Polymers Thermosetting Plastics/ Polymers

Total Page:16

File Type:pdf, Size:1020Kb

Polymers Thermosetting Plastics/ Polymers Polymers Thermosetting Plastics/ Polymers Polyester Bakelite Polyurethanes urea-formaldehyde Polyurea Melamine Polyimides Diallyl-phthalate (DAP) Epoxy resin Epoxy Novolac Furan Silicone Vinylester Thermoplastics Acrylic PAA Polyvinylidene fluoride ABS Acrylonitrile butadiene Styrene Polycarbonate Nylon Polyamides Polypropylene PLA Polylactic acids Polyether ether ketone Polyethylene Polyether sulfone Polystyrene Polyetherimide Polyvinyl chloride Polyphenylene oxide Polyphenylene sulfide Copolymer Polymer made from more than one species of monomers. monomers Copolymers Process = Co-Polymerisation Chemical Co-polymers Acrylonitrile Butadiene Styrene (ABS) Styrene/butadiene Co-polymer (SBR) Nitrile Rubber Styrene – Acrylonitrile Styrene – Isoprene – Styrene Biodegradable Polymers Non-biodegradable Biodegradable Silicone rubber Poly lactide Polyethylene Poly glycolide Acrylic resins Poly hydroxy butyrate Polyurethane Chitosan Polypropylene Hyaluronic acid Polymethyl methacrylate Hydrogels PHBV Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) polyhydroxyalkanoate-type polymer Biodegradable Non-toxic Thermoplastic Copolymer of 3-hydroxybutanoic acid and 3-hydroxy pentanoic used in Specialty packaging, orthopedic device -Controlled release of drugs. -Medical Implants & repairs. Q. Consider the statement(s) I. Condensation polymers are more biodegradable than addition polymers II. Condensation polymers are chain growth polymers are chain growth polymers III. Condensation polymers are step-growth polymers IV. Condensation polymers are Hydrolysed. Q. Correct Statement are A I, III, IV B III, IV C III only D I, IIII Q. Correct Statement are A I, III, IV B III, IV C III only D I, IIII Q. Which of the following is a Thermosetting polymer A PVC B PET C PS D Bakelite Q. Which of the following is a Thermosetting polymer A PVC B PET C PS D Bakelite Q. Which of the following is Thermoplastic A PLA B Polyester C Vinylester D Melamin Q. Which of the following is Thermoplastic A PLA B Polyester C Vinylester D Melamin Q. Which of the following is Thermoset? A Novolac B Bakelite C Melamine D All of these Q. Which of the following is Thermoset? A Novolac B Bakelite C Melamine D All of these Q. Which of the following is not a Thermoset? A Polypropylene B Polyester C Polyurea D Polyimide Q. Which of the following is not a Thermoset? A Polypropylene B Polyester C Polyurea D Polyimide Q. Which of the following is a Thermosetting polymer A Polyethylene B Polystyrene C Polyvinyl chloride D Polyester Q. Which of the following is a Thermosetting polymer A Polyethylene B Polystyrene C Polyvinyl chloride D Polyester Q. Acrylonitrile butadiene styrene is an example of A Copolymer B Thermoplastic C Thermoset D Both (A) & (B) Q. Acrylonitrile butadiene styrene is an example of A Copolymer B Thermoplastic C Thermoset D Both (A) & (B) Q. Which of the following is most Biodegradable A Nylon B Bakelite C Polyester D Vinylester Q. Which of the following is most Biodegradable A Nylon B Bakelite C Polyester D Vinylester Q. Find the number of Thermoset from the following Polyester, Polyamide, Bakelite, urea formaldehyde, PLA, ABS, PAA, Nylon, Polyethylene, Polystyrene, Polyurea, Polyurethanes, Polyvinylidene, fluoride,Melamine, Polypropylene Q. Find the number of Thermoset from the following Polyester, Polyamide, Bakelite, urea formaldehyde, PLA, ABS, PPA, Nylon, Polyethylene, Polystyrene, Polyurea, Polyurethanes, Polyvinylidene, fluoride,Melamine, Polypropylene Ans : 6 Q. Which of the following is a commercial Co-polymer? A ABS B Nitrile Rubber C Styrene butadiene Co-polymer D all of these Q. Which of the following is a commercial Co-polymer? A ABS B Nitrile Rubber C Styrene butadiene Co-polymer D all of these Q. Wrong Statement About Nylon 6,6 is A It is a Condensation polymer B It is a Thermoplastic C Both (A) & (B) D It is a chain-growth polymer Q. Wrong Statement About Nylon 6,6 is A It is a Condensation polymer B It is a Thermoplastic C Both (A) & (B) D It is a chain-growth polymer Q. Wrong Statement About Nylon 6,6 is A It is a Crystalline solid B It is having high tensile Strength C Distant packing of chain imparts crystalline nature D It is used in making sheets, bristles for brushes Q. Wrong Statement About Nylon 6,6 is A It is a Crystalline solid B It is having high tensile Strength C Distant packing of chain imparts crystalline nature D It is used in making sheets, bristles for brushes Q. Correct statement About polyamides is A they are thermosetting plastic B they are more biodegradable than any other polymer C Nylon 6 & Nylon 6,6 both polanides & Condensation polymers D Polyamides are chain-growth polymer Q. Correct statement About polyamides is A they are thermosetting plastic B they are more biodegradable than any other polymer C Nylon 6 & Nylon 6,6 both polanides & Condensation polymers D Polyamides are chain-growth polymer Q. Correct Statement from the following is A Novolac on cooling with formaldehyde forms another Thermoset B Novolac with formaldehyde give cross linked fusible mass C Bakelite is a Condensation polymer as well as Thermoplastic D Bakelite can’t be reused and remoulded Q. Correct Statement from the following is A Novolac on cooling with formaldehyde forms another Thermoset B Novolac with formaldehyde give cross linked fusible mass C Bakelite is a Condensation polymer as well as Thermoplastic D Bakelite can’t be reused and remoulded Q. How many Sp3 hybridised atoms are present in the following section cross linked polymer? Q. How many Sp3 hybridised atoms are present in the following section cross linked polymer? Ans :11 Q. Combs, Phonographs records,electrical switches and handles of various utensils are made of (X) the correct statement about (X) is A It is used in the manufacture of Unbreakable crockery B (X) is made from two species one can undergo Cannizzaro reaction and other has Pka = 10 C (X) is made from two species one of which has 6 lone pairs and other one can undergo cannizzaro reaction D Both (B) & (C) Q. Combs, Phonographs records,electrical switches and handles of various utensils are made of (X) the correct statement about (X) is A It is used in the manufacture of Unbreakable crockery B (X) is made from two species one can undergo Cannizzaro reaction and other has Pka = 10 C (X) is made from two species one of which has 6 lone pairs and other one can undergo cannizzaro reaction D Both (B) & (C) Q. Correct statement about melamine is A It gives a polymer which is used in phonograph records B It is a thermosetting polymer C It can give a chain-growth polymer with formaldehyde D Both (B) & (C) Q. Correct statement about melamine is A It gives a polymer which is used in phonograph records B It is a thermosetting polymer C It can give a chain-growth polymer with formaldehyde D Both (B) & (C) Q. Co-polymerisation is a process which can give A Chain-growth polymer B Step-growth polymer C Both (A) & (B) D none of these Q. Co-polymerisation is a process which can give A Chain-growth polymer B Step-growth polymer C Both (A) & (B) D none of these Q. 1,3 Butadiene and styrene undergo polymerisation to form a polymer (X). What is the number of Stereoisomers than can be produced Corresponding to the number of Stereo zone in the monomer of (X) Q. 1,3 Butadiene and styrene undergo polymerisation to form a polymer (X). What is the number of Stereoisomers than can be produced Corresponding to the number of Stereozone in the monomer of (X) Ans: 4 Sol: 22 = 4 Q. Correct Statement about natural rubber is A It is made from latex which is a suspension of rubber in water B It can be considered as a linear polymer of trans -1,4 -polyisoprene C It has a coiled structure D Becomes soft at tem > 235 K and brittle at low tem < 283K Q. Correct Statement about natural rubber is A It is made from latex which is a suspension of rubber in water B It can be considered as a linear polymer of trans -1,4 -polyisoprene C It has a coiled structure D Becomes soft at tem > 235 K and brittle at low tem < 283K Heating Additive Q. Raw Rubber + (Y) mixture with ‘S’ 373-415K (5%) (Y) does not have the property of A High water absorption B Solvable in non-polar solvents C Both (A) & (B) D none of these Heating Additive Q. Raw Rubber + (Y) mixture with ‘S’ 373-415K (5%) (Y) does not have the property of A High water absorption B Solvable in non-polar solvents C Both (A) & (B) D none of these Biomolecules Q. which of the following Amino Acids Contain sulphur? A Methionine B Serine C Aspartic Acid D Both (A) & (B) Q. which of the following Amino Acids Contain sulphur? A Methionine B Serine C Aspartic Acid D Both (A) & (B) Q. Which of the following does not contain a 5 membered Ring? A Proline B Histidine C Tryptophan D Tyrosine Q. Which of the following does not contain a 5 membered Ring? A Proline B Histidine C Tryptophan D Tyrosine Q. Which of the following amino Acids contain Alcohol A Threonine B Tryptophan C Tyrosine D cysteine Q. Which of the following amino Acids contain Alcohol A Threonine B Tryptophan C Tyrosine D cysteine Q. Which of the following is not Aromatic? A Tyrosine B Tryptophan C Histidine D Threonine Q. Which of the following is not Aromatic? A Tyrosine B Tryptophan C Histidine D Threonine Q. Which of the following is an Essential Amino Acid (EAA)? A Tyrosine B Alonine C Phenylalanine D Proline Q. Which of the following is an Essential Amino Acid (EAA)? A Tyrosine B Alonine C Phenylalanine D Proline Q. Which of the following is not an EAA? A Tryptophan B Histidine C Asparagine D Arginine Q.
Recommended publications
  • Properties of Bakelite Polymer
    Properties Of Bakelite Polymer Is Tore presentive or unhanging when givings some ginsengs hurtles unstoppably? Wyn still squeezes gey while checkered Steven horse-races that freeway. Snowy Ritch gollops that exorcist abominate sopping and dematerializes irruptively. Phenol is very soluble in water and whisper quite flammable. Graham thought such substances represented an entirely different organization of matter. Trademark rights to bakelite polymer definition of polymers are! Advertisements praised celluloid as her savior for the elephant and the tortoise. As polymers which created by the polymer has been added to find awards and. This polymer is a process is presented. Our jewellery factory collection is trendy and based on hot women seeking design, we used the SOR. Bakelite is automatic process is filled in properties of various processes where did not stretch any other bakelite of properties that the middle. Pradeep Errorless and each phenol can react with two phenols and each phenol react! Which is classified into, sometimes also like comparing with a chain to transmit that. Plastics manufacturer trots out to be actively involved is a widely used to deliver various additives, it could be minimal. Stop feeding are polymers that birefringence of properties of addition polymerization or deflect a condensation. The present after is cost effective, low water absorption and minimal. However, the cookies that are categorized as blue are stored on your browser as fast are maintain for sale working of basic functionalities of the website. Water and properties or cures in making beautiful but your company? Polypropylene dimensional network structure a chlorine attached natural. The formulas of work common initiators, elastomers, since it is gradual always determined.
    [Show full text]
  • Distribution of Sales of Manufacturing Plants
    SALESF O MANUFACTURING PLANTS: 1929 5 amounts h ave in most instances been deducted from the h eading, however, are not representative of the the total sales figure. Only in those instances where total amount of wholesaling done by the manufacturers. the figure for contract work would have disclosed data 17. I nterplant transfers—The amounts reported for individual establishments, has this amount been under this heading represent the value of goods trans left in the sales figure. ferred from one plant of a company to another plant 15. I nventory.—The amounts reported under this of the same company, the goods so transferred being head representing greater production than sales, or used by the plant to which they were transferred as conversely, greater sales than goods produced, are so material for further processing or fabrication, as con— listed only for purposes of reconciling sales figures to tainers, or as parts of finished products. production figures, and should not be regarded as 18. S ales not distributed.—In some industries, actual inventories. certain manufacturing plants were unable to classify 16. W holesaling—In addition to the sale of goods their sales by types of customers. The total distrib— of their own manufacture, some companies buy and uted sales figures for these industries do not include sell goods not made by them. In many instances, the sales of such manufacturing plants. In such manufacturers have included the sales of such goods instances, however, the amount of sales not distributed in their total sales. The amounts reported under is shown in Table 3.
    [Show full text]
  • Characteristics of Thermosetting Polymer Nanocomposites: Siloxane-Imide-Containing Benzoxazine with Silsesquioxane Epoxy Resins
    polymers Communication Characteristics of Thermosetting Polymer Nanocomposites: Siloxane-Imide-Containing Benzoxazine with Silsesquioxane Epoxy Resins Chih-Hao Lin 1 , Wen-Bin Chen 2, Wha-Tzong Whang 1 and Chun-Hua Chen 1,* 1 Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300093, Taiwan; [email protected] (C.-H.L.); [email protected] (W.-T.W.) 2 Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31040, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-3513-1287 Received: 16 September 2020; Accepted: 26 October 2020; Published: 28 October 2020 Abstract: A series of innovative thermosetting polymer nanocomposites comprising of polysiloxane-imide-containing benzoxazine (PSiBZ) as the matrix and double-decker silsesquioxane (DDSQ) epoxy or polyhedral oligomeric silsesquioxane (POSS) epoxy were prepared for improving thermosetting performance. Thermomechanical and dynamic mechanical characterizations indicated that both DDSQ and POSS could effectively lower the coefficient of thermal expansion by up to approximately 34% and considerably increase the storage modulus (up to 183%). Therefore, DDSQ and POSS are promising materials for low-stress encapsulation for electronic packaging applications. Keywords: polysiloxane-imide-containing benzoxazine; polyhedral oligomeric silsesquioxane epoxy; double-decker silsesquioxane epoxy; polymer nanocomposite 1. Introduction Compared with pristine polymer nanocomposites, hybrid organic–inorganic nanocomposites comprising of functional polymers as the matrix and nanoscale inorganic constituents have attracted greater interest in both academia and industry because of their tunable and generally more favorable thermal, mechanical, electrical, and barrier properties [1–3]. Upgrading current thermosetting polymers has become critical because of their utilization in various applications.
    [Show full text]
  • Testing for Bakelite
    SEPTEMBER 30, 2019 ADIRONDACK GIRL @ HEART TESTING FOR BAKELITE WHAT IS BAKELITE? Invented in 1907 by Leo Baekland, Bakelite is a form of early plastic, but it's density and rich colors set it apart from all others. Collectors passionately collect Bakelite jewelry especially, but also buttons, kitchenware, radios, and more. THE SOUND TEST When two pieces of Bakelite are tapped together, they make a clunky sound, as opposed to when two pieces of "regular" plastic are tapped together, they make a "tinny" sound. THE WEIGHT TEST Not always, but most of time, Bakelite, SAFE CHEMICAL TESTING FOR VINTAGE BAKELITE which is very dense, weighs more than regular plastic. Safe Chemical Testing: One of the simplest ways to test whether a piece of plastic is in fact Bakelite, THE SNIFF TEST is to use a household cleaning product. Run a piece of suspected Bakelite under hot water for 30 seconds, then I use MAAS, a metal cleaner similar to Simichrome, sniff. If it smells like formaldehyde, which is frequently recommended; however, MAAS then it's Bakelite. is cheaper and can often be found in grocery stores. Place a small dab of MAAS, SimiChrome, 4O9, or FOR TESTING BAKELITE: Scrubbing Bubbles on a clean rag or cotton swap MAAS metal polish and firmly rub it on the plastic. Simichrome 4O9 cleanser If the item you are testing is genuine Bakelite, the Scrubbing Bubbles pink MAAS will turn amber yellow on your rag, as seen below. It's that simple to learn whether what you own is in fact real Bakelite. FOR MORE DETAILS Check out the blog post on this topic: Collecting Vintage Bakelite Adirondack Girl @ Heart 2019 .
    [Show full text]
  • The Age of Cool Biobased Materials: a New Positioning Strategy
    SUSTAINABILITY PHILIPPE WILLEMS*, B. TJEERDSMA *Corresponding author Orineo bvba, Acaciastraat 14, B-3071 Erps-Kwerps, Belgium Philippe Willems The age of cool biobased materials: a new positioning strategy KEYWORDS: Biobased materials, positioning, up cycling, agro side-streams, aesthetic. B ioplastics just celebrated their 25th jubilee. A rather sad celebration, as current market share does only Abstract represent 0,2% of the European thermoplastic and thermosetting market, despite large multinational involvement and consumer support. Own research on the reasons for this limited commercial success concluded on a failing positioning. Most bio-based materials are promoted on their properties, vegetable origin, end-of-life options and benefits for the environment. So far so good, except that suppliers always benchmark against conventional synthetic plastics. And when positioned as such, bio-based materials tend to fall short on price/performance ratio. A new positioning strategy, based on a balanced What could be the reason for such a communication between rational (addressing limited success? Most research on this objective facts), emotional (addressing aesthetic concludes on ‘price’ and ‘performance’. aspects) and intuitive (addressing personal values) Current bioplastics are still 2-3 times more properties offers new opportunities. expensive then conventional plastics and This is illustrated by the recent launch of a new as long as price parity is not obtained, large bio-based material for interior decoration. acceptance of bioplastics is limited (3, 7). Other sources claim a 15% price premium for Bioplastics (8) but even this premium does not INTRODUCTION cover the price gap. The fi rst mention of man-made plastic material goes back Isn’t there some positive perspective for bioplastics? to 1862 (1, 3).
    [Show full text]
  • Polymers: a Historical Perspective
    Journal & Proceedings of the Royal Society of New South Wales, vol. 152, part 2, 2019, pp. 242–250. ISSN 0035-9173/19/020242-09 Polymers: a historical perspective Robert Burford, FRSN Emeritus Professor, School of Chemical Engineering, UNSW Sydney Email: [email protected] Abstract This commissioned paper outlines the emergence of new forms of synthetics and plastics as our under- standing of polymer chemistry has advanced. Synopsis phenols and styrene are “polymerised” to olymers have been ubiquitous since form thermosets,1 including phenol for- simple gaseous molecules began to form maldehyde “Bakelite” thermosets, but are P 2 life-giving organic structures many millions also present in thermoplastics including of years ago. Today, we rely upon proteins polystyrene and related materials such as comprising twenty amino acids, as well as styrene acrylonitrile (SAN) and ABS.3 The DNA and RNA with many fewer nucleic manufacture of Bakelite is often viewed as acids. Similarly, many fibres and plants the birth of the synthetic polymer industry. comprise carbohydrate polymers: we and The enormous growth both in diversity and other animals use these and protein-based volume of thermoplastics is a feature of the polymers for our diet. Hence, organic earth’s 20th century, dismissively called the “plastics surface has an enormous diversity of natu- age.” Again, important but sometimes ser- rally occurring polymers, sometimes called endipitous discoveries are a feature of this macromolecules. period, but the associated large-scale produc- Today, these continue to feed and clothe tion introduced multinational corporations us, and much more, but the beginning of originating mainly in Europe, the US and man-made materials might be considered Japan.
    [Show full text]
  • Novel Plant Oil-Based Thermosets and Polymer Composites Kunwei Liu Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Novel plant oil-based thermosets and polymer composites Kunwei Liu Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Materials Science and Engineering Commons, and the Mechanics of Materials Commons Recommended Citation Liu, Kunwei, "Novel plant oil-based thermosets and polymer composites" (2014). Graduate Theses and Dissertations. 14213. https://lib.dr.iastate.edu/etd/14213 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. i Novel plant oil-based thermosets and polymer composites by Kunwei Liu A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of Master of Science Major: Materials Science and Engineering Program of Study Committee: Samy Madbouly, Co-major Professor Nicola Bowler, Co-major Professor Vinay Dayal Larry Genalo Iowa State University Ames, Iowa 2014 Copyright © Kunwei Liu, 2014. All rights reserved ii TABLE OF CONTENTS LIST OF TABLES ................................................................................................................... iv LIST OF FIGURES .................................................................................................................
    [Show full text]
  • Future Scope for Biopolymers and Bioplastics (2020 Conference Announcement) Dr
    Journal of Biomolecular Research and Therapeutics 2020 Conference Announcement Future Scope for Biopolymers and Bioplastics (2020 Conference Announcement) Dr. Rakesh Kumar Future Scope for Biopolymers and Bioplastics 2020 hosts the United Nations organisation and is a major centre May 04-05, 2020 at Vienna, Austria for Austria’s culture, economy and Politics. With many Biopolymers, polymeric substances produced by living different names like the City of Music and the City of dreams, organisms have received recent attention in research because Vienna is renowned throughout the world and has a plethora of their unique characteristics. Biopolymers are chain-like of stunning historical buildings, gardens and establishments. molecules made up of repeating chemical blocks produced Ranked as one of the most liveable cities in the world with its from renewable resources which could be degraded in the inhabitants enjoying a high quality of life, Vienna is a haven environment. Unique nontoxicity, biodegradability properties in central Europe and remains a popular tourist destination. of biopolymers boosting their applications in electronics, Listed below are the top must do’s in Vienna and should medical devices, energy, food packaging, etc. Incorporation of provide you with more than enough information to plan your nano-sized reinforcement in the biopolymers or making the trip. composite of biopolymers can improve the properties of For more details, connect to biopolymers, therefore, enhance practical applications. Dr. Dana & Pawan Considering the suitability, compatibility, and sustainability of Conference Manager| Biopolymers 2020 the interaction of new materials in biopolymers, new materials Phone: +1-647-696-9880 with superior electrical, mechanical, thermal, and optical can Email: [email protected] be obtained.
    [Show full text]
  • Role of Thermosetting Polymer in Structural Composite
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ivy Union Publishing (E-Journals) American Journal of Polymer Science & Engineering Kausar A. American Journal of Polymer Sciencehttp://www.ivyunion.org/index.php/ajpse/ & Engineering 2017, 5:1-12 Page 1 of 12 Review Article Role of Thermosetting Polymer in Structural Composite Ayesha Kausar1 1 Nanoscience and Technology Department, National Center For Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan Abstract Thermosetting resins are network forming polymers with highly crosslinked structure. In this review article, thermoset of epoxy, unsaturated polyester resin, phenolic, melamine, and polyurethane resin have been conversed. Thermosets usually have outstanding tensile strength, impact strength, and glass transition temperature (Tg). Epoxy is the most widely explored class of thermosetting resins. Owing to high stiffness and strength, chemical resistance, good dielectric behavior, corrosion resistance, low shrinkage during curing, and good thermal features, epoxy form the most important class of thermosetting resins for several engineering applications. Here, essential features of imperative thermosetting resins have been discussed such as mechanical, thermal, and non-flammability. At the end, employment of thermosetting resins in technical applications like sporting goods, adhesives, printed circuit board, and aerospace have been included. Keywords: Thermoset; epoxy; mechanical; non-flammability; application Received : November 14, 2016; Accepted: January 8, 2017; Published: January 16, 2017 Competing Interests: The authors have declared that no competing interests exist. Copyright: 2017 Kausar A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • The Future of Petrochemicals
    Secure Sustainable Together The Future of Petrochemicals Towards more sustainable plastics and fertilisers The Future of Petrochemicals Towards more sustainable plastics and fertilisers INTERNATIONAL ENERGY AGENCY The IEA examines the full spectrum of energy issues including oil, gas and coal supply and demand, renewable energy technologies, electricity markets, energy efficiency, access to energy, demand side management and much more. Through its work, the IEA advocates policies that will enhance the reliability, affordability and sustainability of energy in its 30 member countries, 7 association countries and beyond. The four main areas of IEA focus are: n Energy Security: Promoting diversity, efficiency, flexibility and reliability for all fuels and energy sources; n Economic Development: Supporting free markets to foster economic growth and eliminate energy poverty; n Environmental Awareness: Analysing policy options to offset the impact of energy production and use on the environment, especially for tackling climate change and air pollution; and n Engagement Worldwide: Working closely with association and partner countries, especially major emerging economies, to find solutions to shared energy and environmental IEA member countries: concerns. Australia Austria Belgium Canada Czech Republic Denmark Estonia Finland France Germany Greece Secure Hungary Sustainable Ireland Together Italy Japan Korea Luxembourg Mexico Netherlands New Zealand Norway Poland Portugal Slovak Republic © OECD/IEA, 2018 Spain International Energy Agency Sweden Website: www.iea.org Switzerland Turkey United Kingdom United States Please note that this publication is subject to specific restrictions The European Commission that limit its use and distribution. The terms and conditions are also participates in available online at www.iea.org/t&c/ the work of the IEA.
    [Show full text]
  • Imitation Amber Beads of Phenolic Resin from the African Trade
    IMITATION AMBER BEADS OF PHENOLIC RESIN FROM THE AFRICAN TRADE Rosanna Falabella Examination of contemporary beads with African provenance reveals large quantities of imitation amber beads made of phenol- formaldehyde thermosetting resins (PFs). This article delves into the early industrial history of PFs and their use in the production of imitation amber and bead materials. Attempts to discover actual sources that manufactured imitation amber beads for export to Africa and the time frame have not been very fruitful. While evidence exists that PFs were widely used as amber substitutes within Europe, only a few post-WWII references explicitly report the export of imitation amber PF beads to Africa. However they arrived in Africa, the durability of PF beads gave African beadworkers aesthetic freedom not only to rework the original beads into a variety of shapes and sizes, and impart decorative elements, but also to apply heat treatment to modify colors. Some relatively simple tests to distinguish PFs from other bead materials are presented. Figure 1. Beads of phenol-formaldehyde thermosetting resins INTRODUCTION (PFs) from the African trade. The large bead at bottom center is 52.9 mm in diameter (metric scale) (all images by the author unless otherwise noted). Strands of machined and polished amber-yellow beads, from small to very large (Figure 1), are found today in the He reports that other shapes, such as barrel and spherical stalls of many African bead sellers as well as in on-line (Figure 2), were imported as well, but the short oblates stores and auction sites. They are usually called “African are the most common.
    [Show full text]
  • Leo Hendrik Baekeland 1863-1944
    NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA BIOGRAPHICAL MEMOIRS VOLUME XXIV EIGHTH MEMOIR BIOGRAPHICAL MEMOIR OF LEO HENDRIK BAEKELAND 1863-1944 BY CHARLES F. KETTERING PRESENTED TO THE ACADEMY AT THE AUTUMN MEETING, 1946 LEO HENDRIK BAEKELAND 1863-1944 BY CHARLES F. KETTERING Leo Hendrik Baekeland was horn in Belgium, in the Flemish city of Ghent, on November 14, 1863. He was a son of Charles and Rosalie (Merchie) Baekeland, a Belgian family of moderate circumstances. Entering school at the age of 5, he passed through the elementary schools and the Atheneum, a government high school. When old enough he entered the Ghent Municipal Technical School, where he attended evening classes in chemistry, physics, mechanics, and economics, and won a medal in each of the four subjects. Young Baekeland was such a promising student that the City of Ghent awarded him a scholarship in the University of Ghent, and he entered that university in 1880 at the age of 17. He was the youngest member of his class, but the most brilliant. In 1882 he graduated from the university as a Bachelor of Science. In two years more, or in 1884 at the age of 21, he gained the degree of Doctor of Science, maxima cum laude. Furthermore, with the aid of the City Scholarship he had received, and by teaching and serving also as a lecture assistant, he supported himself while in the university. Baekeland was inspired to do this, and so to relieve his parents of his support, he said later, by having early heard the story of Benjamin Franklin and having learned from it that a boy in humble circumstances could make his way altogether by his own efforts.
    [Show full text]