighter. 6 x 4 arc minutes, magnitude 10.1. Located about 48 arc minutes NNE of M96. This small elliptical galaxy measures M105 only 2 x 2.1 arc minutes, but at mag. 10.3 has very high surface brightness. 10hr 47.8m +12° 35’ (NGC 3379) Look for NGC 3384! (110NGC) and NGC 3389 (mag 11.0 and 12.2) which form a small triangle with M105. NGC 3384! 10hr 48.3m +12° 38’ See comment for M105. The brightest galaxy in Leo, this Sb/Sc spiral galaxy shines at mag. 9.5. Look for NGC 2903!! 09hr 32.2m +21° 30’ a hazy patch 11 x 4.7 arc minutes in size 1.5° south of l Leonis. -
Large-Scale Outflows in Edge-On Seyfert Galaxies. II. Kiloparsec
Large-Scale Outflows in Edge-on Seyfert Galaxies. II. Kiloparsec-Scale Radio Continuum Emission Edward J. M. Colbert1,2, Stefi A. Baum1, Jack F. Gallimore1,2, Christopher P. O’Dea1, Jennifer A. Christensen1 Received ; accepted arXiv:astro-ph/9604022v1 3 Apr 1996 1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 2 Department of Astronomy, University of Maryland, College Park, MD 20742 –2– ABSTRACT We present deep images of the kpc-scale radio continuum emission in 14 edge-on galaxies (ten Seyfert and four starburst galaxies). Observations were taken with the VLA at 4.9 GHz (6 cm). The Seyfert galaxies were selected from a distance-limited sample of 22 objects (defined in paper I). The starburst galaxies were selected to be well-matched to the Seyferts in radio power, recessional velocity and inclination angle. All four starburst galaxies have a very bright disk component and one (NGC 3044) has a radio halo that extends several kpc out of the galaxy plane. Six of the ten Seyferts observed have large-scale (radial extent >1 kpc) radio structures extending outward from the ∼ nuclear region, indicating that large-scale outflows are quite common in Seyferts. Large-scale radio sources in Seyferts are similar in radio power and radial extent to radio halos in edge-on starburst galaxies, but their morphologies do not resemble spherical halos observed in starburst galaxies. The sources have diffuse morphologies, but, in general, they are oriented at skewed angles with respect to the galaxy minor axes. This result is most easily understood if the outflows are AGN-driven jets that are somehow diverted away from the galaxy disk on scales >1 kpc. -
Astronomy Magazine Special Issue
γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006. -
Intensity Spots in the Cosmic Microwave Background Radiation and Distant Objects V
Astronomy Letters, Vol. 27, No. 4, 2001, pp. 207–212. Translated from Pis’ma v Astronomicheskiœ Zhurnal, Vol. 27, No. 4, 2001, pp. 243–249. Original Russian Text Copyright © 2001 by Dubrovich. Formation Mechanisms of “Negative”-Intensity Spots in the Cosmic Microwave Background Radiation and Distant Objects V. K. Dubrovich* Special Astrophysical Observatory, Russian Academy of Sciences, pos. Nizhniœ Arkhyz, Stavropol kraœ, 357147 Russia Received June 2, 2000; in final form, October 2, 2000 Abstract—We consider the formation mechanisms of “negative”-intensity spots in the radio band for various astrophysical conditions. For wavelengths λ < 1.5 mm, the regions of reduced temperature (relative to the cos- mic microwave background radiation, CMBR) are shown to be produced only by high-redshift objects moving at peculiar velocities. The main processes are CMBR Thomson scattering and bremsstrahlung. We show that the effect δT/T can be ~ 10–5 in magnitude. We derive simple analytic expressions, which allow the redshifts, electron densities, and linear sizes of these regions to be estimated from observed spectral and spatial parame- ters. Additional observational methods for refining these parameters are outlined. © 2001 MAIK “Nauka/Inter- periodica”. Key words: theoretical and observational cosmology INTRODUCTION only two formation mechanisms of the “glow.” One of In the last 30 years, much attention has been given them is the Doppler distortion of external, equilibrium, to the search for and a detailed analysis of spatial fluc- and isotropic radiation (CMBR). For this to occur, the tuations in cosmic microwave background radiation object must have a peculiar velocity Vp and some non- zero opacity. -
The Outermost Hii Regions of Nearby Galaxies
THE OUTERMOST HII REGIONS OF NEARBY GALAXIES by Jessica K. Werk A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Astronomy and Astrophysics) in The University of Michigan 2010 Doctoral Committee: Professor Mario L. Mateo, Co-Chair Associate Professor Mary E. Putman, Co-Chair, Columbia University Professor Fred C. Adams Professor Lee W. Hartmann Associate Professor Marion S. Oey Professor Gerhardt R. Meurer, University of Western Australia Jessica K. Werk Copyright c 2010 All Rights Reserved To Mom and Dad, for all your love and encouragement while I was taking up space. ii ACKNOWLEDGMENTS I owe a deep debt of gratitude to a long list of individuals, institutions, and substances that have seen me through the last six years of graduate school. My first undergraduate advisor in Astronomy, Kathryn Johnston, was also my first Astronomy Professor. She piqued my interest in the subject from day one with her enthusiasm and knowledge. I don’t doubt that I would be studying something far less interesting if it weren’t for her. John Salzer, my next and last undergraduate advisor, not only taught me so much about observing and organization, but also is responsible for convincing me to go on in Astronomy. Were it not for John, I’d probably be making a lot more money right now doing something totally mind-numbing and soul-crushing. And Laura Chomiuk, a fellow Wesleyan Astronomy Alumnus, has been there for me through everything − problem sets and personal heartbreak alike. To know her as a friend, goat-lover, and scientist has meant so much to me over the last 10 years, that confining my gratitude to these couple sentences just seems wrong. -
In IAU Symp. 193, Wolf-Rayet Phenomena in Stars and Starburst
Synthesis Models for Starburst Populations with Wolf-Rayet Stars Claus Leitherer Space Telescope Science Institute1, 3700 San Martin Drive, Baltimore, MD 21218 Abstract. The prospects of utilizing Wolf-Rayet populations in star- burst galaxies to infer the stellar content are reviewed. I discuss which Wolf-Rayet star features can be detected in an integrated stellar pop- ulation. Specific examples are given where the presence of Wolf-Rayet stars can help understand galaxy properties independent of the O-star population. I demonstrate how populations with small age spread, such as super star clusters, permit observational tests to distinguish between single-star and binary models to produce Wolf-Rayet stars. Different synthesis models for Wolf-Rayet populations are compared. Predictions for Wolf-Rayet properties vary dramatically between individual models. The current state of the models is such that a comparison with starburst populations is more useful for improving Wolf-Rayet atmosphere and evo- lution models than for deriving the star-formation history and the initial mass function. 1. Wolf-Rayet Signatures in Young Populations The central 30 Doradus region has the highest concentration of Wolf-Rayet (WR) stars in the LMC. Parker et al. (1995) classify 15 stars within 2000 (or 5 pc) of R136 as WR stars, including objects which may appear WR-like due to very dense winds (de Koter et al. 1997). This suggests that about 1 out of 10 ionizing stars around R136 is of WR type. The WR stars can be seen in an ultraviolet (UV) drift-scan spectrum of the integrated 30 Dor population obtained by Vacca et al. -
ASTRONOMY and ASTROPHYSICS Young Massive Star Clusters in Nearby Spiral Galaxies? III
Astron. Astrophys. 354, 836–846 (2000) ASTRONOMY AND ASTROPHYSICS Young massive star clusters in nearby spiral galaxies? III. Correlations between cluster populations and host galaxy properties S.S. Larsen1,2 and T. Richtler3,4 1 Copenhagen University Astronomical Observatory, Juliane Maries Vej 32, 2100 Copenhagen Ø, Denmark 2 UCO/Lick Observatory, Kerr Hall, UC Santa Cruz, CA 95064, USA ([email protected]) 3 Sternwarte der Universitat¨ Bonn, Auf dem Hugel¨ 71, 53121 Bonn, Germany 4 Grupo de Astronom´ıa, Departamento de F´ısica, Casilla 160-C, Universidad de Concepcion,´ Concepcion,´ Chile ([email protected]) Received 16 August 1999 / Accepted 22 December 1999 Abstract. We present an analysis of correlations between in- the Magellanic Clouds. It was noted early on that the Clouds, in tegrated properties of galaxies and their populations of young particular the LMC, contain a number of very massive, young massive star clusters. Data for 21 nearby galaxies presented by clusters that do not have any counterparts in our own galaxy Larsen & Richtler (1999) are used together with literature data (van den Bergh 1991; Richtler 1993). Many recent studies have for 10 additional galaxies, spanning a range in specific U-band shown the presence of such “Young Massive Clusters” (YMCs) cluster luminosity TL(U) from 0 to 15. We find that TL(U) also in a number of mergers and starburst galaxies (see e.g. list in correlates with several observable host galaxy parameters, in Harris 1999) and it is clear that the occurrence of such objects particular the ratio of Far-Infrared (FIR) to B-band flux and the is often associated with violent star formation, leading to the surface brightness. -
Cerncourier-April17 213X282 E.Indd 1 22.02.17 11:37 Uhr CERNCOURIER Www
CERN Courier April 2017 Astrowatch Optimize your LLRF with excellent jitter perfor- C OMPILED BY M ARC TÜRLER , ISDC AND O BSERVATORY OF THE U NIVERSITY OF G ENEVA , AND CHIPP, U NIVERSITY OF Z URICH Gravitational lens challenges cosmic expansion mance measurements Low phase noise oscillators are essential in the development, verification Using galaxies as vast gravitational lenses, . agreement with other recent determinations and optimization of every particle accelerator. In a single instrument the et al Visit us at an international group of astronomers has in the local universe using classical ¸FSWP provides best-in-class noise and jitter sensitivity, ultra-fast made an independent measurement of how cosmic-distance ladder methods. One of measurement speed and the benefit of an internal low phase noise oscillator. IPAC in Copenhagen, fast the universe is expanding. The newly these, by Adam Riess and collaborators, finds measured expansion rate is consistent with an even higher value of the Hubble constant ❙ Superior jitter measurement down to 0.3 Hz offset Booth 46 and 47 –1 –1 earlier findings in the local universe based on (H0 = 73.2±1.7 km s Mpc ) and has therefore ❙ Measurement of additive phase noise at the push of a button more traditional methods, but intriguingly triggered a lot of interest in recent months. ❙ Internal low phase noise oscillator coupled with enhanced cross- ESA/Hubble; NASA, Suyu remains higher than the value derived by the The reason is that such values are in correlation functionality Planck satellite – a tension that could hint at tension with the precise determination new physics. -
1987Apj. . .318. .1613 the Astrophysical Journal, 318:161-174
.1613 The Astrophysical Journal, 318:161-174,1987 July 1 © 1987. The American Astronomical Society. All rights reserved. Printed in U.S.A. .318. 1987ApJ. A STUDY OF A FLUX-LIMITED SAMPLE OF IRAS GALAXIES1 Beverly J. Smith and S. G. Kleinmann University of Massachusetts J. P. Huchra Harvard-Smithsonian Center for Astrophysics AND F. J. Low Steward Observatory, University of Arizona Received 1986 September 3 ; accepted 1986 December 11 ABSTRACT We present results from a study of all 72 galaxies detected by IRAS in band 3 at flux levels >2 Jy and lying the region 8h < a < 17h, 23?5 < <5 < 32?5. Redshifts and accurate four-color IRAS photometry were 8 2 obtained for the entire sample. The 60 jtm luminosities of these galaxies lie in the range 4 x 10 (JF/o/100) L0 2 2 to 5 x lO^iTo/lOO) L0. The 60 jtm luminosity function at the high-luminosity end is proportional to L~ ; 10 below L = 10 L0 the luminosity function flattens. This is in agreement with previous results. We find a distinction between the morphology and infrared colors of the most luminous and the least luminous galaxies, leading to the suggestion that the observed luminosity function is produced by two different classes of objects. Comparisons between the selected IRAS galaxies and an optically complete sample taken from the CfA redshift survey show that they are more narrowly distributed in blue luminosity than those optically selected, in the sense that the IRAS sample includes few galaxies of low absolute blue luminosity. We also find that the space distribution of the two samples differ: the density enhancement of IRAS galaxies is only that of the optically selected galaxies in the core of the Coma Cluster, raising the question whether source counts of IRAS galaxies can be used to deduce the mass distribution in the universe. -
Physics ABSTRACT SIMULATION of INTERACTING GALAXY PAIR ARP
Research Paper Volume : 2 | Issue : 8 | August 2013 • ISSN No 2277 - 8179 Physics SIMULATION OF INTERACTING KEYWORDS : Arp 82, interacting galaxy GALAXY PAIR ARP 82 pairs, simulation of NGC2535 and NGC2536. Mariwan A. Rasheed Department of Physics, School of Science, University of Sulaimani ABSTRACT In the present work, the interaction between the two galaxies (NGC2535 and NGC2536) is simulated. And according to the simulation the interaction causes the two arc tails in the big galaxy NGC253, in which the southern tail of the galaxy is bigger than the northern tail and the southern tail is connected with the smaller galaxy NGC2336 through a bridge. For the initial conditions, such as mass ratio, distance, and the radius of the two galaxies that I have put in this work, gives a best picture of the two interacted galaxies which named as Arp 82. INTRODUCTION: by the gravitation, and the rings distort gradually, therefore the When galaxies interact they may merge into a large one or af- fect on each other without merging. These interactions make the whole disks of the galaxies reshape to produce the peculiar changes in the shape and the geometry of the two galaxies, in galaxies.distribution of particles of the outer rings dislocate at first, then which the result is the construction of peculiar galaxies. Such The initial conditions of mass, position, and the distance that have been put in this work are: peculiar galaxies are classified in atlas and catalog, Vorontsov- Velyaminov 1959 and 1977, Arp 1966, Karachentsev 1972. - Msun, radi- - 10 Arp 82 which can be considered as M51-type galaxies, Lauri For NGC2535 galaxy: the centroid mass =2.51×10 tails,kainen while et al, the 1998 second is an galaxy example is ofthe two small interacting galaxy which pair of known galax us=1.62 kpc, halo radius=9.72kpc.10 While for NGC 2536 galaxy: asies a NGC2535 companion and of NGC2536.