Public Health and Environmental Impacts of Monosodium Methanearsonate As Used in Bark Beetle Control in British Columbia

Total Page:16

File Type:pdf, Size:1020Kb

Public Health and Environmental Impacts of Monosodium Methanearsonate As Used in Bark Beetle Control in British Columbia Public Health and Environmental Impacts of Monosodium Methanearsonate as used in Bark Beetle Control in British Columbia Prepared for Ministry of Forests Silviculture Practices Branch by F.N. Dost, DVM, ATS February 1995 FS 48 HSI 95/2 Summary This report examines the potential health and environmental effects of monosodium methanearsonate (MSMA), as used in British Columbia to create lethal trap trees for control of bark beetle infestation. MSMA is applied as a frill injection to individual trees. The highest dosage of use is about 40 ml of MSMA product per tree, depending on tree size. Approximately 750 kg of MSMA product are applied in British Columbia each year on average. The area of use is widely dispersed covering most of the interior of the province where bark beetle infestations may occur. The average annual total area of treatment is 650 hectares. In any one landscape drainage infested with bark beetles, it is unlikely that, of the many thousands of trees that may exist there, more than 50 trees would be treated with MSMA. Existing evidence indicates that use of MSMA in bark beetle control does not impose measurable risk on applicators, the public or wildlife. Burning of slash or mill waste, or use of treated trees as firewood also does not represent a health threat, as judged through comparison of expected arsenic levels in smoke with other markers of air contamination. Arsenic concentration in various parts of trees treated with MSMA or the related cacodylic acid has been measured in several studies. A worst case situation where only treated trees enter a mill, with contaminated sawdust in air at the maximum allowable wood dust concentration, would lead to arsenic intake 2000-5000 fold lower than permitted by British Columbia industrial health and safety regulations. These conclusions have been reached after review and consideration of, in the context of bark beetle control, (a) the toxicology of MSMA and related compounds, (b) the disposition of these substances in the body, (c) the behavior of MSMA in the environment, and (d) exposure of workers, the public and lower species. All of the information has been integrated in an assessment of risk associated with this use of MSMA. The information reviewed includes both publications in the open literature and summaries of manufacturer's confidential registration data made available for the purpose of this report. The toxicity of MSMA is limited. It has some potential for mild skin and eye irritation, and when ingested in sufficient amounts causes gastrointestinal erosion. Studies of its cancer causing potential have been negative, and it has a limited and questionable ability to cause mutation. Reproductive effects appear only at dose levels that cause evident maternal injury. MSMA is excreted rapidly by mammals, including humans. Exposure of applicators has been determined to be low, and their intake of MSMA is far below thresholds of toxicity. However, it is evident that better use of basic protective garments, training and work discipline can lower exposures still further. In nature, inorganic arsenic salts are continuously converted to methylated acids and oxides, including MSMA, which are much less toxic than inorganic arsenic compounds. Formation of methylated derivatives is also a primary means of detoxication in mammals. Soil microorganisms slowly produce the corresponding arsines from the oxygen-bearing acids and oxides, but the reaction is rapidly reversed in air. While the arsines are relatively toxic, they disappear quickly enough that concentrations do not become significant. Reversion of MSMA to inorganic arsenic in plants or mammals, including humans, apparently does not occur to a measureable extent. Some microorganisms are able to accomplish this reaction. Because MSMA is either injected or applied directly to cuts in the bark at the base of selected trees in a stand, there is very little environmental contamination. Measurement of MSMA application to agricultural soil at several times normal application rates over multiyear periods shows that soil buildup and offsite movement do not occur, even under such extreme conditions. Measurement of arsenic in streams through treated forests has not detected increases over background levels. A spill of MSMA is unlikely to contaminate water sources unless lost directly into or immediately adjacent to a water body. Exposure of the public using the forest is extremely unlikely. ii Acknowledgements The initial effort in development of this report was a survey and review of available literature, commercial information and unpublished reports by Marnie Duthie, a student at the University of Victoria in a Cooperative Education Project with the Silviculture Branch, MOF. John Henigman of Silviculture Branch, MOF prepared the section on methodology and patterns of MSMA use and provided critical review from the perspective of forest insect control. Dr. John Manville, Pacific Forestry Centre, Canadian Forest Service and Dr. K.J. Reimer, Department of Chemistry, Royal Roads Military College reviewed the report and provided extremely valuable assistance and advice. A critique by Dr. E.M. Belletts, Chemical Consultants International, of toxicological and chemical considerations of the report was very helpful. This report could not have been completed adequately without access to recent data generated for re-registration of MSMA in the United States. The cooperation and generosity of the manufacturers of MSMA, collectively identified as MAA Task Force Three, in making the findings available, is acknowledged with thanks, as is the efforts of Dr. Belletts in expediting our access. iii Table of contents Summary....................................................................................................................................................................ii Acknowledgements .................................................................................................................................................... iii Table of contents........................................................................................................................................................ iv Introduction.................................................................................................................................................................5 Background ................................................................................................................................................................7 Chemistry................................................................................................................................................................7 Basis for control of bark beetle ................................................................................................................................10 Patterns of MSMA use in British Columbia forestry ...................................................................................................10 Other methods of bark beetle control........................................................................................................................11 Pile and burn......................................................................................................................................................11 Sanitation logging ...............................................................................................................................................11 Environmental behavior of MSMA ................................................................................................................................12 Metabolic fate of MSMA and other methyl arsenicals....................................................................................................16 Toxicology of MSMA..................................................................................................................................................18 Clinical observations in humans ...............................................................................................................................18 General toxicology: experimental observations ..........................................................................................................18 Effects observed after single doses and administration over periods up to a few weeks (acute and subacute toxicity)...19 Effects observed after long term administration (chronic toxicity).............................................................................21 Reproductive effects ...............................................................................................................................................22 Carcinogenicity and genetic effects..........................................................................................................................23 Genetic toxicity (mutations and DNA damage) ......................................................................................................23 Carcinogenicity...................................................................................................................................................24 Environmental toxicity................................................................................................................................................25 Terrestrial species ..................................................................................................................................................25 Exposure
Recommended publications
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • Exposure to Herbicides in House Dust and Risk of Childhood Acute Lymphoblastic Leukemia
    Journal of Exposure Science and Environmental Epidemiology (2013) 23, 363–370 & 2013 Nature America, Inc. All rights reserved 1559-0631/13 www.nature.com/jes ORIGINAL ARTICLE Exposure to herbicides in house dust and risk of childhood acute lymphoblastic leukemia Catherine Metayer1, Joanne S. Colt2, Patricia A. Buffler1, Helen D. Reed3, Steve Selvin1, Vonda Crouse4 and Mary H. Ward2 We examine the association between exposure to herbicides and childhood acute lymphoblastic leukemia (ALL). Dust samples were collected from homes of 269 ALL cases and 333 healthy controls (o8 years of age at diagnosis/reference date and residing in same home since diagnosis/reference date) in California, using a high-volume surface sampler or household vacuum bags. Amounts of agricultural or professional herbicides (alachlor, metolachlor, bromoxynil, bromoxynil octanoate, pebulate, butylate, prometryn, simazine, ethalfluralin, and pendimethalin) and residential herbicides (cyanazine, trifluralin, 2-methyl-4- chlorophenoxyacetic acid (MCPA), mecoprop, 2,4-dichlorophenoxyacetic acid (2,4-D), chlorthal, and dicamba) were measured. Odds ratios (OR) and 95% confidence intervals (CI) were estimated by logistic regression. Models included the herbicide of interest, age, sex, race/ethnicity, household income, year and season of dust sampling, neighborhood type, and residence type. The risk of childhood ALL was associated with dust levels of chlorthal; compared to homes with no detections, ORs for the first, second, and third tertiles were 1.49 (95% CI: 0.82–2.72), 1.49 (95% CI: 0.83–2.67), and 1.57 (95% CI: 0.90–2.73), respectively (P-value for linear trend ¼ 0.05). The magnitude of this association appeared to be higher in the presence of alachlor.
    [Show full text]
  • MC(' Potential Exposure of Humans to 2
    (MC( FUNDAMENTAL AND APPLIED TOXICOLOGY 1:3 3 9-3 4 6 (1981) Potential Exposure of Humans to 2,4,5-T and TCDD in the Oregon Coast Ranges MICHAEL NEWTON" and LOGAN A. NORRISB "Professor of Forest Ecology, Oregon State University, Corvallis; BChief Research Chemist, USDA Forest Service, Corvallis, Oregon ABSTRACT Potential Exposure of Humans to 2,4,5-T and TCDD in Humans may be exposed to herbicides through drift; inges- the Oregon Coast Ranges. Newton, M. and Norris, L.A. tion of wild and domestic meat, vegetables, and fruit; con- (1981). F.undam. AppL Toxicol. 1:339-346. Research on the sumption of water; and dermal contact while handling the use of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) contami- chemicals, equipment, and treated vegetation. The range of -8 nated with 2.5 X 10 parts 2,3,7,8-tetrachlorodibenzo-p- potential exposure extends from zero, if there is no encounter dioxin (TCDD) in forests of the Oregon Coast Ranges per- with the herbicide, to the worst situation where the person has mits estimates of human exposures for both compounds. encountered the highest levels of water contamination, drift Estimated total exposure of nearby ( ^ 1/8 mile distant) resi- exposure, meat contamination, and dermal exposure simul- dents during the first week after application is 0.0039 mg/kg taneously. We have brought estimates of all sources together of 2,4,5-T for a 70-kg adult. Exposure to TCDD in the same to determine the possible range of total exposure from episode would be 1.9 X 10 b ° mg/kg.
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • Reregistration Eligibility Decision (RED) for Glyphosate
    GLYPHOSATE RED September 1993 GLYPHOSATE REREGISTRATION ELIGIBILITY TEAM Office of Pesticide Programs: Special Review and Reregistration Division Eric Feris .................................................. Reregistration Branch Health Effects Division Jane Smith ........................................ Chemical Coordination Branch Krystyna Locke .............................................. Toxicology Branch I Jeff Evans ........................... Occupational and Residential Exposure Branch Randolph Perfetti ......................... Chemistry Branch - Reregistration Support Biological and Economic Analysis Division James G. Saulmon .....................................Biological Analysis Branch Eric Maurer ........................................... Economic Analysis Branch Environmental Fate and Effects Division Candace Brassard ..................................... Ecological Effects Branch Kevin Poff ............................. Environmental Fate and Groundwater Branch Bernice Slutsky ............................ Science Analysis and Coordination Staff Registration Division Mark Perry .......................................... Registration Support Branch Karen P. Hicks ....................................... Fungicide-Herbicide Branch Policy and Special Projects Staff Jean Frane ............................. Food Safety & Regulation Tracking Section Office of General Counsel: Pesticides and Toxic Substances Division Debra Burton ................................................. Pesticides Branch Office of Compliance Monitoring:
    [Show full text]
  • Toxicological Profile for Glyphosate Were
    A f Toxicological Profile for Glyphosate August 2020 GLYPHOSATE II DISCLAIMER Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human Services. GLYPHOSATE III FOREWORD This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for these toxic substances described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a relevance to public health discussion which would allow a public health professional to make a real-time determination of whether the presence of a particular substance in the environment poses a potential threat to human health. The adequacy of information to determine a substance's
    [Show full text]
  • US EPA, Pesticide Product Label, SHARDA GLYPHOSATE 20.5 % +
    86(19,5210(17$/3527(&7,21$*(1&< (3$5HJ1XPEHU 'DWHRI,VVXDQFH 2IILFHRI3HVWLFLGH3URJUDPV 5HJLVWUDWLRQ'LYLVLRQ 3 3HQQV\OYDQLD$YH1: :DVKLQJWRQ'& 127,&(2)3(67,&,'( 7HUPRI,VVXDQFH ;5HJLVWUDWLRQ 5HUHJLVWUDWLRQ &RQGLWLRQDO XQGHU),)5$DVDPHQGHG 1DPHRI3HVWLFLGH3URGXFW 6KDUGD*O\SKRVDWH 0HWRODFKORU0HVRWULRQH =& 1DPHDQG$GGUHVVRI5HJLVWUDQW LQFOXGH=,3&RGH $QQD$UPVWURQJ 6KDUGD86$//& 32%R[ +RFNHVVLQ'( 1RWH&KDQJHVLQODEHOLQJGLIIHULQJLQVXEVWDQFHIURPWKDWDFFHSWHGLQFRQQHFWLRQZLWKWKLVUHJLVWUDWLRQPXVWEHVXEPLWWHGWRDQGDFFHSWHGE\WKH 5HJLVWUDWLRQ'LYLVLRQSULRUWRXVHRIWKHODEHOLQFRPPHUFH,QDQ\FRUUHVSRQGHQFHRQWKLVSURGXFWDOZD\VUHIHUWRWKHDERYH(3$UHJLVWUDWLRQQXPEHU 2QWKHEDVLVRILQIRUPDWLRQIXUQLVKHGE\WKHUHJLVWUDQWWKHDERYHQDPHGSHVWLFLGHLVKHUHE\UHJLVWHUHG XQGHUWKH)HGHUDO,QVHFWLFLGH)XQJLFLGHDQG5RGHQWLFLGH$FW 5HJLVWUDWLRQLVLQQRZD\WREHFRQVWUXHGDVDQHQGRUVHPHQWRUUHFRPPHQGDWLRQRIWKLVSURGXFWE\WKH $JHQF\,QRUGHUWRSURWHFWKHDOWKDQGWKHHQYLURQPHQWWKH$GPLQLVWUDWRURQKLVPRWLRQPD\DWDQ\ WLPHVXVSHQGRUFDQFHOWKHUHJLVWUDWLRQRIDSHVWLFLGHLQDFFRUGDQFHZLWKWKH$FW7KHDFFHSWDQFHRIDQ\ QDPHLQFRQQHFWLRQZLWKWKHUHJLVWUDWLRQRIDSURGXFWXQGHUWKLV$FWLVQRWWREHFRQVWUXHGDVJLYLQJWKH UHJLVWUDQWDULJKWWRH[FOXVLYHXVHRIWKHQDPHRUWRLWVXVHLILWKDVEHHQFRYHUHGE\RWKHUV 7KLVSURGXFWLVFRQGLWLRQDOO\UHJLVWHUHGLQDFFRUGDQFHZLWK),)5$VHFWLRQ F $ <RXPXVWFRPSO\ ZLWKWKHIROORZLQJFRQGLWLRQV 6XEPLWDQGRUFLWHDOOGDWDUHTXLUHGIRUUHJLVWUDWLRQUHUHJLVWUDWLRQUHJLVWUDWLRQUHYLHZRI\RXU SURGXFWXQGHU),)5$ZKHQWKH$JHQF\UHTXLUHVDOOUHJLVWUDQWVRIVLPLODUSURGXFWVWRVXEPLWVXFK GDWD 6LJQDWXUHRI$SSURYLQJ2IILFLDO 'DWH (PLO\6FKPLG$FWLQJ3URGXFW0DQDJHU
    [Show full text]
  • Toxicity of Herbicides to Newly Emerged Honey Bees,1.2.3
    PUKOr.SED BV THE ACr.ICl'.LT RESEARCH SIRViCE. U. S. DEPA:;T.rfEH OF AGRICULTURE FOR OFFICIAL US* Reprinted from the Environmental Entomology Volume 1, Number 1, pp. 102-104, February 1972 Toxicity of Herbicides to Newly Emerged Honey Bees,1.2.3 HOWARD L. MORTON,' JOSEPH O. MOFFETT," and ROBERT H. MACDONALD" Agricultural Research Service, USDA, Tucson, Arizona 85719 :, ■ ABSTRACT . We fed herbicides to newly emerged worker Apis mellifera L. in 60% sucrose syrup at concentrations of 0, 10, 100, and ] 000 parts per million by weight. The following herbicides were relatively nontoxic to honey bees at all concentra tions: 2,4-D, 2,4,5-T, silvcx, 2,4-DB, dicamba, 2,3,6-TBA, chloramben, picloram, Ethrel®, 2-chIoroethylphosphonic acid, EPTC, and dalapon. The following were extremely toxic at 100 and 1000 ppmw concentrations: paraquat, MAA, MSMA, DSMA, hexaflurate, and cacodylic acid. Two compounds, bromoxynil and endothall, were very toxic only at 1000 parts per million by weight (ppmw) concentration. Paraquat, MAA, and cacodylic acid were moderately toxic at 10 ppmw. No sig nificant differences were noted in the toxicity of purified and commercially formulated herbicides. Studies conducted at this laboratory (MolTctt Materials and Methods et al. 1972) and elsewhere (Palmer-Jones 1950, Ten grams (approximately 100 individuals) of 1964; King 1961") indicate that toxicily of herbi newly emerged honey bees were placed in 2x6x6- cides to honey bees, Apis mellijera L., depends upon in. screened cages. All honey bees were less than the chemical, the formulation, and the carrier used 24 hr old at the time they were placed in the with the herbicide.
    [Show full text]
  • Glyphosate: Unsafe on Any Plate
    GLYPHOSATE: UNSAFE ON ANY PLATE ALARMING LEVELS OF MONSANTO’S GLYPHOSATE FOUND IN POPULAR AMERICAN FOODS “For the first time in the history of the world, every human being is now subjected to contact with dangerous chemicals from the moment of conception until death…These chemicals are now stored in the bodies of the vast majority of human beings, regardless of age. They occur in the mother’s milk, and probably in the tissues of the unborn child.”1 —RACHEL CARSON, SILENT SPRING “Glyphosate was significantly higher in humans [fed] conventional [food] compared with predominantly organic [fed] humans. Also the glyphosate residues in urine were grouped according to the human health status. Chronically ill humans had significantly higher glyphosate residues in urine than healthy humans”2 —MONIKA KRUGER, ENVIRONMENTAL & ANALYTICAL TOXICOLOGY “Analysis of individual tissues demonstrated that bone contained the highest concentration of [14C] glyphosate equivalents (0.3–31ppm). The remaining tissues contained glyphosate equivalents at a concentration of between 0.0003 and 11 ppm. In the bone and some highly perfused tissues, levels were statistically higher in males than in females.”3 —PESTICIDE RESIDUES IN FOOD, JOINT FAO/WHO MEETING 2004 1 Rachel Carson, Silent Spring, (Houghton Mifflin, 1961), Elixirs of Death, 15-16. 2 Krüger M, Schledorn P, Schrödl W, Hoppe HW, Lutz W, et al. (2014) Detection of Glyphosate Residues in Animals and Humans. J Environ Anal Toxicol 4: 210 3 Residues in Food, 2004, Evaluations Part II, Toxicological, Joint FAO/WHO Meeting on Pesticide Residues. http://apps.who.int/iris/ bitstream/10665/43624/1/9241665203_eng.pdf Contents What Is in This Report? Findings: The first ever independent, FDA-registered laboratory food testing results for glyphosate residues in iconic American food brands finds alarming levels of glyphosate contamination and reveal the inadequacy of current food safety regulations relating to allowable pesticide residues.
    [Show full text]
  • Cascade Range
    United States bepartment of Agriculture Herbicide Forest Service Pacific Northwest Forest and Range and Conifer Experiment Station Research Paper PNW-292 Options for Reforesting October, 1981 Upper Slopes in the Cascade Range Edward J. Dimock II ROCKY Mof 'NTATN STATION This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable Author plants, and fish or other wildlife -- if they I~ m w ~llmml are not handled or applied properly. Use EDWARD J. DIMOCK II is principal all pesticides selectively and carefully. silviculturist, Forestry Sciences Follow recommended practices for the Laboratory, 3200 Jefferson Way, disposal of surplus pesticides and Corvallis, Oregon 97331. pesticide containers. Abstract Summary Dimock, Edward J. I1. Herbicide and Nine herbicides (asulam, atrazine, Similar survival increases were also conifer options for reforesting upper bromacil, cyanazine, dalapon, consistently achieved with atrazine + slopes in the Cascade Range. Res. glyphosate, hexazinone, pronamide, and dalapon mixtures. Most successful Pap. PNW-292. Portland, OR: U.S. terbacil) were evaluated for control of applications of mixture produced 3-year Department of Agriculture, Forest sedge (Carex spp.) and beargrass survival of 62, 77, and 14 percent for white Service, Pacific Northwest Forest (Xerophyllum tenax [Pursh] Nutt.) to aid pine at the same three localities above. and Range Experiment Station; establishment of newly planted seedlings Survival of other conifers resulting from 1981.14 p.
    [Show full text]
  • Cacodylic Acid), in F344/Ducrj Rats After Pretreatment with Five Carcinogens1
    [CANCER RESEARCH 55, 1271-1276, March 15, 1995] Cancer Induction by an Organic Arsenic Compound, Dimethylarsinic Acid (Cacodylic Acid), in F344/DuCrj Rats after Pretreatment with Five Carcinogens1 Shinji Vaniamolo,2 Yoshitsugu Konishi, Tsutomu Matsuda, Takashi Murai, Masa-Aki Shibata, Isao Matsui-Yuasa,3 Shuzo Otani, Koichi Kuroda, Ginji Endo, and Shoji Fukushima First Department of Pathology ¡S. Y., Ts. M., Ta. M.. M-A. S.. S. F.1, Second Department of Biochemistry //. M-Y., S. O.j, and Department of Preventive Medicine and Environmental Health /K K., G. E.I, Osaka City University Medical School, 1-4-54 Asahi-machi, Aheno-ku, Osaka 545, and Osaka Cit\ Institute of Public Health and Environmental Sciences, Osaka 543 IK. K.], Japan ABSTRACT Taiwan and Mexico are exposed to high amounts of As via the drinking water (5, 8). Moreover, the wide population in the United Arsenic (As) is environmentally ubiquitous and an epidemiologically States may be supplied with water containing more than 50 ju.g/1As significant chemical related to certain human cancers. Dimethylarsinic (6). Industrial arsenicals are used for smelting, glass making, and the acid (cacodylic acid; DMA) is one of the major methylated metabolites of manufacture of semiconductors (3, 9). For more than half a century, ingested arsenicals in most mammals. To evaluate the effects of DMA on chemical carcinogenesis, we conducted a multiorgan bioassay in rats given various carcinogenic effects of As for humans have been documented, various doses of DMA. One-hundred twenty-four male F344/DuCrj rats mainly involving the skin and lung (7). In addition, recent epidemi- were divided randomly into 7 groups (20 rats each for groups 1-5; 12 rats ological studies have indicated that there are significant dose-response each for groups 6 and 7).
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]