Astrometric Study of Binary Systems and Photometric

Total Page:16

File Type:pdf, Size:1020Kb

Astrometric Study of Binary Systems and Photometric ASTROMETRIC STUDY OF BINARY SYSTEMS AND PHOTOMETRIC STUDY OF A VARIABLE STAR by Tyce Olaveson A senior thesis submitted to the faculty of Brigham Young University - Idaho in partial fulfillment of the requirements for the degree of Bachelor of Science Department of Physics Brigham Young University - Idaho April 2021 Copyright c 2021 Tyce Olaveson All Rights Reserved BRIGHAM YOUNG UNIVERSITY - IDAHO DEPARTMENT APPROVAL of a senior thesis submitted by Tyce Olaveson This thesis has been reviewed by the research advisor, research coordinator, and department chair and has been found to be satisfactory. Date Stephen McNeil, Advisor Date Lance Nelson, Committee Member Date Brian Tonks, Committee Member Date R. Todd Lines, Chair ABSTRACT ASTROMETRIC STUDY OF BINARY SYSTEMS AND PHOTOMETRIC STUDY OF A VARIABLE STAR Tyce Olaveson Department of Physics and Astronomy Bachelor of Science My senior research gave me opportunities to complete two astronomy based projects. During each of these I proposed an object of study and presented my findings. The first of these projects is focused on binary stars and studies the separation distance and position angle of two star systems. The system with a primary star at RA 11 : 06 : 30:6 DEC −46 : 10 : 28:97 is determined to have position angle of 154o and separation distance of 7:00 arcsec. This system is possibly a binary star and a minimum orbit is calculated. The second system has primary star at RA 11 : 06 : 34:7 DEC −46 : 11 : 55:3, its position angle is measured as 72:67o and separation distance is 11:08 arcsec. GAIA data suggests that this system is likely not a physical binary. The second project is devoted to the variable star V0893 Her. The star is observed in the B, v i and z filters and light curves are generated for each filter. From these curves, we calculate period information and used these to determine the theoretical absolute magnitude in each filter. The period is calculated as 0:495 ± 0:036 days. The distance to the star is calculated as 501 ± 24 parsecs, which is significantly different from the GAIA spacecraft mission. We conclude that our data was not as clean as we would have hoped, possibly due to the binary nature of the system or some other factors at play. ACKNOWLEDGMENTS I would like to thank Dr. McNeil for giving me direction and helping me complete this research. I would also like to thank Rachel Freed at InStAR for providing the resources and opportunity to complete the binary star project as well as Michael Fitzgerald at Our Solar Siblings for help working through the variable star project. I would also like to acknowledge my group members: Roberta Bonnell, Jakob Bergstedt and Dallin Fisher all made considerate con- tributions to the binary star project. My group members for the variable star project were Amber Mistry, Dr. McNeil and Rachel Freed and they helped complete the project. Lastly I would like to thank my wife Rebecca for sup- porting and encouraging me through this entire processes. Contents Table of Contents vii List of Figures viii 1 An Overview1 1.1 Binary Stars................................1 1.2 Variable Stars...............................3 2 Binary Stars5 2.1 Introduction................................5 2.2 Methods and Procedure.........................6 2.3 Results and Analysis...........................9 2.4 Discussion................................. 14 3 Variable Stars 15 3.1 Introduction................................ 15 3.2 Methods and Procedures......................... 17 3.3 Results and Analysis........................... 20 3.4 Discussion................................. 22 4 Conclusion 25 4.1 Challenges is all things.......................... 25 4.2 Future Rewards.............................. 26 Bibliography 27 vii List of Figures 2.1 Image of Double 1 taken from the Siding Spring Observatory on May 28 2020, boxed in red. The Siding Spring Observatory is located in Australia and is part of the LCO global telescope network.......8 2.2 Image of Double 2 taken from the Siding Spring Observatory on May 28 2020, boxed in red...........................9 2.3 An example of using AstroImageJ to take measurements of Double 1. 10 2.4 The HR diagram we plotted on. We can see that the stars in Double 1 are both main sequence, whereas those of Double 2 are more likely on the giant branch............................ 10 3.1 An example of a light curve for an RRab vairable star [1]........ 16 3.2 An image of V0893 Her taken from the Aladin stargazing software.. 18 3.3 An image of V0893 Her taken in the z filter from our cadence..... 18 3.4 Light curve in the i filter using the String Test to calculate the period and sex photometry............................ 22 3.5 Light curve in the V filter using String Test to calculate the period and apt photometry.............................. 22 3.6 Light curve in the z filter using String Test to calculate the period and apt photometry.............................. 22 3.7 Light curve generated with information from data collected by Hipparcos 23 3.8 An image of the V0893 Her system exhibiting its binary nature.... 23 viii Chapter 1 An Overview During the summer of 2020 and amid the swing of Covid-19, I participated in two research projects. In each of these projects I experienced the entire research process, from proposing a project to writing a paper and presenting my results at a conference. This thesis will go through the details of each project including the conclusions and future prospects for each. 1.1 Binary Stars The first project is devoted to Binary Stars and is part of the larger effort designed to provide research opportunities for undergraduate students. This program is provided through InStAR [2] and was overseen by Rachel Freed who currently runs the orga- nization. A Binary star system consists of two or more stars that are gravitationally bound together into an orbit and have long been of interest to astronomers. Because we cannot go visit these stars personally (for obvious reasons) we must observe them through our earthly telescopes and make due with what light can tell us. We can learn a lot from light; however, our two dimensional images can lead to some incorrect 1 1.1 Binary Stars 2 conclusions at times. As astronomers, we are only able to see stars in a two dimensional plane. The fact that not all stars have the same luminosity can make it challenging to determine dis- tance just by looking at an image of a star field. To compensate for this, astronomers define two categories of binary stars: optical doubles and physical binaries. Optical doubles are binary stars that appear to be in close proximity, but are not in reality. We often see optical doubles within constellations, where stars appear to be next to each other but are in fact separated by millions of light years of empty space. Quick identification of these types of stars are done through parallax angles. The parallax angle of a star is determined by its change in angular position when seen from differ- ent positions and can be used to calculate the distances to nearby stars. When the parallax angle of stars are similar, it is indicative of stars in close proximity, when the parallax angles are significantly different we can know that the stars are not near each other. Systems without similar parallax angles are not true binary stars since they are not in close physical proximity. Of the two, physical binaries are the most interesting. These are stars that are gravitationally bound together and what is most commonly known as a binary star. From these stars, astronomers can use Keplers equations of orbits to determine masses of stars. Sometimes, there are binary stars that fall into neither category and are thus, undetermined. In these cases we begin to calculate potential orbits of the two stars by measuring their positions over hundreds of years. To keep track of all of these stars, the Washington Double Star Catalog (WDS) keeps a database of millions of documented double stars as well as relevant information about their positions. In my research, I find two double star systems that are not included in the WDS and take observations of them to find their classification. The first of these systems is likely an optical double since the parallaxes of the two stars 1.2 Variable Stars 3 do not show significant overlap. The second of these systems shows more promise. I measure the positions of these stars and calculate a minimum orbit for the star using Keplers laws. In the end, this research will most likely benefit future generations of astronomers. Since we can neither prove nor disprove something with a single measurement, future observers will be able to draw upon my contribution and use this data to make a definite decision. 1.2 Variable Stars The second of these projects involves Variable Stars. This research is also part of a larger project organized and directed by Michael Fitzgerald at Our Solar Siblings [3]. Variables are stars that vary in magnitude (relative brightness of a star) in a predictable and oscillatory fashion. For some types of variable stars (like Cepheid and RR Lyrae variables) astronomers have created empirical and theoretical formulas that can relate the period of a star's oscillation to its absolute magnitude, making some variable stars reliable standards for measuring distances. Of course, we can't expect these equations to be exact or perfect, and for this reason the organization Our Solar Siblings has designed this research project to improve these derived formulas by taking into account other stellar properties such as metallicity. Unlike binary stars, variable stars require much more attention to get decent information. Since the star oscillates in magnitude, we must observe it over a period of time.
Recommended publications
  • The Discovery of Exoplanets
    L'Univers, S´eminairePoincar´eXX (2015) 113 { 137 S´eminairePoincar´e New Worlds Ahead: The Discovery of Exoplanets Arnaud Cassan Universit´ePierre et Marie Curie Institut d'Astrophysique de Paris 98bis boulevard Arago 75014 Paris, France Abstract. Exoplanets are planets orbiting stars other than the Sun. In 1995, the discovery of the first exoplanet orbiting a solar-type star paved the way to an exoplanet detection rush, which revealed an astonishing diversity of possible worlds. These detections led us to completely renew planet formation and evolu- tion theories. Several detection techniques have revealed a wealth of surprising properties characterizing exoplanets that are not found in our own planetary system. After two decades of exoplanet search, these new worlds are found to be ubiquitous throughout the Milky Way. A positive sign that life has developed elsewhere than on Earth? 1 The Solar system paradigm: the end of certainties Looking at the Solar system, striking facts appear clearly: all seven planets orbit in the same plane (the ecliptic), all have almost circular orbits, the Sun rotation is perpendicular to this plane, and the direction of the Sun rotation is the same as the planets revolution around the Sun. These observations gave birth to the Solar nebula theory, which was proposed by Kant and Laplace more that two hundred years ago, but, although correct, it has been for decades the subject of many debates. In this theory, the Solar system was formed by the collapse of an approximately spheric giant interstellar cloud of gas and dust, which eventually flattened in the plane perpendicular to its initial rotation axis.
    [Show full text]
  • History of Astrometry
    5 Gaia web site: http://sci.esa.int/Gaia site: web Gaia 6 June 2009 June are emerging about the nature of our Galaxy. Galaxy. our of nature the about emerging are More detailed information can be found on the the on found be can information detailed More technologies developed by creative engineers. creative by developed technologies scientists all over the world, and important conclusions conclusions important and world, the over all scientists of the Universe combined with the most cutting-edge cutting-edge most the with combined Universe the of The results from Hipparcos are being analysed by by analysed being are Hipparcos from results The expression of a widespread curiosity about the nature nature the about curiosity widespread a of expression 118218 stars to a precision of around 1 milliarcsecond. milliarcsecond. 1 around of precision a to stars 118218 trying to answer for many centuries. It is the the is It centuries. many for answer to trying created with the positions, distances and motions of of motions and distances positions, the with created will bring light to questions that astronomers have been been have astronomers that questions to light bring will accuracies obtained from the ground. A catalogue was was catalogue A ground. the from obtained accuracies Gaia represents the dream of many generations as it it as generations many of dream the represents Gaia achieving an improvement of about 100 compared to to compared 100 about of improvement an achieving orbit, the Hipparcos satellite observed the whole sky, sky, whole the observed satellite Hipparcos the orbit, ear Y of them in the solar neighbourhood.
    [Show full text]
  • The Evening Sky Map a DECEMBER 2018 N
    I N E D R I A C A S T N E O D I T A C L E O R N I G D S T S H A E P H M O O R C I . Z N O n i f d o P t o ) l a h O N r g i u s , o Z l t P h I C e r o N R ( I o r R r O e t p h C H p i L S t D E E a g r i . H ( B T F e O h T NORTH D R t h N e M e E s A G X O U e A H m M C T i . I n P i N d S L E E m P Z “ e E A N Dipper t e H O NORTHERN HEMISPHERE o M T R r T The Big The N Y s H h . E r o ” E K Alcor & e w ) t W S . s e . T u r T Mizar l E U p W C B e R e a N l W D k b E s T u T MAJOR W H o o The Evening Sky Map A DECEMBER 2018 n E C D O t FREE* EACH MONTH FOR YOU TO EXPLORE, LEARN & ENJOY THE NIGHT SKY URSA S e L h K h e t Y E m R d M A n o A a r Thuban S SKY MAP SHOWS HOW P Get Sky Calendar on Twitter n T 1 i n C A 3 E g R M J http://twitter.com/skymaps O Sky Calendar – December 2018 o d B THE NIGHT SKY LOOKS U M13 f n O N i D “ f L D e T DRACO A o c NE O I t I e T EARLY DEC PM T 8 m P t S i 3 Moon near Spica (morning sky) at 9h UT.
    [Show full text]
  • Plotting Variable Stars on the H-R Diagram Activity
    Pulsating Variable Stars and the Hertzsprung-Russell Diagram The Hertzsprung-Russell (H-R) Diagram: The H-R diagram is an important astronomical tool for understanding how stars evolve over time. Stellar evolution can not be studied by observing individual stars as most changes occur over millions and billions of years. Astrophysicists observe numerous stars at various stages in their evolutionary history to determine their changing properties and probable evolutionary tracks across the H-R diagram. The H-R diagram is a scatter graph of stars. When the absolute magnitude (MV) – intrinsic brightness – of stars is plotted against their surface temperature (stellar classification) the stars are not randomly distributed on the graph but are mostly restricted to a few well-defined regions. The stars within the same regions share a common set of characteristics. As the physical characteristics of a star change over its evolutionary history, its position on the H-R diagram The H-R Diagram changes also – so the H-R diagram can also be thought of as a graphical plot of stellar evolution. From the location of a star on the diagram, its luminosity, spectral type, color, temperature, mass, age, chemical composition and evolutionary history are known. Most stars are classified by surface temperature (spectral type) from hottest to coolest as follows: O B A F G K M. These categories are further subdivided into subclasses from hottest (0) to coolest (9). The hottest B stars are B0 and the coolest are B9, followed by spectral type A0. Each major spectral classification is characterized by its own unique spectra.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]
  • The Impact of the Astro2010 Recommendations on Variable Star Science
    The Impact of the Astro2010 Recommendations on Variable Star Science Corresponding Authors Lucianne M. Walkowicz Department of Astronomy, University of California Berkeley [email protected] phone: (510) 642–6931 Andrew C. Becker Department of Astronomy, University of Washington [email protected] phone: (206) 685–0542 Authors Scott F. Anderson, Department of Astronomy, University of Washington Joshua S. Bloom, Department of Astronomy, University of California Berkeley Leonid Georgiev, Universidad Autonoma de Mexico Josh Grindlay, Harvard–Smithsonian Center for Astrophysics Steve Howell, National Optical Astronomy Observatory Knox Long, Space Telescope Science Institute Anjum Mukadam, Department of Astronomy, University of Washington Andrej Prsa,ˇ Villanova University Joshua Pepper, Villanova University Arne Rau, California Institute of Technology Branimir Sesar, Department of Astronomy, University of Washington Nicole Silvestri, Department of Astronomy, University of Washington Nathan Smith, Department of Astronomy, University of California Berkeley Keivan Stassun, Vanderbilt University Paula Szkody, Department of Astronomy, University of Washington Science Frontier Panels: Stars and Stellar Evolution (SSE) February 16, 2009 Abstract The next decade of survey astronomy has the potential to transform our knowledge of variable stars. Stellar variability underpins our knowledge of the cosmological distance ladder, and provides direct tests of stellar formation and evolution theory. Variable stars can also be used to probe the fundamental physics of gravity and degenerate material in ways that are otherwise impossible in the laboratory. The computational and engineering advances of the past decade have made large–scale, time–domain surveys an immediate reality. Some surveys proposed for the next decade promise to gather more data than in the prior cumulative history of astronomy.
    [Show full text]
  • The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 a Good Way to Start – Find North
    The expression "dog days" refers to the period from July 3 through Aug. 11 when our brightest night star, SIRIUS (aka the dog star), rises in conjunction* with the sun. Conjunction, in astronomy, is defined as the apparent meeting or passing of two celestial bodies. TAAS Fabulous Fifty A program for those new to astronomy Friday Evening, July 20, 2018, 8:00 pm All TAAS and other new and not so new astronomers are welcome. What is the TAAS Fabulous 50 Program? It is a set of 4 meetings spread across a calendar year in which a beginner to astronomy learns to locate 50 of the most prominent night sky objects visible to the naked eye. These include stars, constellations, asterisms, and Messier objects. Methodology 1. Meeting dates for each season in year 2018 Winter Jan 19 Spring Apr 20 Summer Jul 20 Fall Oct 19 2. Locate the brightest and easiest to observe stars and associated constellations 3. Add new prominent constellations for each season Tonight’s Schedule 8:00 pm – We meet inside for a slide presentation overview of the Summer sky. 8:40 pm – View night sky outside The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 A Good Way to Start – Find North Polaris North Star Polaris is about the 50th brightest star. It appears isolated making it easy to identify. Circumpolar Stars Polaris Horizon Line Albuquerque -- 35° N Circumpolar Stars Capella the Goat Star AS THE WORLD TURNS The Circle of Perpetual Apparition for Albuquerque Deneb 1 URSA MINOR 2 3 2 URSA MAJOR & Vega BIG DIPPER 1 3 Draco 4 Camelopardalis 6 4 Deneb 5 CASSIOPEIA 5 6 Cepheus Capella the Goat Star 2 3 1 Draco Ursa Minor Ursa Major 6 Camelopardalis 4 Cassiopeia 5 Cepheus Clock and Calendar A single map of the stars can show the places of the stars at different hours and months of the year in consequence of the earth’s two primary movements: Daily Clock The rotation of the earth on it's own axis amounts to 360 degrees in 24 hours, or 15 degrees per hour (360/24).
    [Show full text]
  • Astrophysical Artefact in the Astrometric Detection of Exoplanets ?
    Astrophysical artefact in the astrometric detection of exoplanets ? Jean Schneider LUTh – Paris Observatory Work in progress ● Dynamical and brightness astrometry ● Astrophysical sources of excess brightness – Simulations – Observations ● Conclusion 12 Oct 2011 1 Context Ultimate goal: the precise physical characterization of Earth-mass planets in the Habitable Zone (~ 1 AU) by direct spectro- polarimetric imaging It will also require a good knowledge of their mass. Two approaches (also used to find Earth-mass planets): – Radial Velocity measurements – Astrometry 12 Oct 2011 2 Context Radial Velocity and Astrometric mass measurements have both their limitations . Here we investigate a possible artefact of the astrometric approach for the Earth-mass regime at 1 AU. ==> not applicable to Gaia or PRIMA/ESPRI Very simple idea: can a blob in a disc mimic the astrometric signal of an Earth-mass planet at 1 AU? 12 Oct 2011 3 Dynamical and brightness astrometry Baryc. M M * C B I Ph I I << I 1 2 2 1 Photoc. a M a = C ● Dynamical astrometry B M* D I I M ● 2 a 2 C a Brightness (photometric) astrometry Ph= − B= − I1 D I1 M* D Question: can ph be > B ? 12 Oct 2011 4 Dynamical and brightness astrometry Baryc. M M * C B I Ph I I << I 1 2 2 1 Photoc. MC a −6 a ● = B ~ 3 x 10 for a 1 Earth-mass planet M* D D I a I a = 2 − ~ 2 -6 ● Ph B Can I /I be > 3x10 ? I1 D I1 D 2 1 12 Oct 2011 5 Dynamical and brightness astrometry Baryc.
    [Show full text]
  • Halometry from Astrometry
    Prepared for submission to JCAP Halometry from Astrometry Ken Van Tilburg,a;b Anna-Maria Taki,a Neal Weinera;c aCenter for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003, USA bSchool of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA cCenter for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA E-mail: [email protected], [email protected], [email protected] Abstract. Halometry—mapping out the spectrum, location, and kinematics of nonluminous structures inside the Galactic halo—can be realized via variable weak gravitational lensing of the apparent motions of stars and other luminous background sources. Modern astrometric surveys provide unprecedented positional precision along with a leap in the number of cat- aloged objects. Astrometry thus offers a new and sensitive probe of collapsed dark matter structures over a wide mass range, from one millionth to several million solar masses. It opens up a window into the spectrum of primordial curvature fluctuations with comoving wavenumbers between 5 Mpc−1 and 105 Mpc−1, scales hitherto poorly constrained. We out- line detection strategies based on three classes of observables—multi-blips, templates, and correlations—that take advantage of correlated effects in the motion of many background light sources that are produced through time-domain gravitational lensing. While existing techniques based on single-source observables such as outliers and mono-blips are best suited for point-like lens targets, our methods offer parametric improvements for extended lens tar- gets such as dark matter subhalos. Multi-blip lensing events may also unveil the existence, arXiv:1804.01991v1 [astro-ph.CO] 5 Apr 2018 location, and mass of planets in the outer reaches of the Solar System, where they would likely have escaped detection by direct imaging.
    [Show full text]
  • Lecture Notes 13: Double Stars and the Detection of Planets More Than Half of All Stars Are in Double Star Or in Multiple Star Systems
    Lecture notes 13: Double stars and the detection of planets More than half of all stars are in double star or in multiple star systems. This fact gives important clues on how stars form, but can also has the important consequence that it allows us to measure stellar masses. Double star types Double stars are conveniently subdivided into classes based on how they are observed: Optical double stars are stars that coincidentally lie on the same line of • sight as seen from the Earth. There are actually quite few of these, most stars that seem to lie close to each other are really double stars, they orbit each other. Visual double stars are doubles that can be separated either visually or • with a telescope. Their orbital period can vary from some years to more than a millennium. Spectroscopic double stars are stars that cannot be separated with a • telescope, but are discovered through studies of the stars’ spectral lines which will indicate periodic radial motions through doppler shifts of the spectral lines. Eclipsing binaries are double stars in which the orbital plane of obser- • vation is such that the stars periodically shadow for each other, leading to a periodic variation in the intensity of the combined flux from the stars. A famous naked eye example is the star Algol in Perseus. Astrometric double stars are stars where only one component is visible, • but that component periodically changes position on the sky due to its orbital motion around its companion. A famous example is Sirius in Canis Minor which has a white dwarf as companion, Sirius B, which is only 1/5000 as luminous as Sirius A.
    [Show full text]
  • Spectroscopy of Variable Stars
    Spectroscopy of Variable Stars Steve B. Howell and Travis A. Rector The National Optical Astronomy Observatory 950 N. Cherry Ave. Tucson, AZ 85719 USA Introduction A Note from the Authors The goal of this project is to determine the physical characteristics of variable stars (e.g., temperature, radius and luminosity) by analyzing spectra and photometric observations that span several years. The project was originally developed as a The 2.1-meter telescope and research project for teachers participating in the NOAO TLRBSE program. Coudé Feed spectrograph at Kitt Peak National Observatory in Ari- Please note that it is assumed that the instructor and students are familiar with the zona. The 2.1-meter telescope is concepts of photometry and spectroscopy as it is used in astronomy, as well as inside the white dome. The Coudé stellar classification and stellar evolution. This document is an incomplete source Feed spectrograph is in the right of information on these topics, so further study is encouraged. In particular, the half of the building. It also uses “Stellar Spectroscopy” document will be useful for learning how to analyze the the white tower on the right. spectrum of a star. Prerequisites To be able to do this research project, students should have a basic understanding of the following concepts: • Spectroscopy and photometry in astronomy • Stellar evolution • Stellar classification • Inverse-square law and Stefan’s law The control room for the Coudé Description of the Data Feed spectrograph. The spec- trograph is operated by the two The spectra used in this project were obtained with the Coudé Feed telescopes computers on the left.
    [Show full text]