Using DNA to Explore Lobster Diet and the Impacts of Lobster Fishing On

Total Page:16

File Type:pdf, Size:1020Kb

Using DNA to Explore Lobster Diet and the Impacts of Lobster Fishing On Using DNA to explore predator diet in temperate marine ecosystems Kevin Scott Redd BSc Honours, University of Tasmania Bachelors in Biology, University of California Santa Cruz Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy. University of Tasmania 7 April 2017 1 Declaration of originality This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of the my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Kevin Scott Redd Statement of authority of access This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. The publishers of the papers comprising Chapters 2, 3, 5 and 7 hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968 Kevin Scott Redd 2 Thesis Abstract This thesis describes the utility of molecular techniques to detect and identify predator/prey interactions in temperate marine ecosystems with an emphasis on the southern rock lobster, (Jasus edwardsii) in Tasmania. A range of DNA-based methods are developed and implemented to better understand the role of this important benthic predator in shaping reef communities. The design and testing of numerous general and species-specific PCR primers is detailed and the utility of these PCR-based assays for monitoring trophic interactions is explored. Captive feeding experiments examine the efficacy of single- species-specific prey detection assays for detection of predation by southern rock lobsters (Jasus edwardsii), and also determine the longevity of the DNA signal and the possibility of quantitative PCR to infer the relative amount of prey consumed by these decapod crustaceans. Based upon these results, the molecular methodologies were tested in a large scale manipulative field experiment to investigate the predation capacity of southern rock lobsters on sea urchins (Centrostephanus rodgersii and Heliocidaris erythrogramma) to understand the shaping of benthic habitats via rock lobster predation in the wild. The results of the dietary component of this experiment are presented and the implications for management are explored briefly. To understand the role of Jasus edwardsii in the marine environment, a broad scale molecular prey inventory approach was used to determine the overall diet of southern rock lobsters both spatially at fished and unfished locations and temporally at sites over several years in Tasmania by using molecular cloning and the use of the 454 Next Generation / pyrosequencing platform. The results of these southern rock lobster prey inventories are presented as well as several other examples of situations with other marine animals using related applications of molecular dietary methods where prey information is difficult to obtain (cephalopods) or is problematic due to the challenges of capturing predators (elasmobranchs). Also provided is a critical review of the utility of molecular prey detection in examining the diet of marine crustaceans, cephalopods and chondrychthians and the thesis concludes by summarising the benefits and pitfalls in using DNA-based dietary methods to address both specific predator-prey issues and more general broad scale trophic webs. Key Words: Molecular prey detection, molecular trophic interactions, prey inventory, rock lobster diet, Jasus edwardsii, rock lobsters, sea urchins, Centrostephanus rodgersii, Heliocidaris erythrogramma, polymerase chain reaction (PCR), quantitative PCR, Real Time PCR, seven gilled shark, Notorynchus cepedianus, Octopus vulgaris, paralarvae, prey detection 3 Acknowledgements These projects came about primarily due to the extensive experience of my supervisors and their ongoing scientific endeavours to further our understanding of the marine environment. The initial work on rock lobsters in particular was the result of discussions between Simon Jarman and Stewart Frusher about the possibility of using the newly emerging molecular techniques to better understand the diet of wild rock lobsters in Tasmania. The sea urchin component began with the fundamental Tasmanian reef ecology work of Craig Johnson and Scott Ling, two of the most enthusiastic and inspiring marine ecologists I have ever met. They both motivated me to think about the complex issues of marine ecosystems in new ways and were the primary drivers for the completion of this thesis. For their support throughout the process I am eternally grateful. Once the PhD was underway, I was fortunate to meet several other postgraduates who also had interests in these molecular techniques and offered their predators as side projects to tackle. It has been a pleasure to work with Álvaro Roura Labiaga and Adam Barnett on these additional endeavours and to share their enthusiasm when we achieved the results contained in those manuscripts. All the technical molecular work in this thesis was done at the University of Tasmania’s Molecular Genetics Laboratory. This facility was an excellent platform for the development of new techniques as a wide range of researchers from other disciplines also shared the space and their expertise quite feely. In particular, I am indebted to the sage advice of both Dr Bob Elliott and Dr Valérie Hecht whose collective knowledge of molecular biology is incredible. The Laboratory manager, Adam Smolenski also provided ongoing support and assistance as I went along. The field work has been accomplished in conjunction with the UTAS Marine Ecology (KZA 356) Unit, the Centrostephanus project as well as the ongoing sampling which takes place at IMAS/TAFI/MRL. It has been great fun to work alongside the adept and experienced people who also share a passion for the marine environment. In particular David ‘Irish’ Faloon, Ruari Colquhoun, Kylie Cahill, Sarah Pyke, Dan Haley and the multitude of keen undergraduates who helped us pull lobster pots in the Maria Island Marine Protected Area, as well as at the St Helens and North Bay field sites. The funding was provided by the Fisheries Research and Development Corporation through two projects; Towards integrated multi-species management of Australia’s SE reef fisheries: A Tasmanian example (FRDC 2004/013) and Rebuilding Ecosystem Resilience-Assessment of management options to minimize formation of “barrens“ habitat by the long-spined sea urchin (Centrostephanus rodgersii) in Tasmania (FRDC 2007/045). Additional funding came from the ANZ Charitable Trust-Holsworth Wildlife Research Endowment. Of course, none of this would have been possible without the marine organisms which really should be the stars of the show. The southern rock lobster is a very resilient and tenacious creature which I have grown to love over the past few years. I have been accused of keeping these crustaceans as pets, of committing unspeakable acts of torture on them, of cooking them better than anyone else on the planet and of handling them like a commercial fisherman. These highly prized and handsome animals have landed me on the television, in the MoBio ‘Where in the World’ website and reagent catalogues as well as in the local newspaper on many notable occasions. I honestly hope that the management of these fascinating animals improves in Tasmania and that future generations will know what it is like to hold a fully grown adult Jasus edwardsii and to marvel at its beauty. 4 Table of Contents Thesis Abstract ............................................................................................................................... 3 Acknowledgements ........................................................................................................................ 4 Table of Contents ........................................................................................................................... 5 Chapter 1: General introduction ...................................................................................................... 10 1.1 Abstract .................................................................................................................................. 10 1.2 Introduction ............................................................................................................................ 10 1.3 Traditional approaches ........................................................................................................... 11 1.4 Rise of technology: new approaches ...................................................................................... 12 1.5 Molecular techniques and applications ................................................................................. 12 1.6 Overall structure of this thesis ............................................................................................... 14 Chapter 2 overview .................................................................................................................. 15 Chapter 3 overview .................................................................................................................. 15 Chapter 4 overview .................................................................................................................
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • Lobsters-Identification, World Distribution, and U.S. Trade
    Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More­ Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de­ temperature zones. From such partition­ food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob­ Nephropoidea), the squat lobsters the world because of species distribu­ ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al­ The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con­ lobsters, Homarus americanus, caught the purpose of reporting fishery statis­ tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish­ Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e.
    [Show full text]
  • Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................
    [Show full text]
  • Habitat Use of the Bottlenose Dolphins (Tursiops Truncatus) of Fiordland: Where, Why and the Implications for Management
    Habitat use of the bottlenose dolphins (Tursiops truncatus) of Fiordland: Where, why and the implications for management Stephanie M. Bennington A thesis submitted for the degree of Master of Science in Marine Science at the University of Otago, Dunedin, New Zealand. June 2019 Poncho showing off in the beautiful Bowen channel of Dusky Sound photo credit: Steph Bennington i Abstract Understanding the distribution of a species gives important clues about its ecology, and can provide key information and guidance for conservation management. The bottlenose dolphins (Tursiops truncatus) of Fiordland, New Zealand, form three small subpopulations, two of which are mostly resident within separate fjord systems: Doubtful Sound and Dusky Sound. Within these fjords, the dolphins’ distribution and resulting habitat use varies, with high and low use areas, and seasonal variation evident. In this thesis I investigated the distribution patterns of the dolphins, to better understand what drives them and how this relates to the way the dolphins are managed. Specifically, I used Kernel Density Estimation (KDE) from sighting information collected between 2005 and 2018 in Doubtful Sound, and 2009 and 2018 in Dusky Sound, to identify patterns in habitat use over time. Drivers of habitat use were investigated using species distribution models (SDMs), in the form of generalised additive models. Abiotic predictor variables were modelled using long term occurrence data as the response variable. Biotic predictors were included in SDMs for 2018, a year in which I collected data on potential prey and dolphin distribution concurrently. Information on dolphin prey was collected using Baited Underwater Video (BUV). I found that although seasonal variation in habitat use was present, general distribution patterns were consistent through time.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • The Genus Phymatolithon (Hapalidiaceae, Corallinales, Rhodophyta) in South Africa, Including Species Previously Ascribed to Leptophytum
    South African Journal of Botany 90 (2014) 170–192 Contents lists available at ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb The genus Phymatolithon (Hapalidiaceae, Corallinales, Rhodophyta) in South Africa, including species previously ascribed to Leptophytum E. Van der Merwe, G.W. Maneveldt ⁎ Department of Biodiversity and Conservation Biology, University of the Western Cape, P. Bag X17, Bellville 7535, South Africa article info abstract Article history: Of the genera within the coralline algal subfamily Melobesioideae, the genera Leptophytum Adey and Received 2 May 2013 Phymatolithon Foslie have probably been the most contentious in recent years. In recent publications, the Received in revised form 4 November 2013 name Leptophytum was used in quotation marks because South African taxa ascribed to this genus had not Accepted 5 November 2013 been formally transferred to another genus or reduced to synonymy. The status and generic disposition of Available online 7 December 2013 those species (L. acervatum, L. ferox, L. foveatum) have remained unresolved ever since Düwel and Wegeberg Edited by JC Manning (1996) determined from a study of relevant types and other specimens that Leptophytum Adey was a heterotypic synonym of Phymatolithon Foslie. Based on our study of numerous recently collected specimens and of published Keywords: data on the relevant types, we have concluded that each of the above species previously ascribed to Leptophytum Non-geniculate coralline algae represents a distinct species of Phymatolithon, and that four species (incl. P. repandum)ofPhymatolithon are Phymatolithon acervatum currently known to occur in South Africa. Phymatolithon ferox Here we present detailed illustrated accounts of each of the four species, including: new data on male and female/ Phymatolithon foveatum carposporangial conceptacles; ecological and morphological/anatomical comparisons; and a review of the infor- Phymatolithon repandum mation on the various features used previously to separate Leptophytum and Phymatolithon.
    [Show full text]
  • Arakawa, Kohman Y. Citation PUBLICATIONS of the SETO
    Title STUDIES ON THE MOLLUSCAN FAECES (II) Author(s) Arakawa, Kohman Y. PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1965), 13(1): 1-21 Issue Date 1965-06-30 URL http://hdl.handle.net/2433/175396 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University STUDIES ON THE MOLLUSCAN FAECES (II) KORMAN Y. ARAKAwA Hiroshima Fisheries Experimental Station, Kusatsu-minami-cho, Hiroshima, Japan With Plates I-VI and 5 Text-figures The work recorded in this paper is a continuation of the study on the molluscan faecal pellets, which has already been presented partly in a preliminary communication (ARAKAWA, 1962) and an initial paper of this series (ARAKAWA, '63). In this paper are included the descriptions of the pellets of fourty-four more molluscan species which were collected at several locations in the Seto Inland Sea and the vicinities in these four years. Before passing to the descriptions, I wish to express my cordial thanks to the following gentlemen who offered me facilities or help in earring out the present work: Dr. Toshijiro KAWAMURA (Hiroshima University), Dr. Ryozo YAGIU (Hiroshima Univ.) Dr. Takasi ToKIOKA (Seto Marine Biological Labora­ tory), Dr. Yoshimitsu 0GASAWARA (Naikai Regional Fisheries Research Lab.), Dr. Huzio UTINOMI (Seto Mar. Bioi. Lab.), Mr. Nobuo MATSUNAGA (Isumi Senior High School), Dr. Katura OYAMA (Geological Survey), Dr. Iwao T AKI (Hiroshima Univ.), Dr. Kikutaro BABA (Osaka Gakugei Univ.), Dr. Shigeru 0TA (National Pearl Research Lab.), Prof. Jiro SE:No (Tokyo Univ. of Fisheries) and Mr. Masa-aki HAMAr (Hiroshima Fish. Exp. Sta:). MATERIAL The scientific names, localities and types of faeces of respective species treated in this work are listed below.
    [Show full text]
  • Habitat Preferences and Fitness Consequences for Fauna Associated with Novel Marine Environments
    Habitat preferences and fitness consequences for fauna associated with novel marine environments Luke T Barrett orcid.org/0000-0002-2820-0421 Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy September 2018 School of BioSciences University of Melbourne ABSTRACT The rapidly expanding reach of anthropogenic environmental change means that animals must now navigate landscapes comprised largely of modified and degraded habitats. Individuals that correctly perceive habitat quality will be best placed to survive and reproduce in novel environments, but where environmental change outpaces the evolution of behavioural responses, mismatches can arise between cues and the underlying value of habitats. These mismatches can lead individuals to select habitats that offer relatively poor fitness outcomes, creating ecological traps. In environments where ecological traps are likely to occur, data on habitat preferences and fitness consequences can fundamentally change predictions of metapopulation models and increase our understanding of the role that novel habitats play in population persistence, but such data are rarely collected. In this thesis, I first conduct a global meta-analysis to assess the state of knowledge on habitat preference and fitness metrics in animal populations, using wildlife populations associated with aquaculture as a case study. My findings reveal that responses to aquaculture vary widely across taxa and farming systems, ranging from large increases in abundance to near complete displacement. However, the influence of aquaculture on wildlife populations remains poorly understood, as researchers rarely obtain appropriate measures of habitat preference, survival or reproductive success. Accordingly, in subsequent chapters I apply the ecological trap framework to assess marine habitats modified by aquaculture or invasive species.
    [Show full text]
  • Phylogeography of Selected Southern African Marine Gastropod Molluscs
    EFFECT OF PLEISTOCENE CLIMATIC CHANGES ON THE EVOLUTIONARY HISTORY OF SOUTH AFRICAN INTERTIDAL GASTROPODS BY TINASHE MUTEVERI SUPERVISORS: PROF. CONRAD A. MATTHEE DR SOPHIE VON DER HEYDEN PROF. RAURI C.K. BOWIE Dissertation submitted for the Degree of Doctor of Philosophy in the Faculty of Science at the University of Stellenbosch March 2013 i Stellenbosch University http://scholar.sun.ac.za Declaration By submitting this thesis/dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March 2013 Copyright © 2013 Stellenbosch University All rights resrved ii Stellenbosch University http://scholar.sun.ac.za ABSTRACT Historical vicariant processes due to glaciations, resulting from the large-scale environmental changes during the Pleistocene (0.012-2.6 million years ago, Mya), have had significant impacts on the geographic distribution of species, especially also in marine systems. The motivation for this study was to provide novel information that would enhance ongoing efforts to understand the patterns of biodiversity on the South African coast and to infer the abiotic processes that played a role in shaping the evolution of taxa confined to this region. The principal objective of this study was to explore the effect of Pleistocene climate changes on South Africa′s marine biodiversity using five intertidal gastropods (comprising four rocky shore species Turbo sarmaticus, Oxystele sinensis, Oxystele tigrina, Oxystele variegata, and one sandy shore species Bullia rhodostoma) as indicator species.
    [Show full text]
  • Dynamic Distributions of Coastal Zooplanktivorous Fishes
    Dynamic distributions of coastal zooplanktivorous fishes Matthew Michael Holland A thesis submitted in fulfilment of the requirements for a degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences Faculty of Science University of New South Wales, Australia November 2020 4/20/2021 GRIS Welcome to the Research Alumni Portal, Matthew Holland! You will be able to download the finalised version of all thesis submissions that were processed in GRIS here. Please ensure to include the completed declaration (from the Declarations tab), your completed Inclusion of Publications Statement (from the Inclusion of Publications Statement tab) in the final version of your thesis that you submit to the Library. Information on how to submit the final copies of your thesis to the Library is available in the completion email sent to you by the GRS. Thesis submission for the degree of Doctor of Philosophy Thesis Title and Abstract Declarations Inclusion of Publications Statement Corrected Thesis and Responses Thesis Title Dynamic distributions of coastal zooplanktivorous fishes Thesis Abstract Zooplanktivorous fishes are an essential trophic link transferring planktonic production to coastal ecosystems. Reef-associated or pelagic, their fast growth and high abundance are also crucial to supporting fisheries. I examined environmental drivers of their distribution across three levels of scale. Analysis of a decade of citizen science data off eastern Australia revealed that the proportion of community biomass for zooplanktivorous fishes peaked around the transition from sub-tropical to temperate latitudes, while the proportion of herbivores declined. This transition was attributed to high sub-tropical benthic productivity and low temperate planktonic productivity in winter.
    [Show full text]
  • Molluscs of Christmas Island
    Records of the Western Australian Museum Supplement No. 59: 103-115 (2000). MOLLUSCS OF CHRISTMAS ISLAND Fred E. Wells and Shirley M. Slack-Smith Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia Christmas Island is towards the lower end of sources. Maes considered that the paucity of species species diversity for similar coral reef surveys was largely due to the great distances over which undertaken by the Western Australian Museum . planktonic larvae would have to be carried from (Table 8), with a total of 313 species of molluscs areas of similar habitats, further complicated by collected (Table 9). Mollusc diversity was greater at apparently adverse winds and currents. Christmas Island than the 261 species collected at Of the 313 species collected at Christmas Island, Rowley Shoals and the 279 collected at Seott Reef in 245 were gastropods (78.3%) and 63 were bivalves 1984, but fewer than the 433 collected at Ashmore (20.1 %). No scaphopods, only three species of chitons Reef in 1986. However, with 15 collecting days and two of cephalopods were collected although compared to the maximum of 12 on Ashmore Reef other cephalopod species were seen. This breakdown and the fact that there were three people primarily of the fauna is almost identical to the results from the interested in molluscs on Christmas Island as northwestern shelf-edge atolls of Western Australia, opposed to two on the other expeditions, the where 77.3% of the total of 581 species collected were molluscan fauna of Christmas Island can be seen to gastropods and 20.7% were bivalves (Wells, 1994).
    [Show full text]
  • Program and Abstracts
    Program and abstracts rd 43 Annual Larval Fish Conference Melià Palma Marina, Mallorca – Palma 21-24 May 2019 PROGRAM AND ABSTRACTS Scientific Committe Ignacio Catalán (Spain, Local Organizer) Patricia Reglero (Spain, Local Organizer) Itziar Álvarez (Spain, Local Organizer) Pilar Olivar (Spain) Su Sponaugle (USA) Marta Moyano (Germany) Akinori Takasuka (Japan) Raul Láiz (Spain) Dominique Robert (Canada) Welcome Oceans, lakes, rivers…in the world are full of larvae, that very small life stage which most animals in the water bodies experience when they are only a few days old. Most will die and only some will make it to the future after flowing with the currents, finding food and avoiding the predators while developing the organs they need to live. We invite you to talk and hear about them and their different ways. And which better place than Mallorca, our island, surrounded by the Mediterranean Sea, a sea full of biodiversity and life! Come and enjoy sharing sciencie and friendship with us. Welcome to the 43rd Annual Larval fish Conference in Mallorca. Sponsors We are grateful to the sponsors listed below for their support to organize this Conference, General Information Palma (https://www.spain-holiday.com/Palma) Located on the south coast of Mallorca, Palma is an important holiday resort and commercial port. The city offers the island’s best choice of hotels, restaurants and widest choice of entertainment. Despite having become a modern, vibrant city, Palma has managed to retain its old town and its ancient culture and charm. Palma’s airport handles millions of visitors each year and plays a major role in the Balearic’s tourism industry.
    [Show full text]