Implementation of Gibbs Sampling Within Bayesian Inference and Its Applications in Actuarial Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Exponential Family 1 Definition
The Exponential Family David M. Blei Columbia University November 9, 2016 The exponential family is a class of densities (Brown, 1986). It encompasses many familiar forms of likelihoods, such as the Gaussian, Poisson, multinomial, and Bernoulli. It also encompasses their conjugate priors, such as the Gamma, Dirichlet, and beta. 1 Definition A probability density in the exponential family has this form p.x / h.x/ exp >t.x/ a./ ; (1) j D f g where is the natural parameter; t.x/ are sufficient statistics; h.x/ is the “base measure;” a./ is the log normalizer. Examples of exponential family distributions include Gaussian, gamma, Poisson, Bernoulli, multinomial, Markov models. Examples of distributions that are not in this family include student-t, mixtures, and hidden Markov models. (We are considering these families as distributions of data. The latent variables are implicitly marginalized out.) The statistic t.x/ is called sufficient because the probability as a function of only depends on x through t.x/. The exponential family has fundamental connections to the world of graphical models (Wainwright and Jordan, 2008). For our purposes, we’ll use exponential 1 families as components in directed graphical models, e.g., in the mixtures of Gaussians. The log normalizer ensures that the density integrates to 1, Z a./ log h.x/ exp >t.x/ d.x/ (2) D f g This is the negative logarithm of the normalizing constant. The function h.x/ can be a source of confusion. One way to interpret h.x/ is the (unnormalized) distribution of x when 0. It might involve statistics of x that D are not in t.x/, i.e., that do not vary with the natural parameter. -
Markov Chain Monte Carlo Convergence Diagnostics: a Comparative Review
Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review By Mary Kathryn Cowles and Bradley P. Carlin1 Abstract A critical issue for users of Markov Chain Monte Carlo (MCMC) methods in applications is how to determine when it is safe to stop sampling and use the samples to estimate characteristics of the distribu- tion of interest. Research into methods of computing theoretical convergence bounds holds promise for the future but currently has yielded relatively little that is of practical use in applied work. Consequently, most MCMC users address the convergence problem by applying diagnostic tools to the output produced by running their samplers. After giving a brief overview of the area, we provide an expository review of thirteen convergence diagnostics, describing the theoretical basis and practical implementation of each. We then compare their performance in two simple models and conclude that all the methods can fail to detect the sorts of convergence failure they were designed to identify. We thus recommend a combination of strategies aimed at evaluating and accelerating MCMC sampler convergence, including applying diagnostic procedures to a small number of parallel chains, monitoring autocorrelations and cross- correlations, and modifying parameterizations or sampling algorithms appropriately. We emphasize, however, that it is not possible to say with certainty that a finite sample from an MCMC algorithm is rep- resentative of an underlying stationary distribution. 1 Mary Kathryn Cowles is Assistant Professor of Biostatistics, Harvard School of Public Health, Boston, MA 02115. Bradley P. Carlin is Associate Professor, Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455. -
Meta-Learning MCMC Proposals
Meta-Learning MCMC Proposals Tongzhou Wang∗ Yi Wu Facebook AI Research University of California, Berkeley [email protected] [email protected] David A. Moorey Stuart J. Russell Google University of California, Berkeley [email protected] [email protected] Abstract Effective implementations of sampling-based probabilistic inference often require manually constructed, model-specific proposals. Inspired by recent progresses in meta-learning for training learning agents that can generalize to unseen environ- ments, we propose a meta-learning approach to building effective and generalizable MCMC proposals. We parametrize the proposal as a neural network to provide fast approximations to block Gibbs conditionals. The learned neural proposals generalize to occurrences of common structural motifs across different models, allowing for the construction of a library of learned inference primitives that can accelerate inference on unseen models with no model-specific training required. We explore several applications including open-universe Gaussian mixture models, in which our learned proposals outperform a hand-tuned sampler, and a real-world named entity recognition task, in which our sampler yields higher final F1 scores than classical single-site Gibbs sampling. 1 Introduction Model-based probabilistic inference is a highly successful paradigm for machine learning, with applications to tasks as diverse as movie recommendation [31], visual scene perception [17], music transcription [3], etc. People learn and plan using mental models, and indeed the entire enterprise of modern science can be viewed as constructing a sophisticated hierarchy of models of physical, mental, and social phenomena. Probabilistic programming provides a formal representation of models as sample-generating programs, promising the ability to explore a even richer range of models. -
1 Introduction to Bayesian Inference 2 Introduction to Gibbs Sampling
MCMC I: July 5, 2016 1 MCMC I 8th Summer Institute in Statistics and Modeling in Infectious Diseases Course Time Plan July 13-15, 2016 Instructors: Vladimir Minin, Kari Auranen, M. Elizabeth Halloran Course Description: This module is an introduction to Markov chain Monte Carlo methods with some simple applications in infectious disease studies. The course includes an introduction to Bayesian inference, Monte Carlo, MCMC, some background theory, and convergence diagnostics. Algorithms include Gibbs sampling and Metropolis-Hastings and combinations. Programming is in R. Familiarity with the R statistical package or other computing language is needed. Course schedule: The course is composed of 10 90-minute sessions, for a total of 15 hours of instruction. 1 Introduction to Bayesian Inference • Overview of the course. • Bayesian inference: Likelihood, prior, posterior, normalizing constant • Conjugate priors; Beta-binomial; Poisson-gamma; normal-normal • Posterior summaries, mean, mode, posterior intervals • Motivating examples: Chain binomial model (Reed-Frost), General Epidemic Model, SIS model. • Lab: – Goals: Warm-up with R for simple Bayesian computation – Example: Posterior distribution of transmission probability with a binomial sampling distribution using a conjugate beta prior distribution – Summarizing posterior inference (mean, median, posterior quantiles and intervals) – Varying the amount of prior information – Writing an R function 2 Introduction to Gibbs Sampling • Chain binomial model and data augmentation • Brief introduction -
Markov Chain Monte Carlo Edps 590BAY
Markov Chain Monte Carlo Edps 590BAY Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Fall 2019 Overivew Bayesian computing Markov Chains Metropolis Example Practice Assessment Metropolis 2 Practice Overview ◮ Introduction to Bayesian computing. ◮ Markov Chain ◮ Metropolis algorithm for mean of normal given fixed variance. ◮ Revisit anorexia data. ◮ Practice problem with SAT data. ◮ Some tools for assessing convergence ◮ Metropolis algorithm for mean and variance of normal. ◮ Anorexia data. ◮ Practice problem. ◮ Summary Depending on the book that you select for this course, read either Gelman et al. pp 2751-291 or Kruschke Chapters pp 143–218. I am relying more on Gelman et al. C.J. Anderson (Illinois) MCMC Fall 2019 2.2/ 45 Overivew Bayesian computing Markov Chains Metropolis Example Practice Assessment Metropolis 2 Practice Introduction to Bayesian Computing ◮ Our major goal is to approximate the posterior distributions of unknown parameters and use them to estimate parameters. ◮ The analytic computations are fine for simple problems, ◮ Beta-binomial for bounded counts ◮ Normal-normal for continuous variables ◮ Gamma-Poisson for (unbounded) counts ◮ Dirichelt-Multinomial for multicategory variables (i.e., a categorical variable) ◮ Models in the exponential family with small number of parameters ◮ For large number of parameters and more complex models ◮ Algebra of analytic solution becomes overwhelming ◮ Grid takes too much time. ◮ Too difficult for most applications. C.J. Anderson (Illinois) MCMC Fall 2019 3.3/ 45 Overivew Bayesian computing Markov Chains Metropolis Example Practice Assessment Metropolis 2 Practice Steps in Modeling Recall that the steps in an analysis: 1. Choose model for data (i.e., p(y θ)) and model for parameters | (i.e., p(θ) and p(θ y)). -
The Composite Marginal Likelihood (CML) Inference Approach with Applications to Discrete and Mixed Dependent Variable Models
Technical Report 101 The Composite Marginal Likelihood (CML) Inference Approach with Applications to Discrete and Mixed Dependent Variable Models Chandra R. Bhat Center for Transportation Research September 2014 Data-Supported Transportation Operations & Planning Center (D-STOP) A Tier 1 USDOT University Transportation Center at The University of Texas at Austin D-STOP is a collaborative initiative by researchers at the Center for Transportation Research and the Wireless Networking and Communications Group at The University of Texas at Austin. DISCLAIMER The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation’s University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. D-STOP/2016/101 4. Title and Subtitle 5. Report Date The Composite Marginal Likelihood (CML) Inference Approach September 2014 with Applications to Discrete and Mixed Dependent Variable 6. Performing Organization Code Models 7. Author(s) 8. Performing Organization Report No. Chandra R. Bhat Report 101 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Data-Supported Transportation Operations & Planning Center (D- STOP) 11. Contract or Grant No. The University of Texas at Austin DTRT13-G-UTC58 1616 Guadalupe Street, Suite 4.202 Austin, Texas 78701 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Data-Supported Transportation Operations & Planning Center (D- STOP) The University of Texas at Austin 14. -
Fast Bayesian Non-Negative Matrix Factorisation and Tri-Factorisation
Fast Bayesian Non-Negative Matrix Factorisation and Tri-Factorisation Thomas Brouwer Jes Frellsen Pietro Lio’ Computer Laboratory Department of Engineering Computer Laboratory University of Cambridge University of Cambridge University of Cambridge United Kingdom United Kingdom United Kingdom [email protected] [email protected] [email protected] Abstract We present a fast variational Bayesian algorithm for performing non-negative matrix factorisation and tri-factorisation. We show that our approach achieves faster convergence per iteration and timestep (wall-clock) than Gibbs sampling and non-probabilistic approaches, and do not require additional samples to estimate the posterior. We show that in particular for matrix tri-factorisation convergence is difficult, but our variational Bayesian approach offers a fast solution, allowing the tri-factorisation approach to be used more effectively. 1 Introduction Non-negative matrix factorisation methods Lee and Seung [1999] have been used extensively in recent years to decompose matrices into latent factors, helping us reveal hidden structure and predict missing values. In particular we decompose a given matrix into two smaller matrices so that their product approximates the original one. The non-negativity constraint makes the resulting matrices easier to interpret, and is often inherent to the problem – such as in image processing or bioinformatics (Lee and Seung [1999], Wang et al. [2013]). Some approaches approximate a maximum likelihood (ML) or maximum a posteriori (MAP) solution that minimises the difference between the observed matrix and the decomposition of this matrix. This gives a single point estimate, which can lead to overfitting more easily and neglects uncertainty. Instead, we may wish to find a full distribution over the matrices using a Bayesian approach, where we define prior distributions over the matrices and then compute their posterior after observing the actual data. -
Bayesian Phylogenetics and Markov Chain Monte Carlo Will Freyman
IB200, Spring 2016 University of California, Berkeley Lecture 12: Bayesian phylogenetics and Markov chain Monte Carlo Will Freyman 1 Basic Probability Theory Probability is a quantitative measurement of the likelihood of an outcome of some random process. The probability of an event, like flipping a coin and getting heads is notated P (heads). The probability of getting tails is then 1 − P (heads) = P (tails). • The joint probability of event A and event B both occuring is written as P (A; B). The joint probability of mutually exclusive events, like flipping a coin once and getting heads and tails, is 0. • The probability of A occuring given that B has already occurred is written P (AjB), which is read \the probability of A given B". This is a conditional probability. • The marginal probability of A is P (A), which is calculated by summing or integrating the joint probability over B. In other words, P (A) = P (A; B) + P (A; not B). • Joint, conditional, and marginal probabilities can be combined with the expression P (A; B) = P (A)P (BjA) = P (B)P (AjB). • The above expression can be rearranged into Bayes' theorem: P (BjA)P (A) P (AjB) = P (B) Bayes' theorem is a straightforward and uncontroversial way to calculate an inverse conditional probability. • If P (AjB) = P (A) and P (BjA) = P (B) then A and B are independent. Then the joint probability is calculated P (A; B) = P (A)P (B). 2 Interpretations of Probability What exactly is a probability? Does it really exist? There are two major interpretations of probability: • Frequentists believe that the probability of an event is its relative frequency over time. -
Bayesian Inference in the Normal Linear Regression Model
Bayesian Inference in the Normal Linear Regression Model () Bayesian Methods for Regression 1 / 53 Bayesian Analysis of the Normal Linear Regression Model Now see how general Bayesian theory of overview lecture works in familiar regression model Reading: textbook chapters 2, 3 and 6 Chapter 2 presents theory for simple regression model (no matrix algebra) Chapter 3 does multiple regression In lecture, I will go straight to multiple regression Begin with regression model under classical assumptions (independent errors, homoskedasticity, etc.) Chapter 6 frees up classical assumptions in several ways Lecture will cover one way: Bayesian treatment of a particular type of heteroskedasticity () Bayesian Methods for Regression 2 / 53 The Regression Model Assume k explanatory variables, xi1,..,xik for i = 1, .., N and regression model: yi = b1 + b2xi2 + ... + bk xik + #i . Note xi1 is implicitly set to 1 to allow for an intercept. Matrix notation: y1 y2 y = 2 . 3 6 . 7 6 7 6 y 7 6 N 7 4 5 # is N 1 vector stacked in same way as y () Bayesian Methods for Regression 3 / 53 b is k 1 vector X is N k matrix 1 x12 .. x1k 1 x22 .. x2k X = 2 ..... 3 6 ..... 7 6 7 6 1 x .. x 7 6 N2 Nk 7 4 5 Regression model can be written as: y = X b + #. () Bayesian Methods for Regression 4 / 53 The Likelihood Function Likelihood can be derived under the classical assumptions: 1 2 # is N(0N , h IN ) where h = s . All elements of X are either fixed (i.e. not random variables). Exercise 10.1, Bayesian Econometric Methods shows that likelihood function can be written in -
The Markov Chain Monte Carlo Approach to Importance Sampling
The Markov Chain Monte Carlo Approach to Importance Sampling in Stochastic Programming by Berk Ustun B.S., Operations Research, University of California, Berkeley (2009) B.A., Economics, University of California, Berkeley (2009) Submitted to the School of Engineering in partial fulfillment of the requirements for the degree of Master of Science in Computation for Design and Optimization at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2012 c Massachusetts Institute of Technology 2012. All rights reserved. Author.................................................................... School of Engineering August 10, 2012 Certified by . Mort Webster Assistant Professor of Engineering Systems Thesis Supervisor Certified by . Youssef Marzouk Class of 1942 Associate Professor of Aeronautics and Astronautics Thesis Reader Accepted by . Nicolas Hadjiconstantinou Associate Professor of Mechanical Engineering Director, Computation for Design and Optimization 2 The Markov Chain Monte Carlo Approach to Importance Sampling in Stochastic Programming by Berk Ustun Submitted to the School of Engineering on August 10, 2012, in partial fulfillment of the requirements for the degree of Master of Science in Computation for Design and Optimization Abstract Stochastic programming models are large-scale optimization problems that are used to fa- cilitate decision-making under uncertainty. Optimization algorithms for such problems need to evaluate the expected future costs of current decisions, often referred to as the recourse function. In practice, this calculation is computationally difficult as it involves the evaluation of a multidimensional integral whose integrand is an optimization problem. Accordingly, the recourse function is estimated using quadrature rules or Monte Carlo methods. Although Monte Carlo methods present numerous computational benefits over quadrature rules, they require a large number of samples to produce accurate results when they are embedded in an optimization algorithm. -
A Widely Applicable Bayesian Information Criterion
JournalofMachineLearningResearch14(2013)867-897 Submitted 8/12; Revised 2/13; Published 3/13 A Widely Applicable Bayesian Information Criterion Sumio Watanabe [email protected] Department of Computational Intelligence and Systems Science Tokyo Institute of Technology Mailbox G5-19, 4259 Nagatsuta, Midori-ku Yokohama, Japan 226-8502 Editor: Manfred Opper Abstract A statistical model or a learning machine is called regular if the map taking a parameter to a prob- ability distribution is one-to-one and if its Fisher information matrix is always positive definite. If otherwise, it is called singular. In regular statistical models, the Bayes free energy, which is defined by the minus logarithm of Bayes marginal likelihood, can be asymptotically approximated by the Schwarz Bayes information criterion (BIC), whereas in singular models such approximation does not hold. Recently, it was proved that the Bayes free energy of a singular model is asymptotically given by a generalized formula using a birational invariant, the real log canonical threshold (RLCT), instead of half the number of parameters in BIC. Theoretical values of RLCTs in several statistical models are now being discovered based on algebraic geometrical methodology. However, it has been difficult to estimate the Bayes free energy using only training samples, because an RLCT depends on an unknown true distribution. In the present paper, we define a widely applicable Bayesian information criterion (WBIC) by the average log likelihood function over the posterior distribution with the inverse temperature 1/logn, where n is the number of training samples. We mathematically prove that WBIC has the same asymptotic expansion as the Bayes free energy, even if a statistical model is singular for or unrealizable by a statistical model. -
Markov Chain Monte Carlo (Mcmc) Methods
MARKOV CHAIN MONTE CARLO (MCMC) METHODS 0These notes utilize a few sources: some insights are taken from Profs. Vardeman’s and Carriquiry’s lecture notes, some from a great book on Monte Carlo strategies in scientific computing by J.S. Liu. EE 527, Detection and Estimation Theory, # 4c 1 Markov Chains: Basic Theory Definition 1. A (discrete time/discrete state space) Markov chain (MC) is a sequence of random quantities {Xk}, each taking values in a (finite or) countable set X , with the property that P {Xn = xn | X1 = x1,...,Xn−1 = xn−1} = P {Xn = xn | Xn−1 = xn−1}. Definition 2. A Markov Chain is stationary if 0 P {Xn = x | Xn−1 = x } is independent of n. Without loss of generality, we will henceforth name the elements of X with the integers 1, 2, 3,... and call them “states.” Definition 3. With 4 pij = P {Xn = j | Xn−1 = i} the square matrix 4 P = {pij} EE 527, Detection and Estimation Theory, # 4c 2 is called the transition matrix for a stationary Markov Chain and the pij are called transition probabilities. Note that a transition matrix has nonnegative entries and its rows sum to 1. Such matrices are called stochastic matrices. More notation for a stationary MC: Define (k) 4 pij = P {Xn+k = j | Xn = i} and (k) 4 fij = P {Xn+k = j, Xn+k−1 6= j, . , Xn+1 6= j, | Xn = i}. These are respectively the probabilities of moving from i to j in k steps and first moving from i to j in k steps.