Grothendieck Duality: Lecture 4 Sketches of Some of the Proofs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Affine Varieties
1 Affine Varieties We will begin following Kempf's Algebraic Varieties, and eventually will do things more like in Hartshorne. We will also use various sources for commutative algebra. What is algebraic geometry? Classically, it is the study of the zero sets of polynomials. We will now fix some notation. k will be some fixed algebraically closed field, any ring is commutative with identity, ring homomorphisms preserve identity, and a k-algebra is a ring R which contains k (i.e., we have a ring homomorphism ι : k ! R). P ⊆ R an ideal is prime iff R=P is an integral domain. Algebraic Sets n n We define affine n-space, A = k = f(a1; : : : ; an): ai 2 kg. n Any f = f(x1; : : : ; xn) 2 k[x1; : : : ; xn] defines a function f : A ! k : (a1; : : : ; an) 7! f(a1; : : : ; an). Exercise If f; g 2 k[x1; : : : ; xn] define the same function then f = g as polynomials. Definition 1.1 (Algebraic Sets). Let S ⊆ k[x1; : : : ; xn] be any subset. Then V (S) = fa 2 An : f(a) = 0 for all f 2 Sg. A subset of An is called algebraic if it is of this form. e.g., a point f(a1; : : : ; an)g = V (x1 − a1; : : : ; xn − an). Exercises 1. I = (S) is the ideal generated by S. Then V (S) = V (I). 2. I ⊆ J ) V (J) ⊆ V (I). P 3. V ([αIα) = V ( Iα) = \V (Iα). 4. V (I \ J) = V (I · J) = V (I) [ V (J). Definition 1.2 (Zariski Topology). We can define a topology on An by defining the closed subsets to be the algebraic subsets. -
Twenty-Four Hours of Local Cohomology This Page Intentionally Left Blank Twenty-Four Hours of Local Cohomology
http://dx.doi.org/10.1090/gsm/087 Twenty-Four Hours of Local Cohomology This page intentionally left blank Twenty-Four Hours of Local Cohomology Srikanth B. Iyengar Graham J. Leuschke Anton Leykln Claudia Miller Ezra Miller Anurag K. Singh Uli Walther Graduate Studies in Mathematics Volume 87 |p^S|\| American Mathematical Society %\yyyw^/? Providence, Rhode Island Editorial Board David Cox (Chair) Walter Craig N. V.Ivanov Steven G. Krantz The book is an outgrowth of the 2005 AMS-IMS-SIAM Joint Summer Research Con• ference on "Local Cohomology and Applications" held at Snowbird, Utah, June 20-30, 2005, with support from the National Science Foundation, grant DMS-9973450. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. 2000 Mathematics Subject Classification. Primary 13A35, 13D45, 13H10, 13N10, 14B15; Secondary 13H05, 13P10, 13F55, 14F40, 55N30. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-87 Library of Congress Cataloging-in-Publication Data Twenty-four hours of local cohomology / Srikanth Iyengar.. [et al.]. p. cm. — (Graduate studies in mathematics, ISSN 1065-7339 ; v. 87) Includes bibliographical references and index. ISBN 978-0-8218-4126-6 (alk. paper) 1. Sheaf theory. 2. Algebra, Homological. 3. Group theory. 4. Cohomology operations. I. Iyengar, Srikanth, 1970- II. Title: 24 hours of local cohomology. QA612.36.T94 2007 514/.23—dc22 2007060786 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. -
Program of the Sessions San Diego, California, January 9–12, 2013
Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes. -
Graduate Texts in Mathematics 52
Graduate Texts in Mathematics 52 Editorial Board S. Axler F.W. Gehring K.A. Ribet Graduate Texts in Mathematics most recent titles in the GTM series 129 FULTON/HARRIS. Representation Theory: 159 CONWAY. Functions of One A First Course. Complex Variable II. Readings in Mathematics 160 LANG. Differential and Riemannian 130 DODSON/PoSTON. Tensor Geometry. Manifolds. 131 LAM. A First Course in Noncommutative 161 BORWEINIERDEL Yl. Polynomials and Rings. Polynomial Inequalities. 132 BEARDON. Iteration of Rational Functions. 162 ALPERIN/BELL. Groups and 133 HARRIS. Algebraic Geometry: A First Representations. Course. 163 DIXON/MORTIMER. Permutation 134 RoMAN. Coding and Information Theory. Groups. 135 ROMAN. Advanced Linear Algebra. 164 NATHANSON. Additive Number Theory: 136 ADKINS/WEINTRAUB. Algebra: An The Classical Bases. Approach via Module Theory. 165 NATHANSON. Additive Number Theory: 137 AxLERIBouRDoN/RAMEY. Harmonic Inverse Problems and the Geometry of Function Theory. Sumsets. 138 CoHEN. A Course in Computational 166 SHARPE. Differential Geometry: Cartan's Algebraic Number Theory. Generalization of Klein's Erlangen 139 BREDON. Topology and Geometry. Program. 140 AUBIN. Optima and Equilibria. An 167 MORANDI. Field and Galois Theory. Introduction to Nonlinear Analysis. 168 EWALD. Combinatorial Convexity and 141 BECKERIWEISPFENNING/KREDEL. Grtibner Algebraic Geometry. Ba~es. A Computational Approach to 169 BHATIA. Matrix Analysis. Commutative Algebra. 170 BREDON. Sheaf Theory. 2nd ed. 142 LANG. Real and Functional Analysis. 171 PETERSEN. Riemannian Geometry. 3rd ed. 172 REMMERT. Classical Topics in Complex 143 DOOB. Measure Theory. Function Theory. 144 DENNISIFARB. Noncommutative 173 DIESTEL. Graph Theory. Algebra. 174 BRIDGES. Foundations of Real and 145 VICK. Homology Theory. An Abstract Analysis. Introduction to Algebraic Topology. -
The Derived Category of Sheaves and the Poincare-Verdier Duality
THE DERIVED CATEGORY OF SHEAVES AND THE POINCARE-VERDIER´ DUALITY LIVIU I. NICOLAESCU ABSTRACT. I think these are powerful techniques. CONTENTS 1. Derived categories and derived functors: a short introduction2 2. Basic operations on sheaves 16 3. The derived functor Rf! 31 4. Limits 36 5. Cohomologically constructible sheaves 47 6. Duality with coefficients in a field. The absolute case 51 7. The general Poincare-Verdier´ duality 58 8. Some basic properties of f ! 63 9. Alternate descriptions of f ! 67 10. Duality and constructibility 70 References 72 Date: Last revised: April, 2005. Notes for myself and whoever else is reading this footnote. 1 2 LIVIU I. NICOLAESCU 1. DERIVED CATEGORIES AND DERIVED FUNCTORS: A SHORT INTRODUCTION For a detailed presentation of this subject we refer to [4,6,7,8]. Suppose A is an Abelian category. We can form the Abelian category CpAq consisting of complexes of objects in A. We denote the objects in CpAq by A or pA ; dq. The homology of such a complex will be denoted by H pA q. P p q A morphism s HomCpAq A ;B is called a quasi-isomorphism (qis brevity) if it induces an isomorphism in co-homology. We will indicate qis-s by using the notation A ùs B : Define a new additive category KpAq whose objects coincide with the objects of CpAq, i.e. are complexes, but the morphisms are the homotopy classes of morphisms in CpAq, i.e. p q p q{ HomKpAq A ;B : HomCpAq A ;B ; where denotes the homotopy relation. Often we will use the notation r s p q A ;B : HomKpAq A ;B : The derived category of A will be a category DpAq with the same objects as KpAq but with a q much larger class of morphisms. -
Agnieszka Bodzenta
June 12, 2019 HOMOLOGICAL METHODS IN GEOMETRY AND TOPOLOGY AGNIESZKA BODZENTA Contents 1. Categories, functors, natural transformations 2 1.1. Direct product, coproduct, fiber and cofiber product 4 1.2. Adjoint functors 5 1.3. Limits and colimits 5 1.4. Localisation in categories 5 2. Abelian categories 8 2.1. Additive and abelian categories 8 2.2. The category of modules over a quiver 9 2.3. Cohomology of a complex 9 2.4. Left and right exact functors 10 2.5. The category of sheaves 10 2.6. The long exact sequence of Ext-groups 11 2.7. Exact categories 13 2.8. Serre subcategory and quotient 14 3. Triangulated categories 16 3.1. Stable category of an exact category with enough injectives 16 3.2. Triangulated categories 22 3.3. Localization of triangulated categories 25 3.4. Derived category as a quotient by acyclic complexes 28 4. t-structures 30 4.1. The motivating example 30 4.2. Definition and first properties 34 4.3. Semi-orthogonal decompositions and recollements 40 4.4. Gluing of t-structures 42 4.5. Intermediate extension 43 5. Perverse sheaves 44 5.1. Derived functors 44 5.2. The six functors formalism 46 5.3. Recollement for a closed subset 50 1 2 AGNIESZKA BODZENTA 5.4. Perverse sheaves 52 5.5. Gluing of perverse sheaves 56 5.6. Perverse sheaves on hyperplane arrangements 59 6. Derived categories of coherent sheaves 60 6.1. Crash course on spectral sequences 60 6.2. Preliminaries 61 6.3. Hom and Hom 64 6.4. -
Characteristic Classes of Mixed Hodge Modules
Topology of Stratified Spaces MSRI Publications Volume 58, 2011 Characteristic classes of mixed Hodge modules JORG¨ SCHURMANN¨ ABSTRACT. This paper is an extended version of an expository talk given at the workshop “Topology of Stratified Spaces” at MSRI in September 2008. It gives an introduction and overview about recent developments on the in- teraction of the theories of characteristic classes and mixed Hodge theory for singular spaces in the complex algebraic context. It uses M. Saito’s deep theory of mixed Hodge modules as a black box, thinking about them as “constructible or perverse sheaves of Hodge struc- tures”, having the same functorial calculus of Grothendieck functors. For the “constant Hodge sheaf”, one gets the “motivic characteristic classes” of Brasselet, Schurmann,¨ and Yokura, whereas the classes of the “intersection homology Hodge sheaf” were studied by Cappell, Maxim, and Shaneson. The classes associated to “good” variation of mixed Hodge structures where studied in connection with understanding the monodromy action by these three authors together with Libgober, and also by the author. There are two versions of these characteristic classes. The K-theoretical classes capture information about the graded pieces of the filtered de Rham complex of the filtered D-module underlying a mixed Hodge module. Appli- cation of a suitable Todd class transformation then gives classes in homology. These classes are functorial for proper pushdown and exterior products, to- gether with some other properties one would expect for a satisfactory theory of characteristic classes for singular spaces. For “good” variation of mixed Hodge structures they have an explicit clas- sical description in terms of “logarithmic de Rham complexes”. -
Intersection Homology Duality and Pairings: Singular, PL, and Sheaf
Intersection homology duality and pairings: singular, PL, and sheaf-theoretic Greg Friedman and James E. McClure July 22, 2020 Contents 1 Introduction 2 2 Conventions and some background 11 2.1 Pseudomanifolds and intersection homology . .. 11 3 Hypercohomology in the derived category 13 4 Some particular sheaf complexes 16 4.1 The Verdier dualizing complex and Verdier duality . 16 4.2 TheDelignesheaf................................. 17 4.3 The sheaf complex of intersection chains . .. 19 4.4 Thesheafofintersectioncochains . .. 20 ∗ 4.4.1 Ip¯C is quasi-isomorphic to PDp¯ ..................... 22 5 Sheafification of the cup product 24 5.1 Applications: A multiplicative de Rham theorem for perverse differential forms and compatibility with the blown-up cup product . 26 arXiv:1812.10585v3 [math.GT] 22 Jul 2020 5.1.1 Perversedifferentialforms . 26 5.1.2 Blown-up intersection cohomology . 31 6 Classical duality via sheaf maps 32 6.1 Orientationsandcanonicalproducts. ... 33 6.2 ProofofTheorem6.1............................... 35 7 Compatibility of cup, intersection, and sheaf products 50 8 Classical duality and Verdier duality 55 A Co-cohomology 59 1 B A meditation on signs 60 2000 Mathematics Subject Classification: Primary: 55N33, 55N45 Secondary: 55N30, 57Q99 Keywords: intersection homology, intersection cohomology, pseudomanifold, cup product, cap product, intersection product, Poincar´e duality, Verdier dual- ity, sheaf theory Abstract We compare the sheaf-theoretic and singular chain versions of Poincar´eduality for intersection homology, showing that they are isomorphic via naturally defined maps. Similarly, we demonstrate the existence of canonical isomorphisms between the sin- gular intersection cohomology cup product, the hypercohomology product induced by the Goresky-MacPherson sheaf pairing, and, for PL pseudomanifolds, the Goresky- MacPherson PL intersection product. -
Notes on Grassmannians
NOTES ON GRASSMANNIANS ANDERS SKOVSTED BUCH This is class notes under construction. We have not attempted to account for the history of the results covered here. 1. Construction of Grassmannians 1.1. The set of points. Let k = k be an algebraically closed field, and let kn be the vector space of column vectors with n coordinates. Given a non-negative integer m ≤ n, the Grassmann variety Gr(m, n) is defined as a set by Gr(m, n)= {Σ ⊂ kn | Σ is a vector subspace with dim(Σ) = m} . Our first goal is to show that Gr(m, n) has a structure of algebraic variety. 1.2. Space with functions. Let FR(n, m) = {A ∈ Mat(n × m) | rank(A) = m} be the set of all n × m matrices of full rank, and let π : FR(n, m) → Gr(m, n) be the map defined by π(A) = Span(A), the column span of A. We define a topology on Gr(m, n) be declaring the a subset U ⊂ Gr(m, n) is open if and only if π−1(U) is open in FR(n, m), and further declare that a function f : U → k is regular if and only if f ◦ π is a regular function on π−1(U). This gives Gr(m, n) the structure of a space with functions. ex:morphism Exercise 1.1. (1) The map π : FR(n, m) → Gr(m, n) is a morphism of spaces with functions. (2) Let X be a space with functions and φ : Gr(m, n) → X a map. -
Utah/Fall 2020 3. Abstract Varieties. the Categories of Affine and Quasi
Algebraic Geometry I (Math 6130) Utah/Fall 2020 3. Abstract Varieties. The categories of affine and quasi-affine varieties over k are (by definition) full subcategories of the category of sheaved spaces (X; OX ) over k. We now enlarge the category just enough within the category of sheaved spaces to define a category of abstract varieties analogous to the categories of differentiable or analytic manifolds. Varieties are Noetherian and locally affine and separated (analogous to Hausdorff), the latter defined via products, which are also used to define the notion of a proper (analogous to compact or complete) variety. Definition 3.1. A topology on a set X is Noetherian if every descending chain: X ⊇ X1 ⊇ X2 ⊇ · · · of closed sets eventually stabilizes (or every ascending chain of open sets stabilizes). Remarks. (a) A Noetherian topological space X is quasi-compact, i.e. every open cover of X has a finite subcover, but a quasi-compact space need not be Noetherian. (b) The Zariski topology on a quasi-affine variety is Noetherian. (c) It is possible for a topological space X to fail to be Noetherian even if it has a cover by open sets, each of which is Noetherian with the induced topology. If the open cover is finite, however, then X is Noetherian. Definition 3.2. A Noetherian topological space X is reducible if X = X1 [ X2 for closed sets X1;X2 properly contained in X. Otherwise it is irreducible. Remarks. (a) As we saw in x1, every Noetherian topological space X is a finite union of irreducible closed subsets, accounting for the irreducible components of X. -
Grothendieck Ring of Varieties
Neeraja Sahasrabudhe Grothendieck Ring of Varieties Thesis advisor: J. Sebag Université Bordeaux 1 1 Contents 1. Introduction 3 2. Grothendieck Ring of Varieties 5 2.1. Classical denition 5 2.2. Classical properties 6 2.3. Bittner's denition 9 3. Stable Birational Geometry 14 4. Application 18 4.1. Grothendieck Ring is not a Domain 18 4.2. Grothendieck Ring of motives 19 5. APPENDIX : Tools for Birational geometry 20 Blowing Up 21 Resolution of Singularities 23 6. Glossary 26 References 30 1. Introduction First appeared in a letter of Grothendieck in Serre-Grothendieck cor- respondence (letter of 16/8/64), the Grothendieck ring of varieties is an interesting object lying at the heart of the theory of motivic inte- gration. A class of variety in this ring contains a lot of geometric information about the variety. For example, the topological euler characteristic, Hodge polynomials, Stably-birational properties, number of points if the variety is dened on a nite eld etc. Besides, the question of equality of these classes has given some important new results in bira- tional geometry (for example, Batyrev-Kontsevich's theorem). The Grothendieck Ring K0(V ark) is the quotient of the free abelian group generated by isomorphism classes of k-varieties, by the relation [XnY ] = [X]−[Y ], where Y is a closed subscheme of X; the ber prod- 0 0 uct over k induces a ring structure dened by [X]·[X ] = [(X ×k X )red]. Many geometric objects verify this kind of relations. It gives many re- alization maps, called additive invariants, containing some geometric information about the varieties. -
Mixed Hodge Structures with Modulus Is Abelian
MIXED HODGE STRUCTURES WITH MODULUS FLORIAN IVORRA AND TAKAO YAMAZAKI Abstract. We define a notion of mixed Hodge structure with modulus that generalizes the classical notion of mixed Hodge structure introduced by Deligne and the level one Hodge structures with additive parts introduced by Kato and Russell in their description of Albanese varieties with modulus. With modulus triples of any dimension we attach mixed Hodge structures with modulus. We combine this construction with an equivalence between the category of level one mixed Hodge structures with modulus and the category of Laumon 1-motives to generalize Kato-Russell’s Albanese varieties with modulus to 1-motives. Contents 1. Introduction 1 2. Mixed Hodge structures with modulus 3 3. Laumon 1-motives 8 4. Cohomology of a variety with modulus 12 5. Duality 21 6. Picard and Albanese 1-motives 24 7. Relation with enriched and formal Hodge structures 26 References 29 1. Introduction 1.1. Background. Unlike K-theory, classical cohomology theories, such as Betti cohomology, étale cohomology or motivic cohomology (in particular Chow groups) are not able to distinguish a smooth variety from its nilpotent thickenings. This inability to detect nilpotence makes those cohomologies not the right tool to study arXiv:1712.07423v2 [math.AG] 12 Jun 2018 non-homotopy invariant phenomena. One very important situation where these kind of phenomena occur, is at the boundary of a smooth variety. More precisely if X is a smooth proper variety and D is an effective Cartier Divisor on X, then D can be seen as the non-reduced boundary at infinity of the smooth variety X := X \ D.