Are Three-Dimensional Spider Webs Defensive Adaptations?

Total Page:16

File Type:pdf, Size:1020Kb

Are Three-Dimensional Spider Webs Defensive Adaptations? Ecology Letters, (2003) 6: 13-18 LETTER Are three-dimensional spider webs defensive adaptations? Abstract Todd A. Blackledge1*, Jonathan Spider webs result from complex behaviours that have evolved under many selective A. Coddington2 and Rosemary pressures. Webs have been primarily considered to be foraging adaptations, neglecting 1 G. Gillespie the potential role of predation risk in the evolution of web architecture. The ecological 1 University of California - success of spiders has been attributed to key innovations in how spiders use silk to Berkeley, Environmental capture prey, especially the invention of chemically adhesive aerial two-dimensional orb Science, Policy and webs. However, araneoid sheet web weavers transformed the orb architecture into three- Management, Division of Insect dimensional webs and are the dominant group of aerial web-building spiders world-wide, Biology, 201 Wellman Hall, both in numbers and described species diversity. We argue that mud-dauber wasps are Berkeley, CA 94720-3112, USA 2National Museum of Natural major predators of orbicularian spiders, and exert a directional selective pressure to History NHB 105, Smithsonian construct three-dimensional webs such that three-dimensional webs are partly defensive Institution, Washington, DC, innovations. Furthermore, patterns of diversification suggest that escape from wasp 20560-0105, USA predators may have facilitated diversification of three-dimensional web-building spiders. *Correspondence and present address: Department of Keywords Entomology, Comstock Hall, Adaptive radiation, Araneidae, key innovation, Linyphiidae, orb web, sheet web, silk, Cornell University, Ithaca, NY Sphecidae, Theridiidae. 14853, USA E-mail: [email protected] Ecology Utters (2003) 6: 13-18 1982), but may better protect spiders against predators (see INTRODUCTION below). Diversification of arthropods and their subsequent dom- Construction of spider webs involves a complex series of inance of earth's biodiversity have been attributed to shifts behaviours that have evolved under many selective factors, and expansions in exploitation of food (Ehrlich & Raven among which predation risk has received little consideration. 1964; Farrell & Mitter 1994). Within spiders, whose Here, we examine the hypothesis that 3-D webs may be 37 000+ described species are all predators of arthropods, adaptations against predation by mud-dauber wasps that innovations in the use of silk in foraging, such as specialize upon spiders in the Orbiculariae. chemically adhesive two-dimensional (2-D) orb webs, may have been especially important (Bond & Opell METHODS 1998). Aerial orb webs allow exploitation of abundant flying insects, require little silk, and allow spiders to change Six sphecid genera hunt spiders exclusively (Bohart & foraging patches efficiently through recycling of silk Menke 1976), capture 20 or more spiders daily for larval (Janetos 1982; Shear 1986). food (Coville 1987; Rayor 1997; Blackledge & Wenzel 2001), However, 2-D orb weaving is an ancient behaviour and occur in most terrestrial ecosystems. Because paralysed (Coddington & Levi 1991; Griswold et d. 1998), and the spiders can be recovered from wasp nests, selection on araneoid sheet web weavers have transformed the orb spider defensive behaviours can be elucidated by comparing architecture into typically three-dimensional (3-D) sheet or behavioural phenotypes of prey with the background tangle webs (Fig. 1; Coddington & Levi 1991; Griswold frequency of spiders in the habitat. et al. 1998). This change is associated with a 43% increase in We compiled all known captures of spiders by sphecid described species diversity of araneoid sheet web weavers wasps from studies published over the last century. These (Platnick 2001) and a 400% increase in numerical abundance studies encompassed a variety of ecosystems from around in ecosystems across the world (see below). 3-D webs are the world. Several techniques were used to collect wasp not recycled daily, constraining spider mobility (Janetos prey, mainly excavation of provisioned prey from natural ©2003 Blackwell Publishing Ltd/CNRS 14 T. A. Blackledge, J. A. Coddington and R. G. Gillespie Figure 1 Two types of aerial spider webs, (a) Two-dimensional orb webs provide spiders with very efficient traps to capture flying insects and the silk is easily recycled from day to day. However, orb-weaving spiders must rest either at the centres of webs where spiders are vulnerable visually and physically to predators or in retreats next to webs, (b) The 'araneoid sheet web weavers' build three-dimensional sheet or tangle webs. These relatively permanent webs surround spiders with three-dimensional networks of silk that can give advanced warning about attacks by predators or physically block predators. and wooden tfap nests, but also opportunistic observations Other spiders included non-orbicularian taxa from 24 on burrow-nesting taxa. These data collectively provide the families, of which only Agelenidae (4 prey), Dictynidae best available evidence on the threat predatory wasps pose (197 prey), and Pholcidae (18 prey) typically build webs. to spiders, but are biased in various ways, particularly by discrepancies in sample sizes between wasp genera. How- RESULTS ever, within each genus the relative frequencies of spider behavioural phenotypes probably reflect wasp prey prefer- We recorded 30 375 records of identified spider prey from ences with reasonable accuracy. 70 publications (130 observations differentiated by wasp We used faunal surveys to estimate background frequen- species and/or localities) and 164 118 records of potential cies of behavioural phenotypes of potential spider prey. prey available in habitats from 26 faunal surveys. Aerial web- Fifty percent of surveys (70% of all data), used standardized building orbicularians comprised 76% of all prey (Table 1), techniques, including direct searching, beating, sweeping, most of which built the ancestral 2-D orb architectures pitfall trapping, canopy fogging, and litter sifting (see (Table 1 and Fig. 2a). Araneoid sheet web weavers, with Coddington et al. 1991, 1996; Sorensen et al. 2002 for their 3-D web architecture, accounted for only 17% of methodology). These methods are not ideal for estimating predation within the Orbiculariae, even though these spiders relative abundances of spiders, but are probably least biased constitute 81% of the numerical abundance and 59% of within web-building spiders at shrub, herb and ground species diversity within the Orbiculariae (Fig. 2a). Wasps levels, which is the comparison of interest here. We captured more orb-weavers than araneoid sheet web classified spiders into three behavioural phenotypes (Figs 1 weavers in 86 of 111 studies (sign test P < 0.0001; 19 and 2b). (1) 3-D web-builders included a single apomorphic studies lacked orbicularian taxa), even though sheet web clade within the Orbiculariae, the 'araneoid sheet web weavers were more abundant in 21 of 26 faunal surveys weavers', which construct diverse but usually highly three- (sign test P < 0.005). There was a significant difference in dimensional webs. (2) 2-D web-builders included all other the numbers of 2-D vs. 3-D web weaving spiders in each orbicularian taxa that retain plesiomorphic orb webs. (3) study when comparing the prey captured by wasps and ©2003 Blackwell Publishing Ltd/CNRS Spider webs as predator defences 15 (a) (C^tests, P < 0.05). Sphecid wasps are significantly biased web architecture towards two-dimensional orb weavers as prey. | two-dimensional H three-dimensional DISCUSSION C. M No doubt three-dimensional web architectures influence * 50 many aspects of spider biology, which we cannot discuss or even begin to enumerate here. However, these data are consistent with the hypothesis that 3-D web architectures provide a defensive advantage against wasps compared to available to hunting wasps captured by hunting wasps plesiomorphic 2-D orb webs. It is further plausible that 3-D web architecture may have originated in part due to selective pressures from wasps and that escape from wasp predation may have facilitated the evolutionary diversification of araneoid sheet web weavers. The role of predatory wasps in web-building spider evolution has not been considered heretofore. • 65 mya Wasps are a significant danger to spiders Invertebrates, such as sphecid wasps, are often primary predators of web-building spiders (Coville 1987; Blackledge & development of three-dinicnsuMKil Wenzel 2001). Pompilid wasps capture up to 99% of adult WCDS& burrowing wolf spiders (McQueen 1978). One study that first sphecid wasp specialists that prey •125 mya considered multiple predatory taxa found that wasps (Pomp- on spiders ilidae and Sphecidae) accounted for 93% of all attacks on colonial orb-weaving spiders in Mexico, with 500 h of biculariae - first aerial two- observation yielding 465 attacks by 15 or more species of dimensional webs wasps (Rayor 1997). In small colonies, individuals risked a 1.5% chance of capture by wasps each day (Uetz & Hieber 1994). Finally, outbreaks of pompilid wasps reduced island Figure 2 Wasps exert directional selection that favours three- populations of web-building spiders by 54•77% (Polis et al. dimensional web architectures, (a) 'Araneoid sheet web weavers' 1998). are 400% more abundant than ancestral orb-weaving spiders in the Birds also prey on spiders (e.g. Rypstra 1984; Gunnarsson environment, but orb-weaving spiders are 476% more common as 1996), but many studies have failed to find a significant
Recommended publications
  • David Penney
    ARTÍCULO: NEW EXTANT AND FOSSIL DOMINICAN REPUBLIC SPIDER RECORDS, WITH TWO NEW SYNONYMIES AND COMMENTS ON TAPHONOMIC BIAS OF AMBER PRESERVATION David Penney Abstract: A collection of 23 identifiable extant spider species from the Dominican Republic revealed eight (= 35%) new species records for the country and five (= 22%) for the island of Hispaniola. The collection includes the first record of the family Prodidomidae from Hispaniola. Phantyna guanica (Gertsch, 1946) is identified as a junior synonym of Emblyna altamira (Gertsch & Davis, 1942) (Dictynidae) and Ceraticelus solitarius Bryant, 1948 is identified as a junior synonym of C. paludigenus Crosby & Bishop, 1925 (Linyphiidae). Such a large proportion of new records in such a small sample demonstrates that the extant spider fauna of the Dominican Republic is poorly known ARTÍCULO: and is worthy of further investigation, particularly in light of its potential for quantifying New extant and fossil Dominican bias associated with the amber-preserved fauna. New records of fossil spider species Republic spider records, with two preserved in Miocene amber are provided. The taphonomic bias towards a significantly new synonymies and comments higher number of male compared to female spiders as inclusions in Dominican Republic on taphonomic bias of amber amber is a genuine phenomenon. preservation Key words: Arachnida, Araneae, Dictynidae, Linyphiidae, Miocene, palaeontology, taphonomy, taxonomy, Hispaniola. David Penney Taxonomy: Department of Earth Sciences Emblyna altamira (Gertsch & Davis,
    [Show full text]
  • Howard Associate Professor of Natural History and Curator Of
    INGI AGNARSSON PH.D. Howard Associate Professor of Natural History and Curator of Invertebrates, Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086 E-mail: [email protected]; Web: http://theridiidae.com/ and http://www.islandbiogeography.org/; Phone: (+1) 802-656-0460 CURRICULUM VITAE SUMMARY PhD: 2004. #Pubs: 138. G-Scholar-H: 42; i10: 103; citations: 6173. New species: 74. Grants: >$2,500,000. PERSONAL Born: Reykjavík, Iceland, 11 January 1971 Citizenship: Icelandic Languages: (speak/read) – Icelandic, English, Spanish; (read) – Danish; (basic) – German PREPARATION University of Akron, Akron, 2007-2008, Postdoctoral researcher. University of British Columbia, Vancouver, 2005-2007, Postdoctoral researcher. George Washington University, Washington DC, 1998-2004, Ph.D. The University of Iceland, Reykjavík, 1992-1995, B.Sc. PROFESSIONAL AFFILIATIONS University of Vermont, Burlington. 2016-present, Associate Professor. University of Vermont, Burlington, 2012-2016, Assistant Professor. University of Puerto Rico, Rio Piedras, 2008-2012, Assistant Professor. National Museum of Natural History, Smithsonian Institution, Washington DC, 2004-2007, 2010- present. Research Associate. Hubei University, Wuhan, China. Adjunct Professor. 2016-present. Icelandic Institute of Natural History, Reykjavík, 1995-1998. Researcher (Icelandic invertebrates). Institute of Biology, University of Iceland, Reykjavík, 1993-1994. Research Assistant (rocky shore ecology). GRANTS Institute of Museum and Library Services (MA-30-19-0642-19), 2019-2021, co-PI ($222,010). Museums for America Award for infrastructure and staff salaries. National Geographic Society (WW-203R-17), 2017-2020, PI ($30,000). Caribbean Caves as biodiversity drivers and natural units for conservation. National Science Foundation (IOS-1656460), 2017-2021: one of four PIs (total award $903,385 thereof $128,259 to UVM).
    [Show full text]
  • Ontogenetic Changes in the Web of Epeirotypus Sp. (Araneae, Theridiosomatidae) Author(S): William G
    American Arachnological Society Ontogenetic Changes in the Web of Epeirotypus sp. (Araneae, Theridiosomatidae) Author(s): William G. Eberhard Source: Journal of Arachnology, Vol. 14, No. 1 (Spring, 1986), pp. 125-128 Published by: American Arachnological Society Stable URL: http://www.jstor.org/stable/3705562 . Accessed: 07/09/2011 09:12 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Arachnological Society is collaborating with JSTOR to digitize, preserve and extend access to Journal of Arachnology. http://www.jstor.org 1986. The Journal of Arachnology 14:125 Suzuki, S. 1976a. Cytotaxonomy in some species of the genus Leiobunum (Opiliones, Arachnida). Proc. Japan Acad., 52:134-136. Suzuki, S. 1976b. The genus Leiobunum C. L. Koch of Japan and adjacent countries (Leiobunidae, Opiliones, Arachnida). J. Sci. Hiroshima Univ., Ser. B, Div. 1, 26:187-260. Tsurusaki, N. 1982. Chromosomes of the Japanese gagrellid, Paraumbogrella huzitai Suzuki (Gagrellidae, Opiliones, Arachnida). Bull. British Arachnol. Soc, 5:397-398. Tsurusaki, N. 1985. Taxonomic revision of the Leiobunum curvipalpe-group (Arachnida, Opiliones, Phalangiidae). I. hikocola-, hiasai-, kohyai-, and platypenis- subgroups. J. Fac Sci., Hokkaido Univ., Ser. VI, Zool., 24:1-42. Nobuo Tsurusaki, Zoological Institute, Faculty of Science, Hokkaido University, Sapporo 060, Japan and Robert G.
    [Show full text]
  • Araneae, Theridiidae)
    Phelsuma 14; 49-89 Theridiid or cobweb spiders of the granitic Seychelles islands (Araneae, Theridiidae) MICHAEL I. SAARISTO Zoological Museum, Centre for Biodiversity University of Turku,FIN-20014 Turku FINLAND [micsaa@utu.fi ] Abstract. - This paper describes 8 new genera, namely Argyrodella (type species Argyrodes pusillus Saaristo, 1978), Bardala (type species Achearanea labarda Roberts, 1982), Nanume (type species Theridion naneum Roberts, 1983), Robertia (type species Theridion braueri (Simon, 1898), Selimus (type species Theridion placens Blackwall, 1877), Sesato (type species Sesato setosa n. sp.), Spinembolia (type species Theridion clabnum Roberts, 1978), and Stoda (type species Theridion libudum Roberts, 1978) and one new species (Sesato setosa n. sp.). The following new combinations are also presented: Phycosoma spundana (Roberts, 1978) n. comb., Argyrodella pusillus (Saaristo, 1978) n. comb., Rhomphaea recurvatus (Saaristo, 1978) n. comb., Rhomphaea barycephalus (Roberts, 1983) n. comb., Bardala labarda (Roberts, 1982) n. comb., Moneta coercervus (Roberts, 1978) n. comb., Nanume naneum (Roberts, 1983) n. comb., Parasteatoda mundula (L. Koch, 1872) n. comb., Robertia braueri (Simon, 1898). n. comb., Selimus placens (Blackwall, 1877) n. comb., Sesato setosa n. gen, n. sp., Spinembolia clabnum (Roberts, 1978) n. comb., and Stoda libudum (Roberts, 1978) n. comb.. Also the opposite sex of four species are described for the fi rst time, namely females of Phycosoma spundana (Roberts, 1978) and P. menustya (Roberts, 1983) and males of Spinembolia clabnum (Roberts, 1978) and Stoda libudum (Roberts, 1978). Finally the morphology and terminology of the male and female secondary genital organs are discussed. Key words. - copulatory organs, morphology, Seychelles, spiders, Theridiidae. INTRODUCTION Theridiids or comb-footed spiders are very variable in general apperance often with considerable sexual dimorphism.
    [Show full text]
  • Phylogeny of Entelegyne Spiders: Affinities of the Family Penestomidae
    Molecular Phylogenetics and Evolution 55 (2010) 786–804 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny of entelegyne spiders: Affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae) Jeremy A. Miller a,b,*, Anthea Carmichael a, Martín J. Ramírez c, Joseph C. Spagna d, Charles R. Haddad e, Milan Rˇezácˇ f, Jes Johannesen g, Jirˇí Král h, Xin-Ping Wang i, Charles E. Griswold a a Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118, USA b Department of Terrestrial Zoology, Nationaal Natuurhistorisch Museum Naturalis, Postbus 9517 2300 RA Leiden, The Netherlands c Museo Argentino de Ciencias Naturales – CONICET, Av. Angel Gallardo 470, C1405DJR Buenos Aires, Argentina d William Paterson University of New Jersey, 300 Pompton Rd., Wayne, NJ 07470, USA e Department of Zoology & Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa f Crop Research Institute, Drnovská 507, CZ-161 06, Prague 6-Ruzyneˇ, Czech Republic g Institut für Zoologie, Abt V Ökologie, Universität Mainz, Saarstraße 21, D-55099, Mainz, Germany h Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic i College of Life Sciences, Hebei University, Baoding 071002, China article info abstract Article history: Penestomine spiders were first described from females only and placed in the family Eresidae. Discovery Received 20 April 2009 of the male decades later brought surprises, especially in the morphology of the male pedipalp, which Revised 17 February 2010 features (among other things) a retrolateral tibial apophysis (RTA).
    [Show full text]
  • Common Kansas Spiders
    A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas.
    [Show full text]
  • Dippenaar MARION.Qxd
    The biodiversity and species composition of the spider community of Marion Island, a recent survey (Arachnida: Araneae) T.T. KHOZA, S.M. DIPPENAAR and A.S. DIPPENAAR-SCHOEMAN Khoza, T.T., S.M. Dippenaar and A.S. Dippenaar-Schoeman. 2005. The biodiversity and species composition of the spider community of Marion Island, a recent survey (Arach- nida: Araneae). Koedoe 48(2): 103–107. Pretoria. ISSN 0075-6458. Marion Island, the larger of the Prince Edward Islands, lies in the sub-Antarctic bio- geographic region in the southern Indian Ocean. From previous surveys, four spider species are known from Marion. The last survey was undertaken in 1968. During this study a survey was undertaken over a period of four weeks on the island to determine the present spider diversity and to record information about the habitat preferences and general behaviour of the species present. Three collection methods (active search, Tull- gren funnels and pitfall traps) were used, and spiders were sampled from six habitat sites. A total of 430 spiders represented by four families were collected, Myro kergue- lenesis crozetensis Enderlein, 1909 and M. paucispinosus Berland, 1947 (Desidae), Prinerigone vagans (Audouin, 1826) (Linyphiidae), Cheiracanthium furculatum Karsch, 1879 (Miturgidae) and an immature Salticidae. The miturgid and salticid are first records. Neomaso antarticus (Hickman, 1939) (Linyphiidae) was absent from sam- ples, confirming that the species might have been an erroneous record. Key words: Araneae, biodiversity, Desidae, Linyphiidae, Marion Island, Miturgidae, Salticidae, spiders. T.T. Khoza & S.M. Dippenaar, School of Molecular and Life Sciences, University of Limpopo, Private Bag X1106, Sovenga, 0727 Republic of South Africa; A.S.
    [Show full text]
  • Taxonomic Revision and Phylogenetic Hypothesis for the Jumping Spider Subfamily Ballinae (Araneae, Salticidae)
    UC Berkeley UC Berkeley Previously Published Works Title Taxonomic revision and phylogenetic hypothesis for the jumping spider subfamily Ballinae (Araneae, Salticidae) Permalink https://escholarship.org/uc/item/5x19n4mz Journal Zoological Journal of the Linnean Society, 142(1) ISSN 0024-4082 Author Benjamin, S P Publication Date 2004-09-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2004? 2004 1421 182 Original Article S. P. BENJAMINTAXONOMY AND PHYLOGENY OF BALLINAE Zoological Journal of the Linnean Society, 2004, 142, 1–82. With 69 figures Taxonomic revision and phylogenetic hypothesis for the jumping spider subfamily Ballinae (Araneae, Salticidae) SURESH P. BENJAMIN* Department of Integrative Biology, Section of Conservation Biology (NLU), University of Basel, St. Johanns-Vorstadt 10, CH-4056 Basel, Switzerland Received July 2003; accepted for publication February 2004 The subfamily Ballinae is revised. To test its monophyly, 41 morphological characters, including the first phyloge- netic use of scale morphology in Salticidae, were scored for 16 taxa (1 outgroup and 15 ingroup). Parsimony analysis of these data supports monophyly based on five unambiguous synapomorphies. The paper provides new diagnoses, descriptions of new genera, species, and a key to the genera. At present, Ballinae comprises 13 nominal genera, three of them new: Afromarengo, Ballus, Colaxes, Cynapes, Indomarengo, Leikung, Marengo, Philates and Sadies. Copocrossa, Mantisatta, Pachyballus and Padilla are tentatively included in the subfamily. Nine new species are described and illustrated: Colaxes horton, C. wanlessi, Philates szutsi, P. thaleri, P. zschokkei, Indomarengo chandra, I.
    [Show full text]
  • Araneae, Linyphiidae)
    Zootaxa 3841 (1): 067–089 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3841.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:6711CA40-1152-4833-98D0-9930E2B5DD17 New species and records of linyphiid spiders from Laos (Araneae, Linyphiidae) ANDREI V. TANASEVITCH Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect, 33, Moscow 119071, Russia. E-mail: [email protected] Abstract Recent linyphiid collections from Laos as well as some additional specimens from Thailand and West Malaysia are ex- amined. Six species and two genera are described as new to science: Bathyphantes paracymbialis n. sp., Nematogmus asi- aticus n. sp., Theoa hamata n. sp.; Asiagone n. gen. is erected for Asiagone signifera n. sp. (type species) and A. perforata n. sp.; Laogone n. gen. is established for Laogone cephala n. sp. The following new synonyms are proposed: Gorbothorax Tanasevitch, 1998 n. syn. = Nasoona Locket, 1982; Paranasoona Heimer, 1984 n. syn. and Millplophrys Platnick, 1998 n. syn. = Atypena Simon, 1894; Gorbothorax ungibbus Tanasevitch, 1998 n. syn. = Oedothorax asocialis Wunderlich, 1974; Hylyphantes birmanicus (Thorell, 1895) n. syn. = H. graminicola (Sundevall, 1830). The following new combina- tions are proposed: Atypena cirrifrons (Heimer, 1984) n. comb. ex from Paranasoona; A. pallida (Millidge, 1995) and A. crocatoa (Millidge, 1995) both n. comb. ex Millplophrys; Nasoona asocialis (Wunderlich, 1974) n. comb. ex Oedothorax Bertkau, 1883; N. asocialis (Wunderlich, 1974), N. comata (Tanasevitch, 1998), N. conica (Tanasevitch, 1998), N. setifera (Tanasevitch, 1998) and N. wunderlichi (Brignoli, 1983), all n.
    [Show full text]
  • Spiders of Alberta: from Agelenidae to Uloboridae
    Spiders of Alberta: from Agelenidae to Uloboridae Dr. Heather Proctor University of Alberta for the Edmonton Nature Club, 7 Feb 2019 (selected slides for posting; photos (c) H. Proctor unless otherwise noted) Canadian and Albertan diversity • 1477 species of spiders in 45 families known from Canada – may be up to 1800 spp. • 657 species in 28 families known from Alberta 631 of the 657 species are included here from https://www.albertaparks.ca/media/6255191/list-of-elements-ab-invertebrates-spiders.xlsx The 28 families of spiders known from Alberta • no mygalomorph spiders in AB, only araneomorph • Division Synspermiata – Pholcioidea: Pholcidae, Telemidae • Division Entelegynae – Araneoidea: Theridiidae, Araneidae, Linyphiidae, Mysmenidae, Mimetidae, Tetragnathidae – Uloboroidea: Uloboridae – Titanoecoidea: Titanoecidae – Amaurobioidea: Amaurobiidae – Desoidea: Desidae – Agelenoidea: Dictynidae, Cybaeidae, Hahniidae, Agelenidae – Lycosoidea: Oxyopidae, Thomisidae, Pisauridae, Lycosidae – Salticoidea: Salticidae, Philodromidae, Corinnidae, Eutichuridae – Anyphaenoidea: Anyphaenidae, Clubionidae – Liocranoidea: Liocranidae – Trochanteroidea: Phrurolithidae, Gnaphosidae mygalomorphs from BC, Antrodiaetus sp. Linyphiidae 261 Gnaphosidae 51 Lycosidae 50 Salticidae 45 Number of species known Dictynidae 36 from each family in Alberta Thomisidae 37 Theridiidae 36 (based on Robb Bennett’s Araneidae 32 personal list, 7 Feb 2019) Philodromidae 29 Clubionidae 17 Tetragnathidae 14 Hahniidae 10 Amaurobiidae 7 Agelenidae 6 Corinnidae 3 Phrurolithidae
    [Show full text]
  • Hybrid Spider Silk with Inorganic Nanomaterials
    nanomaterials Review Hybrid Spider Silk with Inorganic Nanomaterials Aleksandra P. Kiseleva 1, Grigorii O. Kiselev 1, Valeria O. Nikolaeva 1, Gulaim Seisenbaeva 2 , Vadim Kessler 2,* , Pavel V. Krivoshapkin 1 and Elena F. Krivoshapkina 1,* 1 SCAMT Institute, ITMO University, Lomonosova St. 9, 191002 Saint Petersburg, Russia; [email protected] (A.P.K.); [email protected] (G.O.K.); [email protected] (V.O.N.); [email protected] (P.V.K.) 2 Department of Molecular Sciences, Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-75007 Uppsala, Sweden; [email protected] * Correspondence: [email protected] (V.K.); [email protected] (E.F.K.); Tel.: +46-186-71-541 (V.K.); +7-981-951-18-92 (E.F.K.) Received: 12 August 2020; Accepted: 14 September 2020; Published: 16 September 2020 Abstract: High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components.
    [Show full text]
  • Evolution of the Orb-Weaving Spiders
    Issues in Evolution Project - Fall 2016 Evolution of the Orb - Weaving Spiders Angela Harvey Braselton, Georgia, USA Miami University Ohio Global Field Program Introduction Orb weavers are spiders that spin geometric webs consistin g of several different types of silk for the frame, the radial lines, and the sticky spiral capture threads (Hormiga & Griswold, 2014). These are the webs that most people think of when they hear the word “spider”. Orb weavers are part of the group of spid ers known as Orbiculariae, an informal group containing the superfamilies Deinopoidea and Araneoidea (Brunetta & Craig, 2010; Hormiga & Griswold, 2014). The unique nature of the webs, the behaviors involved, and the chemical composition of the silks produ ced by these spiders gives an interesting view of their evolution (Tian & Lewis, 2005). Spiders are classified as arachnids, but spiders are the only arachnids to have abdominal spinnerets, allowing them more control of their silk (see Appendices 1 & 2). Both male and female spiders use silk throughout their lifetimes (Brunetta & Craig, 2010). This is unique in the world of arthropods, making spider silk useful in identifying and tracking spider relationships by studying the molecular proteins of the s ilk, the purpose of the silk, and the behaviors that accompany those purposes (Dimitrov et al., 2012). Prehistory As the aquatic arthropods moved out of the sea onto land more than 450 million years ago, many made their homes underground to avoid predators, help stave off dehydration, and reduce the effects of ultraviolet radiation. Plants were sparse and fairly small in this era, giving little protection.
    [Show full text]