Phthalocyanine Adsorption to Graphene on Ir(111): Evidence for Decoupling from Vibrational Spectroscopy M
Total Page:16
File Type:pdf, Size:1020Kb
Supplemental material to: Phthalocyanine adsorption to graphene on Ir(111): Evidence for decoupling from vibrational spectroscopy M. Endlich,1, a) S. Gozdzik,1 N. N´eel,1 A. L. da Rosa,2, 3 T. Frauenheim,2 T. O. Wehling,2, 4 and J. Kr¨oger1, b) 1)Institut f¨ur Physik, Technische Universit¨at Ilmenau, D-98693 Ilmenau, Germany 2)Bremen Center for Computational Materials Science, University Bremen, D-28359 Bremen, Germany 3)Federal University of Minas Gerais, Department of Physics, 31270-901 Belo Horizonte, MG, Brazil 4)Institute for Theoretical Physics, University Bremen, D-28359 Bremen, Germany a)Electronic mail: [email protected] b)Electronic mail: [email protected] 1 Fig. S1. Relaxed geometry of free H2Pc with indicated Cartesian coordinates x, y. The z axis is oriented perpendicular to the xy plane. Specific molecule groups and atoms are labeled. The free H2Pc molecule (Fig. S1) exhibits D2h symmetry. The symmetry classes, Q, of this group together with the characters, χ, of specific reducible representations are summarized in Table SI. D2h E C2(z) C2(y) C2(x) I σ(xy) σ(xz) σ(yz) Γ 168 2 0 −2 0 58 4 2 Tab. S I. Symmetry operations of the D2h point group (the group elements are divided into classes, i.e., E: identity, C2: two-fold rotation with relevant rotation axes given in parentheses, I: inversion, σ: reflection with relevant mirror planes given in parentheses). Γ represents a set of specific reducible representations of the symmetry operations whose characters are given in the bottom row. Using the reduction formula,1 1 a = N · χ(R) · χ (R), (1) i h X i Q with h the number of group elements, R a group element, N the number of operations in the class, χi the character of R in the ith irreducible representation (Table SII), the number of times, ai, a specific irreducible representation appears in the reducible representation may 2 D2h E C2(z) C2(y) C2(x) I σ(xy) σ(xz) σ(yz) Ag 11 1 11 1 11 B1g 1 1 −1 −1 1 1 −1 −1 B2g 1 −1 1 −1 1 −1 1 −1 B3g 1 −1 −1 1 1 −1 −1 1 Au 1 1 1 1 −1 −1 −1 −1 B1u 1 1 −1 −1 −1 −1 1 1 B2u 1 −1 1 −1 −1 1 −1 1 B3u 1 −1 −1 1 −1 1 1 −1 Tab. SII. Character table of the D2h point group. Ag, ..., B3u denote irreducible representations of the D2h elements. be calculated. As a result, the symmetry of vibrational modes of free H2Pc may be described as Γ=13 Au + 15 B1u + 28 B2u + 28 B3u + 29 Ag + 28 B1g + 14 B2g + 13 B3g. (2) Upon adsorption of H2Pc to Ir(111) the adsorbate complex exhibits Cs symmetry. The Cs character table is presented in Table SIII. Cs E σ(xz) A′ 1 1 A′′ 1 −1 Tab. SIII. Symmetry operations of the Cs point group (E: identity, σ(xz): reflection at xz plane). ′ ′′ A and A denote irreducible representations of the Cs elements. To relate vibrational modes of the adsorbate complex to the modes of the gas-phase 1 molecule correlation tables may be used. Table IV shows the correspondence of D2h ir- 1 reducible representations with those of Cs. According to the selection rules for the dipole scattering regime only those vibrational excitations from the ground state to the first excited state of an eigenmode will be observed that belong to the totally symmetric representations ′ 1 A . Consequently, Ag, B2g and B3u vibrational modes will additionally become dipole active and visible in specular spectra upon symmetry reduction. 3 D2h Ag Au B1g B1u B2g B2u B3g B3u ′ ′′ ′′ ′ ′ ′′ ′′ ′ Cs A A A A A A A A Tab. SIV. D2h – Cs correlation table. The vibrational energies of modes belonging to the irreducible representations of free 2 3 H2Pc (Table SII) were calculated within density functional theory using Gaussian09 with the hybrid functional B3LYP4 and the Gaussian basis set 6−311G.5,6 The vibrational modes were calculated in the harmonic approximation with the molecule symmetry fixed to D2h. The calculated energies together with the mode symmetry classes are listed in Table SV. To compare calculations with experimental data the calculated energies were multiplied by 0.955, a factor that is similar to previous findings.7–9 4 No. Sym. Energy Infrared Raman Mode assignment calc. corr. intensity intensity (meV) (km mol−1) (1027 A4 kg−1) 001 B1u 2.632 2.513 0.003 (⊥) twisting (all isoindole arms) 002 B1u 5.035 4.809 1.938 (⊥) wagging (whole molecule) 003 Au 6.754 6.450 twisting (whole molecule) 004 B2g 6.816 6.509 0.132 twisting (whole molecule) 005 B3g 7.487 7.150 0.097 twisting (whole molecule) 006 B1g 9.781 9.341 2.033 scissoring (whole molecule) 007 B2g 14.881 14.212 5.388 twisting (all isoindole arms) 008 B2u 15.158 14.476 3.504 (k) scissoring (2 opposite isoindole arms) 009 B3u 15.285 14.597 4.461 (k) scissoring (2 opposite isoindole arms) 010 Au 15.462 14.766 twisting (all isoindole arms) 011 B3g 16.092 15.368 6.467 twisting (all isoindole arms) 012 Ag 16.389 15.652 18.845 asymm. stretching (whole molecule) 013 B1u 17.506 16.718 0.414 (⊥) twisting (all isoindole arms) 014 B1g 22.017 21.026 17.094 asymm. stretching (whole molecule) 015 B1g 26.197 25.018 0.939 rocking (whole molecule) 016 Au 28.233 26.962 twisting (whole molecule) 017 B1u 28.405 27.127 7.584 (⊥) wagging (whole molecule) 018 Ag 28.419 27.141 42.435 symm. stretching (whole molecule) 019 B2g 28.681 27.390 5.172 twisting (2 opposite isoindole arms) 020 B3g 30.518 29.145 3.926 twisting (2 opposite isoindole arms) 021 B2u 33.810 32.288 0.598 (k) scissoring (2 opposite isoindole arms) + asymm. stretching (other 2 isoindole arms) 022 B1u 33.954 32.426 2.987 (⊥) twisting (whole molecule) 023 B2g 34.859 33.290 0.003 twisting (whole molecule) 024 B3u 34.859 33.290 10.519 (k) scissoring (2 opposite isoindole arms) + asymm. stretching 5 No. Sym. Energy Infrared Raman Mode assignment calc. corr. intensity intensity (meV) (km mol−1) (1027 A4 kg−1) (other 2 isoindole arms) 025 B3g 36.296 34.663 0.343 wagging (2 opposite isoindole arms + aza bridges) 026 B1u 43.783 41.813 4.228 (⊥) wagging (whole molecule) 027 Au 53.911 51.485 twisting (all isoindole arms) 028 B2g 55.032 52.556 0.010 twisting (C2 + H2 vs. C1,3 + H3 on opposite benzene rings) 029 B3g 55.200 52.716 0.162 twisting (C2 + H2 vs. C1,3 + H3 on opposite benzene rings) 030 B1u 55.366 52.875 0.005 (⊥) twisting (C2 + H2 vs. C1,3 + H3 on all benzene rings) 031 B1u 57.103 54.534 15.398 (⊥) wagging (C2 + H2 vs. C1,3 + H3 on all benzene rings) 032 B1g 60.951 58.208 71.853 scissoring (whole molecule) 033 B2u 61.983 59.194 1.849 (k) scissoring (2 opposite isoindole arms + aza bridges) 034 B3u 62.371 59.564 6.296 (k) scissoring (2 opposite isoindole arms + aza bridges) 035 B3g 63.199 60.355 0.500 twisting (whole molecule) 036 B2g 63.328 60.478 0.335 twisting (whole molecule) 037 Au 66.462 63.472 twisting (whole molecule) 038 Ag 69.518 66.390 13.655 asymm. stretching (whole molecule) 039 B2u 70.548 67.373 0.058 (k) asymm. stretching (whole molecule) 040 B3u 71.382 68.169 3.896 (k) asymm. stretching (whole molecule) 041 Ag 72.517 69.254 40.179 breathing (whole molecule) 042 B1g 73.105 69.815 0.749 rocking (whole molecule) 043 B1g 76.495 73.052 0.046 rocking (whole molecule) 6 No. Sym. Energy Infrared Raman Mode assignment calc. corr. intensity intensity (meV) (km mol−1) (1027 A4 kg−1) 044 Au 77.897 74.391 wagging (all isoindole arms) 045 B3u 79.593 76.012 24.913 (k) scissoring (whole molecule) 046 B2u 79.840 76.247 4.114 (k) scissoring (whole molecule) 047 B3g 80.019 76.419 0.556 twisting (whole molecule) 048 B2g 80.523 76.899 0.574 twisting (whole molecule) 049 Ag 84.802 80.986 239.222 symm. stretching (4 aza bridges + whole molecule) 050 Au 85.907 82.041 twisting (whole molecule) 051 B1u 87.639 83.696 0.016 (⊥) wagging (whole molecule) 052 B1g 88.198 84.229 5.482 scissoring (whole molecule) 053 B2g 89.114 85.104 8.196 wagging (2 opposite CN − NH HN − CN groups + H2 + H3) 054 B3g 91.744 87.616 12.670 wagging (2 opposite CN − N − CN groups + H2 + H3) 055 B1u 92.238 88.087 140.656 (⊥) wagging [all CN − NH (HN ) − CN groups + H2 + H3] 056 Ag 93.279 89.082 579.725 scissoring (porphyrazine) 057 B3u 93.586 89.374 39.765 (k) rocking + scissoring (whole molecule) 058 B2u 93.798 89.578 45.457 (k) scissoring + breathing (whole molecule) 059 Au 96.288 91.956 twisting (all isoindole arms) 060 B2g 96.547 92.202 1.117 twisting (2 opposite isoindole arms) 061 Ag 96.837 92.480 0.172 breathing (whole molecule) 062 B3g 96.930 92.568 3.416 twisting (2 opposite isoindole arms) 063 Au 96.941 92.578 twisting (all isoindole arms) 064 B2g 98.532 94.098 0.036 twisting (HN ) + wagging (H2 + H3 at 2 opposite benzene rings) 065 B3u 99.193 94.729 1.348 (k) rocking + scissoring (2 opposite 7 No.