Cambrian Explosion

Total Page:16

File Type:pdf, Size:1020Kb

Cambrian Explosion The Cambrian-Precambrian Boundary Treptichnus pedum Key Faunas Before/After the Cambrian Explosion: • Burgess Shale (505 Ma) • Chengjiang (520 Ma) • Small Shellies (Manykaian Stage) (544-530 Ma) • Ediacara (575-545 Ma) • Doushantuo embryos (580-570 Ma) 1 Small Shellies Small Shellies 2 Small Shellies The Tommotian fauna is a small shelly fauna found first on the Siberian Platform. The scale bars are all 1 millimetre. Photo: S. Bengston, in Evolution of the Earth, 1994 edition. 3 What are small shellies? Halkieria, Sirius Passet, Greenland Lapworthella www.palaeos.com/Invertebrates/ Procoelomates/Lapworthella.gi 4 Key Faunas Before/After the Cambrian Explosion: • Burgess Shale (505 Ma) • Chengjiang (520 Ma) • Small Shellies (Manykaian Stage) (544-530 Ma) • Ediacara (575-545 Ma) • Doushantuo embryos (580-570 Ma) The Chengjiang Fauna 5 The Chengjiang fossil lagerstätte: Major outcrop in the Qiongzhusi Formation near Chengjiang, Yunnan Province. (c) 1997 by E. Landing Microdictyon – an onychophoran 6 Waptia – an arthropod Canadaspis – an arthropod 7 Hallucigenia – an onychophoran Anomalocaris – a (very large) arthropod 8 Naraoia – a trilobite Cindarella 9 Saperion Fuxianhuia – an arthropod 10 Yunnanozoon - the oldest known chordate 11 Haikouella – The oldest known vertebrate?? Science, February 2003 12 Key Faunas Before/After the Cambrian Explosion: • Burgess Shale (505 Ma) • Chengjiang (520 Ma) • Small Shellies (Manykaian Stage) (544-530 Ma) • Ediacara (575-545 Ma) • Doushantuo embryos (580-570 Ma) Factoids about the Burgess Shale • Discovered in 1909 by C.D. Walcott • Middle Cambrian age • Walcott did not think the Burgess creatures were that remarkable • Restudy in the 1980s showed that many Burgess taxa were very unusual • Best-selling 1989 book by S.J. Gould made Burgess famous and encouraged more study • Burgess and Chengjiang share many taxa 13 (1989) The Burgess Shale Charles Walcott 14 15 Wiwaxia - a mollusk? Aysheaia - an onychophoran 16 A modern onychophoran New reconstruction ⇑ ⇐ Old reconstruction Hallucigenia – an onychophoran 17 Thamnauptilon – a penatulacean (sea pen) Pikaia - a chordate 18 Opabinia – affinities unknown Reconstructions of Opabinia 19 Marella – an arthropod Anomalocaris – an arthropod 20 Anomalocaris Anomalocaris 21 22 Reconstruction of the Burgess Shale fauna www.emc.maricopa.edu/faculty/ farabee/BIOBK/1ord04b.gif Evidence of predation in the Burgess Shale 23 Temporal distribution of Burgess-type faunas How might all this fit together? • The fossils • Snowball Earth • Molecular clocks • Developmental genetics 24 How might all this fit together? • The fossils • The environment: Snowball Earth • Molecular clocks • Developmental genetics How might all these faunas fit together? The fossils. • If there were animals before Ediacara, they were small • Ediacara mostly soft-bodied; many did not leave decendants; some did • Skeletons appeared abruptly at the boundary • Many early skeletonized animals had multi- element skeletons • The “explosion” was truly sudden (a few million years) and produced almost all the phyla 25 Halkieria, Sirius Passet, Greenland 26 Similarities between Wiwaxia and Halkieria Halkieria Wiwaxia 27 How might all this fit together? • The fossils • The environment: Snowball Earth • Molecular clocks • Developmental genetics 28 Late Proterozoic Environmental Changes • Major glaciations • Major carbon burial events 29 Late Proterozoic Glaciations Duoshantuo? • ≈ 580 Ma - Gaskiers Glaciation Duoshantuo? • ≈ 680 Ma - Marinoan Glaciation • ≈ 710 Ma - Stirtian Glaciation Snowball Earth 30 Stage 1: Prologue Stage 3: Snowball as it Thaws Stage 2: Snowball Earth at Its Coldest Stage 4: Hothouse Aftermath How might all this fit together? • The fossils • The environment: Snowball Earth • Molecular clocks • Developmental genetics 31 (from Bromham & Hendy, Proc. R. Soc. Lond., 2000, 267:1041) 32 How might all this fit together? • The fossils • The environment: Snowball Earth • Molecular clocks • Developmental genetics The role of development Recent discoveries in developmental biology tell us that it is possible for major evolutionary changes in morphology to occur abruptly through relatively small genetic changes. 33 Phylogeny of the Burgess/Chengjiang arthropods From Bioessays 19, pg 431. Fortey R.A., et al, 1997. The Cambrian Explosion: An attempt at synthesis • One Possible Scenario: The phyla originated sometime in the late Proterozoic (1000-600 Ma), but remained small during environmental changes associated with major late Proterozoic glaciations (which may have reached the level of “snowball earth”). These environmental changes -- combined with one or more major genetic/developmental changes -- led to the Cambrian Explosion. 34 35 36 37.
Recommended publications
  • Fossil Invertebrates of the Phanerozoic
    The Origin of Phyla and the Cambrian Explosion of Life Geology 230 Fossils and Evolution Cambrian Life • The first animals evolved about 60 my before the start of the Cambrian. These are the Ediacaran fossils of the latest Proterozoic. • None of these animals had hard parts. • Base of the Cambrian defined by first animals with hard parts. Life at the end of the Proterozoic Life at the end of the Proterozoic Cambrian Life • Early Cambrian fossils consist mostly of small little shells that are later followed by trilobites and brachiopods. Small little shells: sclerites on soft-bodied animals Cambrian trilobites cruising on Saturday night Typical Cambrian trilobites Modern horseshoe crabs look similar to trilobites, but they are not closely related. Example of a “living fossil.” Trilobites are extinct. A living Inarticulate Brachiopod. Very common in the Cambrian. Modern Inarticulate Brachiopods in their burrows Modern Inarticulate Brachiopods for dinner The Cambrian “Explosion” of Life • What is the Cambrian “Explosion”? • Is it a true explosion of phyla, or was there a “slow fuse” back into the Proterozoic? • Why did so many new phyla appear at this time? Hox genes hold the answer. • Why have no new phyla appeared since this time? MicroRNA holds the answer. The Tree of Life www.evogeneao.com/tree.html Cambrian Explosion, radiation of triploblasts (3 tissue layers) Diploblasts (2 tissue layers) Diploblastic Animals: Triploblastic Animals: Two Tissue Layers Three Tissue Layers Mesoderm in blue (jelly) Deuterostomes (mouth is second opening during development) Protostomes (mouth is first opening during development) Ecdysozoa Lophotrochozoa Protostomes (mouth is first opening during development) Deuterostomes (mouth is second opening during development) Prothero, 2007 Prothero, 2007 Hox genes determine the head to tail anatomy of animals.
    [Show full text]
  • An Exceptionally Preserved Arthropod Cardiovascular System from the Early Cambrian
    ARTICLE Received 20 Dec 2013 | Accepted 4 Mar 2014 | Published 7 Apr 2014 DOI: 10.1038/ncomms4560 An exceptionally preserved arthropod cardiovascular system from the early Cambrian Xiaoya Ma1,2, Peiyun Cong1, Xianguang Hou1, Gregory D. Edgecombe2 & Nicholas J. Strausfeld3 The assumption that amongst internal organs of early arthropods only the digestive system withstands fossilization is challenged by the identification of brain and ganglia in early Cambrian fuxianhuiids and megacheirans from southwest China. Here we document in the 520-million-year-old Chengjiang arthropod Fuxianhuia protensa an exceptionally preserved bilaterally symmetrical organ system corresponding to the vascular system of extant arthropods. Preserved primarily as carbon, this system includes a broad dorsal vessel extending through the thorax to the brain where anastomosing branches overlap brain seg- ments and supply the eyes and antennae. The dorsal vessel provides segmentally paired branches to lateral vessels, an arthropod ground pattern character, and extends into the anterior part of the abdomen. The addition of its vascular system to documented digestive and nervous systems resolves the internal organization of F. protensa as the most completely understood of any Cambrian arthropod, emphasizing complexity that had evolved by the early Cambrian. 1 Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China. 2 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. 3 Department of Neuroscience and Center for Insect Science, University of Arizona, Tucson, Arizona 85721, USA. Correspondence and requests for materials should be addressed to X.H. (email: [email protected]) or to N.J.S. (email: fl[email protected]).
    [Show full text]
  • The Cambrian Explosion: a Big Bang in the Evolution of Animals
    The Cambrian Explosion A Big Bang in the Evolution of Animals Very suddenly, and at about the same horizon the world over, life showed up in the rocks with a bang. For most of Earth’s early history, there simply was no fossil record. Only recently have we come to discover otherwise: Life is virtually as old as the planet itself, and even the most ancient sedimentary rocks have yielded fossilized remains of primitive forms of life. NILES ELDREDGE, LIFE PULSE, EPISODES FROM THE STORY OF THE FOSSIL RECORD The Cambrian Explosion: A Big Bang in the Evolution of Animals Our home planet coalesced into a sphere about four-and-a-half-billion years ago, acquired water and carbon about four billion years ago, and less than a billion years later, according to microscopic fossils, organic cells began to show up in that inert matter. Single-celled life had begun. Single cells dominated life on the planet for billions of years before multicellular animals appeared. Fossils from 635,000 million years ago reveal fats that today are only produced by sponges. These biomarkers may be the earliest evidence of multi-cellular animals. Soon after we can see the shadowy impressions of more complex fans and jellies and things with no names that show that animal life was in an experimental phase (called the Ediacran period). Then suddenly, in the relatively short span of about twenty million years (given the usual pace of geologic time), life exploded in a radiation of abundance and diversity that contained the body plans of almost all the animals we know today.
    [Show full text]
  • A NEW METAZOAN from the MIDDLE CAMBRIAN of UTAH and the NATURE of the VETULICOLIA by DEREK E
    [Palaeontology, Vol. 48, Part 4, 2005, pp. 681–686] RAPID COMMUNICATION A NEW METAZOAN FROM THE MIDDLE CAMBRIAN OF UTAH AND THE NATURE OF THE VETULICOLIA by DEREK E. G. BRIGGS*, BRUCES.LIEBERMAN , SUSAN L. HALGEDAHLà and RICHARD D. JARRARDà *Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, CT 06520-8109, USA; e-mail: [email protected] Department of Geology, University of Kansas, 1475 Jayhawk Boulevard, 120 Lindley Hall, Lawrence, KS 66045, USA àDepartment of Geology and Geophysics, University of Utah, 135 S. 1460 East, Salt Lake City, UT 84112, USA Typescript received 22 November 2004; accepted in revised form 24 March 2005 Abstract: A new metazoan, Skeemella clavula gen. et sp. arthropodan in character. The similarity of this fossil nov., is described from the Middle Cambrian Pierson Cove to vetulicolians throws hypotheses of their deuterostome Formation of the Drum Mountains, Utah, USA. Skeemella affinity into question and highlights their problematic sta- is similar to vetulicolians, but differs from other examples tus. of this group in the relative proportions of the anterior and posterior sections, the large number of divisions, and Key words: vetulicolian, Cambrian, deuterostome, arthro- the elongate bifid termination. The posterior section is pod. The very name vetulicolian conjures up creatures from species Banffia confusa, to erect a new class of stem-group another planet. These extraordinary fossils, with a head arthropods, the Vetulicolida. They argued that Banffia shield-like anterior and narrow segmented trunk-like pos- constricta from the Burgess Shale belongs to the same terior, are the latest Cambrian group to be accorded phy- class, extending its range to North America.
    [Show full text]
  • Fossils from South China Redefine the Ancestral Euarthropod Body Plan Cédric Aria1 , Fangchen Zhao1, Han Zeng1, Jin Guo2 and Maoyan Zhu1,3*
    Aria et al. BMC Evolutionary Biology (2020) 20:4 https://doi.org/10.1186/s12862-019-1560-7 RESEARCH ARTICLE Open Access Fossils from South China redefine the ancestral euarthropod body plan Cédric Aria1 , Fangchen Zhao1, Han Zeng1, Jin Guo2 and Maoyan Zhu1,3* Abstract Background: Early Cambrian Lagerstätten from China have greatly enriched our perspective on the early evolution of animals, particularly arthropods. However, recent studies have shown that many of these early fossil arthropods were more derived than previously thought, casting uncertainty on the ancestral euarthropod body plan. In addition, evidence from fossilized neural tissues conflicts with external morphology, in particular regarding the homology of the frontalmost appendage. Results: Here we redescribe the multisegmented megacheirans Fortiforceps and Jianfengia and describe Sklerolibyon maomima gen. et sp. nov., which we place in Jianfengiidae, fam. nov. (in Megacheira, emended). We find that jianfengiids show high morphological diversity among megacheirans, both in trunk ornamentation and head anatomy, which encompasses from 2 to 4 post-frontal appendage pairs. These taxa are also characterized by elongate podomeres likely forming seven-segmented endopods, which were misinterpreted in their original descriptions. Plesiomorphic traits also clarify their connection with more ancestral taxa. The structure and position of the “great appendages” relative to likely sensory antero-medial protrusions, as well as the presence of optic peduncles and sclerites, point to an overall
    [Show full text]
  • The Evolution of Trilobite Body Patterning
    ANRV309-EA35-14 ARI 20 March 2007 15:54 The Evolution of Trilobite Body Patterning Nigel C. Hughes Department of Earth Sciences, University of California, Riverside, California 92521; email: [email protected] Annu. Rev. Earth Planet. Sci. 2007. 35:401–34 Key Words First published online as a Review in Advance on Trilobita, trilobitomorph, segmentation, Cambrian, Ordovician, January 29, 2007 diversification, body plan The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: The good fossil record of trilobite exoskeletal anatomy and on- 10.1146/annurev.earth.35.031306.140258 togeny, coupled with information on their nonbiomineralized tis- Copyright c 2007 by Annual Reviews. sues, permits analysis of how the trilobite body was organized and All rights reserved developed, and the various evolutionary modifications of such pat- 0084-6597/07/0530-0401$20.00 terning within the group. In several respects trilobite development and form appears comparable with that which may have charac- terized the ancestor of most or all euarthropods, giving studies of trilobite body organization special relevance in the light of recent advances in the understanding of arthropod evolution and devel- opment. The Cambrian diversification of trilobites displayed mod- Annu. Rev. Earth Planet. Sci. 2007.35:401-434. Downloaded from arjournals.annualreviews.org ifications in the patterning of the trunk region comparable with by UNIVERSITY OF CALIFORNIA - RIVERSIDE LIBRARY on 05/02/07. For personal use only. those seen among the closest relatives of Trilobita. In contrast, the Ordovician diversification of trilobites, although contributing greatly to the overall diversity within the clade, did so within a nar- rower range of trunk conditions.
    [Show full text]
  • Soft Anatomy of the Early Cambrian Arthropod Isoxys Curvirostratus from the Chengjiang Biota of South China with a Discussion on the Origination of Great Appendages
    Soft anatomy of the Early Cambrian arthropod Isoxys curvirostratus from the Chengjiang biota of South China with a discussion on the origination of great appendages DONG−JING FU, XING−LIANG ZHANG, and DE−GAN SHU Fu, D.−J., Zhang, X.−L., and Shu, D.−G. 2011. Soft anatomy of the Early Cambrian arthropod Isoxys curvirostratus from the Chengjiang biota of South China with a discussion on the origination of great appendages. Acta Palaeontologica Polonica 56 (4): 843–852. An updated reconstruction of the body plan, functional morphology and lifestyle of the arthropod Isoxys curvirostratus is proposed, based on new fossil specimens with preserved soft anatomy found in several localities of the Lower Cambrian Chengjiang Lagerstätte. The animal was 2–4 cm long and mostly encased in a single carapace which is folded dorsally without an articulated hinge. The attachment of the body to the exoskeleton was probably cephalic and apparently lacked any well−developed adductor muscle system. Large stalked eyes with the eye sphere consisting of two layers (as corneal and rhabdomeric structures) protrude beyond the anterior margin of the carapace. This feature, together with a pair of frontal appendages with five podomeres that each bear a stout spiny outgrowth, suggests it was raptorial. The following 14 pairs of limbs are biramous and uniform in shape. The slim endopod is composed of more than 7 podomeres without terminal claw and the paddle shaped exopod is fringed with at least 17 imbricated gill lamellae along its posterior margin. The design of exopod in association with the inner vascular (respiratory) surface of the carapace indicates I.
    [Show full text]
  • Early Cambrian Fuxianhuiids from China Reveal Origin of the Gnathobasic Protopodite in Euarthropods
    Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Yang, Jie, Javier Ortega-Hernández, David A. Legg, Tian Lan, Jin-bo Hou, and Xi-guang Zhang. 2018. “Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods.” Nature Communications 9 (1): 470. doi:10.1038/s41467-017-02754-z. http://dx.doi.org/10.1038/s41467-017-02754-z. Published Version doi:10.1038/s41467-017-02754-z Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:35015071 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ARTICLE DOI: 10.1038/s41467-017-02754-z OPEN Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods Jie Yang1, Javier Ortega-Hernández 2,3, David A. Legg 4, Tian Lan5, Jin-bo Hou1 & Xi-guang Zhang 1 Euarthropods owe their evolutionary and ecological success to the morphological plasticity of their appendages. Although this variability is partly expressed in the specialization of the 1234567890():,; protopodite for a feeding function in the post-deutocerebral limbs, the origin of the former structure among Cambrian representatives remains uncertain. Here, we describe Alacaris mirabilis gen. et sp. nov. from the early Cambrian Xiaoshiba Lagerstätte in China, which reveals the proximal organization of fuxianhuiid appendages in exceptional detail.
    [Show full text]
  • 2 the Evolutionary Significance of the Chengjiang Biota
    The Cambrian Fossils of Chengjiang, China The Flowering of Early Animal Life The Cambrian Fossils of Chengjiang, China The Flowering of Early Animal Life Second Edition Hou Xian-guang, David J. Siveter, Derek J. Siveter, Richard J. Aldridge, Cong Pei-yun, Sarah E. Gabbott, Ma Xiao-ya, Mark A. Purnell, Mark Williams This edition first published 2017 © 2017 by John Wiley & Sons Ltd. First edition published 2004 © 2004 by Blackwell Science Ltd. Registered Office John Wiley & Sons Ltd., The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book, please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners.
    [Show full text]
  • The Secrets of Fossils Lesson by Tucker Hirsch
    The Secrets of Fossils Lesson by Tucker Hirsch Video Titles: Introduction: A New view of the Evolution of Animals Cambrian Explosion Jenny Clack, Paleontologist: The First Vertebrate Walks on Land Des Collins, Paleontologist: The Burgess Shale Activity Subject: Assessing evolutionary links NEXT GENERATION SCIENCE STANDARDS and evidence from comparative analysis of the fossil MS-LS4-1 Analyze and interpret data for patterns record and modern day organisms. in the fossil record that document the existence, diversity, extinction, and change of life forms Grade Level: 6 – 8 grades throughout the history of life on Earth under the Introduction assumptions that natural laws operate today as In this lesson students make connections between in the past. [Clarification Statement: Emphasis fossils and modern day organisms. Using the is on finding patterns of changes in the level of information about the Cambrian Explosion, they complexity of anatomical structures in organisms explore theories about how and why organisms diversified. Students hypothesize what evidence and the chronological order of fossil appearance might be helpful to connect fossil organisms to in the rock layers.] [Assessment Boundary: modern organisms to show evolutionary connections. Assessment does not include the names of Students use three videos from shapeoflife.org. individual species or geological eras in the fossil record.] Assessments Written MS-LS4-2 Apply scientific ideas to construct an Time 100-120 minutes (2 class periods) explanation for the anatomical similarities and Group Size Varies; single student, student pairs, differences among modern organisms and between entire class modern and fossil organisms to infer evolutionary relationships. [Clarification Statement: Emphasis Materials and Preparation is on explanations of the evolutionary relationships • Access to the Internet to watch 4 Shape of Life videos among organisms in terms of similarity or • Video Worksheet differences of the gross appearance of anatomical • “Ancient-Modern” Activity.
    [Show full text]
  • J32 the Importance of the Burgess Shale < Soft Bodied Fauna >
    580 Chapter j PALEOCONTINENTS The Present is the Key to the Past: HUGH RANCE j32 The importance of the Burgess shale < soft bodied fauna > Only about 33 animal body plans are presently [sic] being used on this planet (Margulis and Schwartz, 1988). —Scott F. Gilbert, Developmental Biology, 1991.1 Almost all animal phyla known today were already present by 505 million years ago— the age of the Burgess shale, Middle Cambrian marine sediments, discovered at the Kicking Horse rim, British Columbia, in 1909 by Charles Doolittle Walcott, that provide a unique window on life without hard parts that had continued to exist shortly after the time of the Cambrian explosion (see Topic j34).2 Legend has it that Walcott, then secretary of the Smithsonian Institution, vacationing near Field, British Columbia, was thrown from a horse carrying him, when it tripped on, and split open a stray fallen slab of shale. Walcott, with his face literally rubbed in it, saw strange, but not hallucinational, forms crisply etched in black against the blue-black bedding surface of the shale: a bonanza of fossils of sea creatures without mineralized shells or backbones. Many are preserved whole; including those with articulated organic (biodegradable) exoskeletons. Details of even their soft body parts can be seen (best using PTM)3 as silvery films (formed of phyllosilicates on a coating of kerogenized carbon) that commonly outline even the most delicate structures on the fossilized animal.4 The Burgess shale is part of the Stephen Formation of greenish shales and thin-bedded limestones, which is a marine-offlap deposit between the thick, massive, carbonates of the overlying Eldon formation, and the underlying Cathedral formation.6 As referenced in the Geological Atlas of the Western Canada Sedimentary Basin - Chapter 8, the Stephen Formation has been “informally divided into a normal, ‘thin Stephen’ on the platform areas and a ‘thick Stephen’ west of the Cathedral Escarpment.
    [Show full text]
  • Ecdysis in a Stem-Group Euarthropod from the Early Cambrian of China Received: 2 November 2018 Jie Yang1,2, Javier Ortega-Hernández 3,4, Harriet B
    www.nature.com/scientificreports OPEN Ecdysis in a stem-group euarthropod from the early Cambrian of China Received: 2 November 2018 Jie Yang1,2, Javier Ortega-Hernández 3,4, Harriet B. Drage5,6, Kun-sheng Du1,2 & Accepted: 20 March 2019 Xi-guang Zhang1,2 Published: xx xx xxxx Moulting is a fundamental component of the ecdysozoan life cycle, but the fossil record of this strategy is susceptible to preservation biases, making evidence of ecdysis in soft-bodied organisms extremely rare. Here, we report an exceptional specimen of the fuxianhuiid Alacaris mirabilis preserved in the act of moulting from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China. The specimen displays a fattened and wrinkled head shield, inverted overlap of the trunk tergites over the head shield, and duplication of exoskeletal elements including the posterior body margins and telson. We interpret this fossil as a discarded exoskeleton overlying the carcass of an emerging individual. The moulting behaviour of A. mirabilis evokes that of decapods, in which the carapace is separated posteriorly and rotated forward from the body, forming a wide gape for the emerging individual. A. mirabilis illuminates the moult strategy of stem-group Euarthropoda, ofers the stratigraphically and phylogenetically earliest direct evidence of ecdysis within total-group Euarthropoda, and represents one of the oldest examples of this growth strategy in the evolution of Ecdysozoa. Te process of moulting consists of the periodical shedding (i.e. ecdysis) of the cuticular exoskeleton during growth that defnes members of Ecdysozoa1, a megadiverse animal group that includes worm-like organisms with radial mouthparts (Priapulida, Loricifera, Nematoida, Kinorhyncha), as well as more familiar forms with clawed paired appendages (Euarthropoda, Tardigrada, Onychophora).
    [Show full text]