TurkJAgricFor 26(2002)261-268 ©TÜB‹TAK

ComparisonofandRunoffPredictedbyWEPPandAGNPS ModelsUsingaGeographicInformationSystem

HalilKIRNAK UniversityofHarran,FacultyofAgriculture,AgriculturalStructuresandIrrigation,63200,fianl›urfa-TURKEY

Received:08.10.2001

Abstract: TheWaterErosionPredictionProject(WEPP)modelandtheAgriculturalNon-Point-SourcePollutionModel(AGNPS) wereusedinconjunctionwithageographicinformationsystem(GIS)databasetopredictrunoffanddischargesforRock Creekwatershed,anagriculturalwatershedinOhio,USA.Observedandpredictedvalueswerecomparedforselectedstormevents in1988and1990.ThestatisticalevaluationoftheWEPPandAGNPSmodelsshowedthatWEPPpredictedaveragerunoff,peak runoffandsedimentyieldbetterthanAGNPS.WEPPandAGNPSoverpredictedpeakrunoffratescomparedtoobserveddataby 15.5%and26.5%,respectively.Thet-testshowedthattherewasnosignificantstatisticaldifferencebetweenmeasuredand predictedrunoffandsedimentdataforbothmodels(at ∝ =0.05level).Theaveragerootmeansquareerrorbetweenobserved andpredictedaveragerunoffwas11.5m 3 s-1 and14m 3 s-1 forWEPPandAGNPS,respectively.WhileAGNPSunderestimated averagesedimentdischargeby17%,WEPPoverestimatedaveragesedimentloadby37%.Withcarefulparameterization,thestudy demonstratedthatWEPPandAGNPScouldbeusedtosimulaterunoffandsedimentinagriculturalwatersheds.

KeyWords: Modeling,WEPP,AGNPS,Surfacerunoff,erosion.

Co¤rafiBilgiSistemleriYard›m›ylaErozyonveYüzeyAk›flTahminindeKullan›lanWEPPve AGNPSModellerininKarfl›laflt›r›lmas›

Özet: WEPPveAGNPSmodelleri,co¤rafibilgisistemiilebirlikte,Ohio-USA’dayeralanRockCreektar›msalhavzas›ndakiyüzeyak›fl ilebirlikteerozyonuntahminedilmesindekullan›lm›flt›r.Bilgisayarsimülasyonu,1988ve1990y›llar›aras›ndagözlenenvetah min edilenverilerk›yaslanarakyap›lm›flt›r.IstatistikselanalizlerWEPPmodelininortalamayüzeyak›fl,pikak›flvesedimentmikta r›n› AGNPSmodelinegöredahaiyitahminetti¤inigöstermifltir.WEPPveAGNPSmodelleripikyüzeyak›fl›s›ras›yla%15.5ve26.5 oran›ndafazlatahminetmifltir.Yap›lant-testi,ölçülenvemodeltaraf›ndantahminedilenyüzeyak›flvesedimentverileriaras›nda(∝ =0.05seviyesinde)istatistikselbirfarkolmad›¤›n›göstermifltir.Ortalamayüzeyak›fltahminindeWEPPveAGNPSmodellerininhata karelerortamas›s›ras›yla11.5m 3 s-1 ve14m 3 s-1 olarakbulunmufltur.AGNPSmodelierozyonu%17oran›ndadahaaztahmin ederkenWEPPmodelisedimenti%36oran›ndafazlatahminetmifltir.Buçal›flmamodelgirdilerinindikkatlibirflekildebelirlenm esi kofluluyla,WEPPveAGNPSmodellerinintar›msalhavzalardakiyüzeyak›flvesedimenttayinindekullan›labilineceginigöstermifltir .

AnahtarSözcükler:Modelleme,Wepp,Agnps,Yüzeyak›fl,Toprakerozyonu.

Introduction spatialvariabilityofprocessesandwatershed Nonpointsourcepollutantmodelingisthemostwidely charcteristics.Adistributedparametermodelactsdirectly usedandeffectivetoolforsoilconservationplanningand onthespatiallydistributeddataandisverysuitablefor designduetothedifficultyinmonitoringtheinfluenceof modelinghydrologictransportprocessesaffectingwater eachspecificmanagementpracticeinadiverseecosystem. quality.HydrologicalmodelinglinkedwithGIShelps Inordertosimulatecomplexinteractionsofhydrologic decisionmakersbyallowingthemtodotheirworkmore processesandtodeterminesedimentandrunofffrom quicklyandefficiently(Goodchild,1992). agriculturalwatershed,manywaterqualitycomputer TheobjectiveofthisstudywastoevaluatetheWEPP simulationmodelshavebeendeveloped(Maidment, andAGNPSwatershedmodelpredictionsofrunoffand 1991).Thesecanbeclassifiedaslumpedordistributed sedimentyieldsrelativetomeasureddataontheRock parametermodels.Alumpedmodelisexpressedby Creekwatershedoutletconsideringdifferentwatershed ordinarydifferentialequationstakingnoaccountofthe sizeresolutions.

261 ComparisonofErosionandRunoffPredictedbyWEPPandAGNPSModelsUsingaGeographicInformationSystem

MaterialsandMethods anypointbetweencellsmaybeexamined.Aweaknessof ThestudywasconductedfortheRockCreek thegrid-cellmethodisthatsquareunitsareusedto watershedlocatedinSenecaCounty,Ohio,USA.Thetotal representtheirregularshapedboundariesofthephysical watershedareaisabout95km 2;itisasubwatershedof data.Approximationofthephysicalcharacteristicsofthe theSanduskyRiverwatershedanddischargesintoLake watershedthroughthecellrepresentationleadstoinput Erie.Thewatershedhastillplainwithundulatingor errors.TheAGNPSmodel,unlikemanywatershed flattopography,andabout80%ofthelandisunder models,isanevent-orientedmodel(Youngetal.,1989). agriculturalproduction.Sedimentloadsandstreamflow Procedures weremeasuredatthewatershedoutletbytheWater InordertoruntheAGNPSandWEPPwatershed QualityLaboratoryatHeidelbergCollegeatTiffen,Ohio. models,themethodologydevelopedbyYoungetal. WEPPModel (1989)andGowda(1996)wereused,respectively.The TheWEPPwatershedmodel,aprocess-basedand WEPPandAGNPSmodelswereappliedtotheRock distributedparametercomputersimulationmodel,was Creekwatershedbycreatingsubwatershedsorcellsizes developedtopredicterosioneffectsfromagricultural (grids),respectively,whoseareaswere50,100,and150 managementpracticesandtoaccommodatespatialand ha.AGISdatabaseconsistingofsoiltype,slope,landuse temporalvariabilityintopography,soilproperties,and andmanagementpracticewasdevelopedforeachbasic landuseconditionswithinsmallagriculturalwatersheds unitusingARC/INFO.IntheapplicationofWEPPtoRock oflessthan260ha(Ascoughetal.,1994).Theerosion Creekwatershed,aclassificationtechniqueinvolving componentoftheWEPPmodelusesasteady-state HydrologicalResponseUnits(HRUs)andTransformed sedimentcontinuityequationasthebasisfortheerosion HydrologicalResponseUnits(THRUs)wasused. computions.WEPPconsidersonlyHortonianfloworflow Inordertomakealogicalcomparison,bothmodels thatoccurswhentherainfallrateexceedstheinfiltration wererunforselectedstormevents.Thedigitalelevation rate.Themodelusestwomethodsofcomputingthepeak model(DEM)oftheRockCreekwatershedwasusedto discharge:asemi-analyticalsolutionofthekinematic gettheboundariesofeachsubwatershedorgrid.The wavemodelandanapproximationofthekinematicwave drainagenetworklayerusedfordevelopingtheDEMwas model.ThefirstmethodisusedwhenWEPPisrunin obtainedfromtheUnitedStatesEnvironmental singleeventmodewhilethesecondisusedwhenWEPP ProtectionAgency(USEPA).AsoillayerfortheRock isrunincontinuoussimulationmode(Ascoughetal., CreekwatershedwasextractedfromtheStateSoil 1994;FlanaganandLivingston,1995). GeographicDatabase(STATSGO),adigitalsoildatabase AGNPSModel inARC/INFOformat.Allrequiredsoilinputdataforthe AGNPSandWEPPmodelswerederivedfromtheMap AGNPSwasdevelopedtoanalyzeandprovide UnitUseFile(MUUF),anNRCS(NaturalResources estimatesofrunoffwaterquality,andspecificallyto ConservationService,1994)soilsdatabase.The evaluateandnutrientsinrunofffrom agriculturalmanagementpracticeandlandusedatasets agriculturalwatersheds(20,000haorlarger)fora fortheRockCreekwatershedwereobtainedfrom specificstormevent(Maidment,1991).Thebasicmodel previousstudiesconductedbyGowda(1996)andVan componentsinclude,erosion,sediment Deventeretal.(1994).Whilecreatingtheclimatefileof transport,andchemicaltransport.Inthehydrology theWEPPmodel,astochasticweathergeneratorcalled component,runoffvolumeiscalculatedbytheSoil CLIGENwasused.However,whilerunningtheAGNPS ConservationService(SCS)curvenumberprocedure. model,theonlyrequiredclimatedata(rainfall)were ErosioniscomputedfromtheModifiedUniversalSoil obtaineddirectlyfromalocalweatherstationnearthe LossEquation(MUSLE)(Maidment,1993;Youngetal., basin.InthedeterminationoftheSCScurvenumberfor 1994).Anintriguingaspectofthemodelisthegrid-cell AGNPSmodel,landuse,tillage,andsoilGISlayerswere methodusedforrepresentingspatiallydistributed combinedinARC/INFOformatusingtheINTERSECT physicalandsimulateddata.Runoffandsedimentare overlaycommand;thecalculatedareaweightedcurve routedfromtheheadwatersofthewatershedtoits numberswereassignedtoallofthecellunitsfor50, outletthroughcellsinastepwisemannersothatflowat 100,and150haresolution.Theslopeandflowdirection

262 H.KIRNAK

wasextractedfromtheDEMusingtheARC/INFO ResultsandDiscussion functions. ThepredictionresultsoftheWEPPandAGNPS ModelEvaluation computermodelsforeventsimulationareshownin TheWEPPandAGNPSwatershedmodelresponses Figures1through6.Theresultsoft-testandlinear werecomparedtoeachotherandtotheobserveddataat regressionanalysisarepresentedinTables1,2and3. theoutletofthewatershed.Thet-statisticwasusedfor Theaveragemeasuredrunoff,sedimentloadandpeak runofffortheselectedeventswere17.95m3 s-1,911.61 testingagreementbetweenmeasurementsandmodel 3 -1 predictions.Inaddition,fivestatisticalprocedureswere tand24.4m s ,respectively,attheoutletofthe usedforthemodelevaluation.Thesewere(1)the watershed.Thet-statisticshowedthattherewasno observedandpredictedmeansandtheirstandard statisticallysignificantdifferencebetweenmodel ∝ deviations,(2)coefficientofdetermination(r 2),(3)the predictionsandobserveddataat =0.05level.In ∝ slopeandinterceptofaleastsquareregressionbetween addition,p> =0.05wasobservedforallcomponents thepredictedandobservedvalues,(4)rootmeansquare asshowninTables1,2and3.Hence,theresults error(RMSE),and(5)anindexofagreement(d).The obtainedfrommodelanalysisrevealedthatbothmodels RMSEisanindexoftheactualerrorproducedbythe couldbeusedtosimulaterunoffandsedimentin modelandiscalculatedas agriculturalwatersheds. N 0.5 Flow 1(1) 2 RMSE= ∑ (Pi-Oi) i=1 N Figures1and2showthecomparisonofpredicted andobservedmeanrunoffamountsforWEPPand whereNisthenumberofcases,Pi isthepredictedvalue, AGNPSrespectively.AGNPSunderestimatedmeanrunoff andOi isthecorrespondingobservedvalue.Thedcanbe amountsby17.5%whereasWEPPoverestimatedthem usedtoreflectthedegreetowhichthepredictedvariation by19.22%.Whenweevaluatethewatershedresolutions accuratelyestimatestheobservedvariationandis onaveragerunoffamount,weseethattherewere calculatedas significantdifferencesbetweenpredictedrunoffamounts N for50,100and150haforbothmodels.FromTable1, 2 ∑ (Pi-Oi) thestatisticalevaluationofpredictedrunoffamounts(for d=1- i=1 N 50,100,and150haresolutions)againstobserveddata ' ' 2 (2) 2 ∑ (Pi+Oi) gaveanRMSEof13.30,13.015.56andr anddvalues i=1 of0.95,0.93,0.89and0.96,0.95,0.94,respectively, – – forAGNPS.However,WEPPgaveanRMSEof8,9.5, whereandPi’=Pi -P andO i’=Oi -O.

60 Figure1. Comparisonofpredictedandobserved averagerunoffratesattheoutletofthe 50 RockCreekwatershedusingWEPP.

) 40 -1 s 3 30 20 Runoff(m 10

0 24.05.1989 04.06.1989 16.02.1990 11.04.1990 23.07.1990 10.10.1990 22.12.1990 30.12.1990 Dates

Observedflow Predictedflow(50ha) Predictedflow(100ha) Predictedflow(150ha)

263 ComparisonofErosionandRunoffPredictedbyWEPPandAGNPSModelsUsingaGeographicInformationSystem

60 Figure2. Comparisonofpredictedandobserved averagerunoffratesattheoutletofthe 50 RockCreekwatershedusingAGNPS.

) 40 -1 s 3 30

20 Runoff(m 10

0 24,05.1989 04.06.1989 16.02.1990 11.04.1990 23.07.1990 10.10.1990 22.12.1990 30.12.1990 Dates

Observedflow Predictedflow(50ha) Predictedflow(100ha) Predictedflow(150ha)

Table1. Statisticalcomparisonofobserved(O)andpredicted(P)averageflow(AF)ratesfortheRockCreekwatershed.

Statisticalparameters WEPPModel AGNPSModel AF AF AF AF AF AF (50ha) (100ha) (150ha) (50ha) (100ha) (150ha) Mean 17.95 17.95 17.95 17.95 17.95 17.95 O Std.Dev 9.7 9.7 9.7 9.7 9.7 9.7 Mean 20.51 20.47 23.22 13.64 14.19 16.58 P Std.Dev 9.96 10.79 11.25 7.98 7.63 8.12

RMSE 8.0 9.5 17.30 13.30 13.0 15.56 Intercept 2.24 0.95 3.23 -1.02 0.54 -0.46 Slope 1.01 1.08 1.11 0.81 0.76 0.78 r2 0.95 0.91 0.87 0.95 0.93 0.89 d 0.97 0.96 0.84 0.96 0.95 0.94 t-statistic -0.52 -0.49 -1.01 0.97 0.86 0.98 p-value*0.61 0.63 0.33 0.35 0.40 0.35 (∝ =0.05)

*probabilityat0.05significancelevel.

17.30andr2 anddvaluesof0.95,0.91,0.87and0.97, ontheSecoCreekwatershedcentralTexasbySrinivasan 0.96,and0.84,respectively.Acomparisonofpredicted andArnold(1995)reportedanr 2 of0.86foraverage meanrunoffratesfordifferentscales(50,100and150 flowrates.Gowda(1996)reportedanr 2 of0.85for ha)againstobserveddatashowsthatAGNPS meanflowratesontheRockCreekwatershedOhioby underpredictedtheaveragerunoffrateforthesethree usingtheAgriculturalDrainageAndPesticideTransport resolutionswhileWEPPoverestimatedit.Itcanbeseen (ADAPT)model. thatthemagnitudeandtimingofthepredictedflow Theobservedversuspredictedpeakrunoffratesare tendedtorepresentobserveddata(Figures1and2).This plottedinFigures3and4fortheWEPPandAGNPS goodperformanceiscomparableandbetterthanother models,respectively.Table2showsthatWEPPsimulates watershedmodels.Forexample,inastudycarriedout peakrunoffbetterthanAGNPSforsmallscales(50ha withtheSoilandWaterAssessmentTool(SWAT)model resolution).However,AGNPSgivesbetterpredictionsfor

264 H.KIRNAK

80 Figure3. Comparisonofpredictedand observedpeakrunoffratesatthe 70

) outletoftheRockCreekwatershed -1

s usingWEPP.

3 60 50 40 30 20 Peakrunoffrate(m 10 0 24.05.1989 04.06.1989 16.02.1990 11.04.1990 23.07.1990 10.10.1990 22.12.1990 30.12.1990 Dates

Observedflow Predictedflow(50ha) Predictedflow(100ha) Predictedflow(150ha)

80 Figure4. Comparisonofpredictedand observedpeakrunoffratesatthe 70 outletoftheRockCreekwatershed ) -1

s 60 usingAGNPS. 3 50 40 30 20

Peakrunoffrate(m 10 0 24.05.1989 04.06.1989 16.02.1990 11.04.1990 23.07.1990 10.10.1990 22.12.1990 30.12.1990 Dates

Observedflow Predictedflow(50ha) Predictedflow(100ha) Predictedflow(150ha) largerscales.Bothmodelsoverpredictedpeakrunoff andtimingofrainfall,errorininputdata,incorrect ratesfor50,100,and150hasizeresolutions.Whenwe estimationofparametervaluesandacombinationof comparethepredictedpeakrunoffrateswiththosefrom errors. otherwatershedmodels,itisfoundthatbothmodels Sediment withanaverager 2 of0.95betweenobservedand predictedpeakflowrateswerebetterthanothers.Anr 2 Figures5and6illustratethecomparisonofpredicted of0.86betweenpredictedandobserveddatausing sedimentdischargeandobserveddataattheoutletofthe WatershedStormHydrographMultipleOptions watershed.Simulationresultsshowedthatbothmodels (WASHMO)modelontheRockCreekwatershedwas weresensitivetotheaccuracyofflowpredictionsandthe reportedbyWuetal.(1992).Theerrorsintheaverage sizeofthewatershed.TheAGNPSsedimentdischarge andpeakrunoffratepredictionsagainstobserveddata predictionhadanRMSEof935.2,941.8,and1509.3t mightbeduetoinadequateinformationonmagnitude for50,100and150haresolutions,respectively.Onthe

265 ComparisonofErosionandRunoffPredictedbyWEPPandAGNPSModelsUsingaGeographicInformationSystem

Table2. Statisticalcomparisonofobserved(O)andpredicted(P)peakflow(PF)ratesfortheRockCreekwatershed.

Statistical WEPPModel AGNPSModel parameters PF PF PF PF PF PF (50ha) (100ha) (150ha) (50ha) (100ha) (150ha)

Mean 24.5 24.5 24.5 24.5 24.5 24.5 O Std.Dev 11.81 11.81 11.81 11.81 11.81 11.81

Mean 26.56 29.68 30.89 28.4 32.68 34.74 P Std.Dev 11.73 10.79 12.70 11.04 11.71 13.28

RMSE 7.75 16 20.50 11.87 23.72 30.20 Intercept 2.55 7.71 5.64 5.67 8.74 7.76 Slope 0.97 0.89 1.80 0.93 0.96 1.20 r2 0.98 0.95 0.90 0.98 0.96 0.94 d 0.95 0.62 0.35 0.84 0.80 0.68 t-statistic -0.35 -0.92 -1.04 -0.68 -1.39 -1.63 p-value*0.73 0.38 0.32 0.51 0.19 0.13 (∝ =0.05)

*probabilityat0.05significancelevel.

Table3. Modelperformancesdeterminedbyevaluatingpredictedsediment(PS)dischargesagainstobserveddatafortheRockCreek watershed.

Statistical WEPPModel AGNPSModel parameters PS PS PS PS PS PS (50ha) (100ha) (150ha) (50ha) (100ha) (150ha)

Mean 911.61 911.61 911.61 911.61 911.61 911.61 O Std.Dev 592.95 592.95 592.95 592.95 592.95 592.95

Mean 1203.8 1202.85 1347.04 828.8 746.4 691.01 P Std.Dev 716.06 698.90 845.92 526.67 502.02 495.54

RMSE 390.72 582.48 739.41 935.20 941.80 1509.30 Intercept 11.70 51.53 106.30 31.5 179.80 215.5 Slope 1.19 1.15 1.14 0.87 0.83 0.82 r2 0.97 0.95 0.90 0.96 0.91 0.88 d 2.15 5.19 7.26 3.56 6.95 17.56 t-statistic 0.30 0.60 0.81 -0.89 -0.90 -1.19 p-value* (∝ =0.05) 0.77 0.56 0.43 0.39 0.38 0.26

*probabilityat0.05significancelevel. otherhand,theWEPPmodelgaveanRMSEof390.72, predictionsofWEPPhavelesserrorthanthoseof 582.48,and739.41tforthesameresolutions, AGNPS.ThestatisticalevaluationofAGNPS-predicted respectively.Thisimpliesthatthesedimentdischarge sedimentyieldagainstobserveddatagaveanr 2 of0.96,

266 H.KIRNAK

2500 Figure5. Comparisonofpredictedand observedsedimentyieldatthe 2000 outletoftheRockCreek watershedusingWEPP. 1500

1000

Sediment(ton) 500

0 24.05.1989 04.06.1989 16.02.1990 11.04.1990 23.07.1990 10.10.1990 22.12.1990 30.12.1990 Dates Observedflow Predictedflow(50ha) Predictedflow(100ha) Predictedflow(150ha)

2000 Figure6. Comparisonofpredictedand 1800 observedsedimentyieldatthe outletoftheRockCreekwatershed 1600 usingAGNPS. 1400 1200 1000 800 Sediment(ton) 600 400 200 0 24.05.1989 04.06.1989 16.02.1990 11.04.1990 23.07.1990 10.10.1990 22.12.1990 30.12.1990 Dates

Observedflow Predictedflow(50ha) Predictedflow(100ha) Predictedflow(150ha)

0.91,0.88for50,100,and150haresolutions, watershedintheUSAandr 2 valuesof0.58and0.65 respectively.Ontheotherhand,theWEPP-predicted werefound,respectively(Riesseetal.,1993;andRapp, sedimentyieldagainstobserveddatagaveanr 2 of0.97, 1994).TheUSLEmodelparametersweredeterminedin 0.95and0.90forsameresolutions,respectively.While manybasinsinTurkeyanditwasconcludedthatUSLE AGNPSunderestimatedsedimentdischarge,WEPP workswellinTurkey(Da¤deviren,1997;Türksevenand overestimateditasshowninFigures5and6.This Ayday,2000).KeskinandÖzden(2000)testedtheLand performanceofbothmodelsiscomparabletothe ErodibilityAssessmentMethodology(LEAM)intheZir- statisticalresultsfoundintheliterature.Inasimilarstudy AnkararegioninTurkeyandconcludedthatthismodel usingWEPPinnorthwestSpain,anr 2 of0.70for predictedpotentialerosionriskwell.Errorsinpredicting sedimentdischargewasreportedbySotoandDiaz- sedimentyieldinAGNPSmightbeduetoinaccuratecrop Fierrors(1998).TheUniversalSoilLossEquation(USLE) managementfactorandSCScurvenumbervaluesand andMUSLEmodelswereusedtopredicterosionlossina alsoerrorsinthepredictionofflows.Otherstudieswere

267 ComparisonofErosionandRunoffPredictedbyWEPPandAGNPSModelsUsingaGeographicInformationSystem

inagreementwithourresults.Forexample,studies averagerunoff,peakrunoffandsedimentyieldwithan conductedbyYoungetal.(1989)andPeeroneand averagedof0.92m 3 s-1,0.64m 3 s-1 and4.86t, Madramootoo(1997)showedtheAGNPSmodelwas respectively,whereastheAGNPSmodelpredictedsame verysensitivetocropmanagementandSCScurve parameterswithanaveragedof0.95m 3 s-1,0.77m3 s- numbervalues.Errorsinpredictingsedimentyieldin 1,and9.36t,respectively.Thestatisticalanalysisshowed WEPPmaybeduetotheinaccurateestimationofsoil thatbothmodelsproducethemostuncertaintyand parametersandespeciallyclimatedata.Inaddition,the errorsinthepredictionofpeakrunoff.Asensivity routingalgorithmusedinWEPPmayleadtoinaccurate analysisofbothmodelsforsomeselectedinput sedimentestimation. parametersshouldbedoneinordertoreduceerrorsin modelpredictionforfuturestudies.

Conclusions Theflowpredictionofbothmodelswasbetterthan Acknowledgments sedimentpredictions.BothWEPPandAGNPSproduced Theauthorgratefullyacknowledgethecontributionof reasonableresultswhenappliedtotheRockCreek Drs.PrasannaGowdaandAndyD.Ward,whomade watershedintheUSA.TheWEPPmodelpredicted valuablesuggestionsduringthecourseofthestudy.

References Ascough,J.C.,M.A.Nearing,D.C.FlanaganandS.J.Livingston.1994. Risse,L.M.,M.A.Nearing,A.D.NicksandJ.M.Laflen.1993.Assessment Hydrologicanderosioncalculationsinthewatererosionprediction oferrorintheuniversalsoillossequation.SoilSci.Soc.Am.J.57, project(WEPP)watershedmodel,AnASAEmeetingpresentation, 825-833. paperno:94-2037. Soto,B.andF.Diaz-Fierros.1998.Runoffandsoilerosionfromareasof Da¤deviren,I.1997.UseofUSLEforGAP-fianl›urfa-Tektekregion. burntscrub:comparisonofexperimentalresultswiththose GeneralDirectoryofRuralStateAffairs,no:106,130-145. predictedbytheWEPPmodel.Catena,31:257-270. Flanagan,D.C.andS.J.Livingston.1995.USDA-WaterErosion Srinivasan,R.andJ.G.Arnold.1995.Integrationofabasin-scalewater PredictionProject,WEPPusersummaryconference,August9-11, qualitymodelwithGIS,WaterRescuesBulletin,30(3):453-462. DesMoines,Iowa. Türkseven,EandE.Ayday.2000.ApplicationofUSLEmodelonBilecik- Goodchild,M.F.1992.Geographicaldatamodeling.Computersand Küçükelmabasinanddeterminationofitscomponents.General Geosciences18(4):401-408. DirectoryofRuralStateAffairs,no:117,139-149. Gowda,P.H.1996.Anintegratedspatial-processmodeltopredict VanDeventer,A.P.,A.D.Ward,P.H.GowdaandJ.G.Lyon.1994.Using agriculturalnonpointsourcepollution,Ph.D.Dissertation, thematicmapperdatatoidentifycontrastingsoilplainsandtillage Columbus,Ohio:DepartmentofFoodAgriculturalandBiological practices,Manuscript,OhioAgriculturalResearchand Engineering,TheOhioStateUniversity. DevelopmentJournalArticleno:131-93. Keskin,Sandfi.Özden.2000.TestofLEAMinZir-Ankararegion. Wu,Q.,A.D.Ward,A.P.VanDeventer,D.A.WhiteandP.Gowda.1992. GeneralDirectoryofRuralStateAffairs,no:117,46-59. DynamicmodelingofsoilerosionwithaGIS.AnASAEmeeting presentation,paperno:92-2528. Maidment,D.R.1991.GISandhydrologicmodeling.The1stInternational SymposiumonGISandEnvironmentalModeling,Colorado,pp.1- Young,R.A.,C.A.Onstad,D.D.BoschandW.P.Anderson.1989. 22. AGNPS:Anonpointsourcepollutionmodelforevaluating agriculturalwatersheds.JournalofSoilandWaterConservation, Maidment,D.R.1993.GISandhydrologicmodeling.The2 nd 44:169-173. InternationalSymposiumonGISandEnvironmentalModeling, Colorado,pp.30-175. Young,R.A.,C.A.Onstad,D.D.Bosch,andW.P.Anderson.1994. Agriculturalnonpointsourcepollutionmodel,version4.03, Peerone,J.andC.A.Madramootoo.1997.UseofAGNPSforwatershed AGNPSuser’sguide.USDA-ARS,Minnesota. modelinginQuebec.TransactionsoftheASAE,40(5):1349- 1354. Rapp,J.F.1994.Errorassessmentofthereviseduniversalsoilloss equationusingnaturalrun-offplotdata.MSthesis,Schoolof RenewableNaturalResources,UniversityofArizona,Tucson,AZ.

268