John Franklin' Rose and Its Phosphorus Uptake
Total Page:16
File Type:pdf, Size:1020Kb
MICROPROPAGATlûN OF 'JOHN FRANKLIN' ROSE AND ITS PHOSPHORUS UPTAKE A Thesis submitted ta the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the Degree of Master of Science © Jihad Abdulnour Department of Renewable Resources Macdonald Campus of McGill university 21,111 Lakeshore Raad ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9 March 1993 ABSTRACT Nodal sectlons of the W1.n ter-hardy 1 John Frankll n' rOSQ cul t l V,lr from f ield-grown plants were cul tured on a l1\o,h ( 1 t'cl r-1Ut"<1~,h 1 ~F~ and Skoog (MS) nu t r1.ent medIum. Very h.HJb levels of c, 'n LIIl1l n,li Ion from the surface of the inl tial sec t 1.011S recl\.llred th,ll pl .,11 t~, lh~ gruwn under greenhouse COnd1.tlons. pLll1t 1ets obt .1111l'd f rom subsequent subcultures were used for the fllS! t l f1ll' ln .l radiotracer experimen t wi th '2p to s tudy the !(lnet les ()f ph()~~pl1()rus (P) uptake as a funct1.on of tempera ture of the nu tt H'I1t nH'd 1 um. P uptake increased Wl th tin1e for rooted and non-root ('d p Ll!Ü lets in a Ilnear fashlon that d::-..d not rei1ch an equill.brlum v,Llup eVPIl ,I[ler" 96 hours oi. exposure. An analysls of va r iù\1Cc! rpvecd ed th,d ll\p plant lets wi th roots absorbed signiflcantl y greLller éllllOUIIls of P ,ü the 0.01 level compared w1th non-rooted plant lets at 22 n C. P uplLlke was signiflcantly h1gher al the 0.05 level, for rooted versus non rooted plantlets at 33°C. There was no Slgrllfici1nt (h[ferenc(~ in P uptake by rooted and non-rooted plantlet!3 al 3 u e. Illt f!!"dctlon between time of exposures and rootlng was found tn be! s HJJll t LCdn t. at 22°C and 33°C at the 0.01 level . 'l'he rlc!sult::i ll1<ll.c,tted thdt tlll~ root system, prevIously thought to be InefflcHmt in the nutrü~nt absorptIon, played a key role ln absorblng P from the nutrim1t medium at optimum temperature. Ll. RESUME [J, '; IY)uture~ de nOéuds prélevées sur le rosier rustique 'John f· fdnY l dl' élevé !-!n plc!ln ô.ur Gnt été mlses en culture sur un milieu t'ÎIJJd~,hJ(Jt! I~t Skou(J rnod.lfv:;. Un tùux -levé de contaminatlon a exigé q\H- lI' prÉ:l~vf.:mf~nt dt:~:; boutures so.t effectué sur des plantes cul t Ivép~:; sc)us-serrC!s. La technlqU'.~ de traçùge radioactlf a été clppll<J\ù~(~, pour lù premù}re fOls, sur .', es pousses de rose obtE'nues ln Vl t rn pdr pluslf:UL~ repiqual)es succe sifs dans le but d'étudier Li C l n~l l que' de l' absorpti on du phosr_ll.ore, en fonction de la tpmp!'rclrure d(: lù solutlon nutrltlve. "n a trouvé que le taux d' ab:,orpt ~on par les pousses enraciné\:,s et non-enracinées a augmenté de manière l.lnéaire, et n'a nas atteint un niveau d'éq\lll.lbn~ rn~/T.E.! après 96 heures de traitemc.:1t. A 22°C, les pousses enrilclll(:C>S onl absorbé slgniflcativement (au niveau 0.01) plus de phosphure, comparées aux pousses non-enraclnées. De même, à 33°C, les pLlIlh.:>~ enraclnées ont absorbé slgnificùtivement (au niveau o . 05) p lu:; de phosphore que les plan tes non-enracinées. Cependant, à 3°e, ilucune dJ fférence sJgluflcatlve dans le taux d'absorptlon du phosphore n'a été décélée entre les plantes ellracinées et les non--enrùcinées. L'anê1lyse de variance révèle une inter.let 1.on slqnlflcatlve (au niveau 0.01) entre la durée du trzlltement et l'enraClnement à 22°C et à 3"~oC. Les résultats lndiquent 'lue le système des racines, Jusqu'à présent. considéré lk1Il-fonct.lonnel d.:ms l'absorption des éléments, joue un rôle lmport~nt dans l'absorpllcr du phosphore du mllieu nutritif, sous condltlons de températ.ure optlmum. iii ACKNOWLEDGEMENTS l would like to express my strong gratltude ta my supervisor, Dr. N.N. Barthakur, for hlS guid<1nce a,~d support tht-owJhout thl') project. l am also especially grateful ta my cO-ddvl~er Dr. N.P. Arno':d for his advlce and cons.i..stent help. The techlHCLll <ISSl.st lu:l' of R. pellerin i5 gra tefully acknowl~~dged. Dr. S. Klhlnez,lllt:,h ~ '':; also thanked for his advlce on the statisllcal an~lysis. Part of this work was done ln the labor,ltor l(~S of Agricul turp Canada Experlmental Farm at l'Assomption, Québec, under the keell supervision of Dr. Arnold. l wou Id llke ta thank my wife, Linda, for her understanding and support. iv TABLE OF CONTENTS ABS'l'I<ACT ................................................................................................ ii f<~:~jIJMI·~ ........................................................................................................... .. iii A(~Kr~()WLEDr:;EMEN'I'S .............................................................................................. i v rrAI3tJE Of'" CONTENTS ........................................................................................... V LI s'r ()F" 'l'ABLES .................................................................................... " ........ viii LIST UF FIGURES •••••••••••••••••••••••••••••••••••••••••••••••• ix CHAP'I'EH I: INTRODUCTION ..••••••••••••••••••••••••••••••••••••••• 1 1 • 1 Tissue culture ................................................................ 1 1 .2 Ob]ectlves ...................................................................................... 2 CHAPTEH II: REV l EW OF LITERATURE •••••••••••••••••••••••••••••••• 3 2 . 1 Winter-hardy roses .........••.•••••••••••••••••••••••• 3 2.2 Rose ffilcropropagation ......................................... 5 2.2.1 Plant materials ...•.•...•••••••••••••••••••••.• 7 2.2.1.1 Selectlon ............................... 7 2.2.1.2 Surface disinfestation ••••••••..•••••.•• 8 2.2.2 Nutrlent medi\.lm ..........••.•..••••.••••••••••• 9 2.2.2.1 Inorganic constituents ..••••••••••••••.• 9 2.2.2.2 Organlc constltuents .•..•••••••••.••••. 1 0 2.2.3 Multiplicatlon ................................ 11 2.2.4 Rooting ....................................... 11 2.3 Phosphorus ...... .......................... 1 2 2.3. 1 Phosphorus and root system ••...••••••••••••••• 13 v -- 2.3.1 . 1 Root morphology ........................ 1 .} 2.3.1 .2 Root physiology ........................ 14 2.3.2 Phosphorus .-:lbsorpt lOIl and traI1S1oc .. l t ion ....•.. 15 2.3.3 Temperature and phosphorus uptake ............. 16 2.3.4 Radiotracer studles of phosphorus uptake ...... 18 CHAPT ER III: MATERIALS AND METHODS ............................. 20 3.1 Plant material and culture establishment ............. 20 3.2 Preparation of nutrlent media ..................•..... 22 3.3 Plant multiplication ......................•.......... 25 3.4 A pilot experlment wlth phosphorus ........•.......... 26 3.4.1 Temperature settlng ..............•.•.......... 28 3.4.2 Sample preparation ............................ 29 3.4.3 Sample cOuD~ing .....................•......... 29 3.5 Phosphorus ur. :ake experlment •......•....•............ 31 3.6 Experimental design ...........•..........••.....•.... 32 3.7 Autoradiography ............•......•.....•.••.•....... 33 3.8 Phosphorus determination in different plant parts .... 33 3.9 Dry to fresh weight ratJo ..•..............•.......... 34 CHAPTER IV: RESULTS AND DISCUSSION ...•..........•..••.......... 35 4. 1 Micropropaga t ion of roses ............•..•.•..••••.•.. 35 4.1.1 Culture establishment ......••.•..••..••..•••.. 35 4.1.2 Multlplication rate .•.......•.••..••.......•.. 39 4.1.3 Rootgrowth ........•.....•••••................ 40 4 .2 Phosphorus uptake wi th i2p •••••••••••••••••••••••••••• 42 vi 4.2.1 The pllot ex~eriment .......................... 42 4.2.2 Rate of P uptake in the main experiment ....... 44 4.2.3 Phosphorus absorption of rooted versus non-rooted plan tlets ..................................... 47 4.2.4 Phosphorus uptake by plantlets freshly cut at t h (~ i r ba ses. 52 4.2.5 Autoradiography .....................•••......• 52 4.2.6 Phosphorus dlstrlbution in plantlets ..•.•....• 52 4.2.7 Ratlo of àry to fresh weights of plantlets ...• S5 CHAPTER V: CONCLUSIONS .......•......•..••....•.••••••••••••...• 58 5.1 Selection of plant materiel for rose micropropagation58 5.2 Mlcropropagatlon of 'John Franklin' rose cultivar ...• 58 5.3 Kinellcs of phosphorus '..lptake ..........•.•....••....• 58 5.4 Future research ...................................... 59 REFERENCES •••.•.••••••••.•••••••••••••••••••••••••••••••••••••• 60 vii LIST OF TABLES Table 1 Murashige and Skoog nutrlent medlllffi versus modified nutrient medium used for ' John 't;'rLlnklln' ............. 23 Table 2 Nutr1ent medium compOS1 t 10n usen ln ' John Frankl in' propaga tion .......................................... 24 Table 3 Percent contamination of 'John Frank.lin' in vltro cultured nodal pieces colleeted from fleld-grown plants ... " .. " " " " " " " " " " " " . " " " " " " " " " " " " " .. " " " " " . " . " .... " .3t3 Table 4 Percent contamination of 'John Franklln' in vitro cultured nodal pieces colleeted from a greenhouse-grown plant."."""""""""""""""".""""""""."".""."."""."." •• " .38 Table 5 In vitro multiplieatlon rate of 'John Franklin' rose cultivar ............................................. 41 Table 6 In vitro rooting percent of 'John Franklin' rose eultlvar and survival rate ln the greenhouse .................. 41 Table 7 SClntillation counts of l2p absorbed in in vitro cultured 'John Franklin' rose plantlets eut at thel.r bas es" " " " " " " " " " " " " " " .. " " " " . " " " " " " " " n " " " " " ••• " " " " " " " • " 54 Table 8 Phosphorus conte'1t of 'John Franklln' pL:mtlets grown in vitro."""""""""""."""""""""""""""""""""""""""""""""" .54 Table 9 Percent dry weight of 'John Franklin' plantlets grown in vitro.""""""""""" .. " .. """""""""""""""""""""""""""""""" .56 viii LIST