"First Results from the Ua4 Experiment at the Cern Collider"

Total Page:16

File Type:pdf, Size:1020Kb

327 "FIRST RESULTS FROM THE UA4 EXPERIMENT AT THE CERN COLLIDER" UA4 Collaboration Amsterdam1-CERN2-Genova3-Napoli"-Pisa5 * Presented by M. Bozzo( ) ABSTRACT The UA4 experiment on the measurement of elastic scattering and of the total cross section at the CERN pp Collider is described. The experimental method is discussed , and first results on elastic scattering at low momentum transfer are presented. ( *) The full list of authors is given at the end of the contribution. 328 INTRODUCTION The aim of the experiment is to measure elastic scattering and the total 1) cross section at the CERN antiproton-proton Co llider . The total cross 2) section is obtained by means of a method previously used at the ISR and is based on the simultaneous measurement of low-t elastic scattering and of the total inelastic rate. By applying the optical theorem one finds the following relation : d 1 16 (tlc)' t 0 = (1) tot 1 + ;� If ( ) a p 2 where dN /dt is the differential elastic rate, N and N are the e1 el inel elastic and inelastic rates respectively , and is the ratio of the real to the imaginary part of the forward elastic amplitup de. Th is method does not require an independent determination of the machine luminosity. In the following we discuss the measurements of elastic and inelastic interactions which were performed in the first collider run , November-December 1981 , at centre-of-mass energy of 540 GeV . INELASTIC INTERACTIONS Multiparticle inelastic intercctions are observed in a vertex detector having a large angular coverage . As shown in fig. 1 it consists of a system of six drift chamber telescopes o , o and o placed symmetrically on the 1 2 3 left and right side of the crossing region covering angles from about 8° down to about 0.44°. Coverage in the central region for angles above 20°� is ensured by the vertex detector of the UA2 experiment. The range in pseudo-rapidity covered by the D telescopes is from 2.6 to 5.6 (the beam i rapidity is 6.3). Each of the Di telescopes is composed of six drift chamber planes followed by a plane of trigger counters T . The coordinate along the drift i wire is measured by detecting the signal induced in a delay line read at both ) ends , which is close to the drift wire itself3 • 4 . A hit in a chamber plane allows to determine the coordinates of a space point directly from three time measurements. Moreover, the constraint due to the known length of the delay line allows easy handling of mu ltiple hits in the same cell . This arrangemen t leads to a considerable simplification of the procedure of pattern recognition. 329 The r.m.s. values of the spatial accuracy for the drift and delay line measurements were found to be of about 0.4 mm and 4 mm respectively including the uncertainties of the survey. Two different triggers were used in theI experiment: i) a left-right arm coincidence; ii) a single arm trigger on one side only . Various comb inations of the T1 , T2 and T3 counters were used . The trigger (T +T ) (T +T ) which excludes background events due to beam halo 2 3 L • 2 3 R corresponds to a large fraction of the inelastic cross-section. The single arm trigger (T1+T2+T3)L or R allows to pick up diffractive events which may easily escape a left-right trigger. A true diffractive trigger , defined as the coincidence of one 11elastic arm11 and the corresponding opposite inelastic arm, was also tested during part of the runs. Fig. 2 shows two events representative of the two above mentioned triggers. In the electronic logics, the trigger was tuned with respect to a gate signal synchronous with the bunches. During data taking elastic and inelastic triggers were taken simultaneously in order to ensure that the integrated luminosity be the same for the two types of events. In the analysis program a track in a telescope was defined by the presence of at least four out of six aligned hits. For each event with at least two reconstructed tracks , the program attempts to find a vertex. The transverse and longitudinal distributions of the vertices found are shown in fig. 3 . ELASTIC SCATTERING At collider energies the typical value of the scattering angle in the region of the forward diffraction peak is of the order of one milliradian. The detection of elastic events at such small angles requires the use of a technique similar to that already employed at the ISR5 l . A side view of the experimental layout is shown schematically in fig. 4. Elastic scattering events are detected in the vertical plane by means of a system of four telescopes placed symmetrically above and below the SPS vacuum 330 chamber at a distance of about 40 m from the crossing point. A telescope is composed of two detectors that are 6 m apart . Each detector , consisting of a wire chamber and of a scintillation counters hodoscope , is placed in a movable section of the vacuum chamber ("pot") which is connected to the main body of the accelerator pipe by a bellow. Once stable beam conditions are reached , the "pots11 are displaced vertically toward the beam. Particles leaving the crossing region after interaction traverse the quadrupoles of the machine lattice Q in the left arm outgoing) and Q in the right arm (p outgoing). L R In the vertical plane(p the quadrupoles QL and QR act as a defocusing and lens respective ly. The p and trajectories for 1 rnrad scattering angle are also shown in fig. 1. The vertip cal displacement of the particle trajectories at the detectors is proportional to the vertical component e f the scattering v o angle. If the scattering takes place at the centre of the crossing region the vertical displacement d at a position mid way between the two detectors of a telescope can be written at d L e where the effective distance eff v L is equal to m and 22.8 m for the left and right arms respective ly. eff = 57.4 The wire chamber6) in each pot contains four independent drift planes for measurement of the vertical coordinate of the particle trajectories. Each plane is in the vertical direction subdivided into three drift cells of maximum drift length. The horizontal sense wires are 6.2 cm long , suitably21 staggered nun a s shown in fig. The drift-time resolution, expressed as the r.rn.s. scatter of the drift coordinate4. in an individual plane around the reconstructed track , was about mm during actual data taking . The drift planes are followed by a proport0.ional13 plane with high-resistivity anode wires . Charge-division readout of these wires provides the horizontal coordinates of the trajectories with a r.m.s. accuracy of 0.4 The mechanical frame of the chambers is U-shaped , and the side closer themm. bea m is made with a vetronite plate 0.8 mm thick. A pattern of field-restoring potential strips on this plate ensures good detection ) efficiency down to a few tenths of a millimeter from the plate6 . For each chamber , the distance of the horizontal plane of reference to the nominal machine plane is known from the measured displacement of the "pots" and from the overall survey of the experiment with an accuracy of about 0.1 •• mm As shown in fig. 4 inside each "pot" the wire chamber is followed first by a plane of eight vertical scintillators ( each 5.5 wide and 105 high) and then by a trigger counter. The vertical stintillatorsmm proved verymm usef ul also in monitoring the calibration of the amplification factors and the pedestals' values in the charge-division electronics. 331 ii) At least one track in each of the two telescopes extrapolated backwa rds was pointing to the crossing region. iii) No tracks were seen by the other pair of telescopes. About 40% of the triggers did not satisfy these criteria. Almost all of these events had a large number of tracks in several tele scopes and are attributed to accidental coincidences of beam-gas or beam-wall interactions . For the elastic candidates the values of 6 v of the tracks in the two oppos ite telescopes were calculated from the measured vertical displacements and from the known effective distances. In cases were two tracks were recorded in a telescope , the track pair with the best match of the values of 6v was chosen. 1he scatter plot of 6 (p) versus 6 ( ) in fig. 7(a ) clearly v v shows the ridge of elastic events , we ll identifip ed by their collinearity requirement. The distribution of the quantity 6 (p) - 6 ( ) as given in v v fig. 7 (b) has a standard deviation of about 0.05 mrad corresp ponding to a transverse momentum unbalance of less than 15 MeV/c . The intrinsic vertical angular spread of each primary beam is about 0.015 mrad . The finite size of the crossing region, the alignment inaccuracies and the experimental resolution of the detectors further contribute to the width of the collinearity plot . The horizontal components of the scattering angle, eH was obtained in a similar way from the horizontal displacements measured by charge division. The scatter plot of 6H (p) versus 6H ( ) is shown in fig. 8(a). 1he distribution of (p) p the difference 6H - 6H in fig. 8(b) has a r.m.s. width of about 0.065 mrad . The angular spread(p) of the proton and of the antiproton beams contributes about 12 0.02 mrad .
Recommended publications
  • PRODUCTION of HIGH MASS Cv and E'e' PAIRS in the UA2
    142 PRODUCTION OF HIGH MASS cv AND e'e' PAIRS IN THE UA2 EXPERIMENT AT THE CERN pp COLLIDER The UA2 Collaboration (Berne, CERN, CopenhagenT Orsay;" Pavía, Sacïay) Dî 84100S6163 presented by J. SCHACHER University of Berne, Switzerland ABSTRACT We present new results on intermediate vector boson production at the CERN pp collider. A comparison is made with the predictions of the standard model of the unified electroweak Glashow-Salam-Weinberg theory. - 143 - 1, INTRODUCTION We report here the results from a search for electrons with > 15 GeV/c produced at the CERN pp collider (Vs = 540 GeV) during its 1982 and 1983 periods of operation. Following a general discussion of the topology of the events containing an electron candidate, we shall compare the data with expectations in the framework of the electroweak standard model [1] for the reactions p + p - W~ + anything (1) - e" • v (?) p • p - Z° + anything (2) -* e* + e" or e* + e" + y where W~ and Z° are the postulated charged and neutral Intermediate Vector Bosonc (IVB), respectively, According to the amount of data collected we are now in the position to study some details of the IVB production, e.g. the influence of emission of gluon radiation on the distribution of the W transverse momentum (Fig.1). Fig.l Typical diagram for W and Z production, taking into account emission of gluon (g) radiation. 7T : parton in p or p. - 144 - Preliminary results from the study reported here have already been presented elsewhere [2] and a more complete discussion can be found in a recent publication [3].
    [Show full text]
  • Fabiola Gianotti
    Fabiola Gianotti Date of Birth 29 October 1960 Place Rome, Italy Nomination 18 August 2020 Field Physics Title Director-General of the European Laboratory for Particle Physics, CERN, Geneva Most important awards, prizes and academies Honorary Professor, University of Edinburgh; Corresponding or foreign associate member of the Italian Academy of Sciences (Lincei), the National Academy of Sciences of the United States, the French Academy of Sciences, the Royal Society London, the Royal Academy of Sciences and Arts of Barcelona, the Royal Irish Academy and the Russian Academy of Sciences. Honorary doctoral degrees from: University of Uppsala (2012); Ecole Polytechnique Federale de Lausanne (2013); McGill University, Montreal (2014); University of Oslo (2014); University of Edinburgh (2015); University of Roma Tor Vergata (2017); University of Chicago (2018); University Federico II, Naples (2018); Université de Paris Sud, Orsay (2018); Université Savoie Mont Blanc, Annecy (2018); Weizmann Institute, Israel (2018); Imperial College, London (2019). National honours: Cavaliere di Gran Croce dell'Ordine al Merito della Repubblica, awarded by the Italian President Giorgio Napolitano (2014). Special Breakthrough Prize in Fundamental Physics (shared, 2013); Enrico Fermi Prize of the Italian Physical Society (shared, 2013); Medal of Honour of the Niels Bohr Institute, Copenhagen (2013); Wilhelm Exner Medal, Vienna (2017); Tate Medal of the American Institute of Physics for International Leadership (2019). Summary of scientific research Fabiola Gianotti is a particle physicist working at high-energy accelerators. In her scientific career, she has made significant contributions to several experiments at CERN, including UA2 at the proton-antiproton collider (SpbarpS), ALEPH at the Large Electron-Positron collider (LEP) and ATLAS at the Large Hadron Collider (LHC).
    [Show full text]
  • Standard Model and Measurements of Its Parameters (Like the Mass of the Top Quark) at Hadron Colliders Are Presented
    Title: Physics at Hadron Colliders Lecturer: Dr Karl Jakobs Date and Times: 1st August at 11:15 2nd August at 10:15 3rd August at 10:15 3rd August at 11:15 Summary of the proposed talk: Present and future hadron colliders play an important role in the investigation of fundamental questions of particle physics. After an introductory lecture, tests of the Standard Model and measurements of its parameters (like the mass of the top quark) at hadron colliders are presented. In addition, it will be discussed how the Higgs boson can be searched for at hadron colliders and how "New Physics", i.e. physics beyond the Standard Model, can be explored. Results are presented from the currently ongoing run at the Tevatron proton antiproton collider at the US research lab Fermilab. In addition, the rich physics potential of the experiments at the CERN Large Hadron Collider is discussed. Prerequisite knowledge and references: - The Standard Model (Lecture by A. Pich) - Beyond the Standard Model (Lecture by E. Kiritsis) Biography- Brief CV: Dr Karl JAKOBS -Studied Physics at the University of Bonn, Germany - Summer student at CERN in 1984 - PhD at the University of Heidelberg, in 1988 Thesis on the UA2-Experiment at the CERN Proton-Antiproton Collider (already Hadron Collider physics at that time) - Fellow and staff position at CERN, UA2 experiment - 1992 - 1996 Max-Planck-Institute for Physics, Munich ALEPH and ATLAS experiments - 1996 - 2003 Prof. of physics at the University of Mainz ALEPH and ATLAS experiments - Since 2000: participation in the D0-Experiment at the Tevatron HR-RFA 07/06 - Since 2003: Prof.
    [Show full text]
  • Antiprotons in the Big Machine
    Antiprotons in the big machine Right the beam line which injects 26 GeV antiprotons into the SPS. Centre, the beam fine which sends high energy protons from the SPS towards the West Experimental Area. The main ring is on the left. (Photo CERN 38.4.81) On 7 July a pulse of antiprotons was sent to the CERN Super Proton Synchrotron, accelerated to 270 GeV and (briefly) stored. Two days later the exercise was repeated with greater success and the first evi­ dence obtained for proton-antipro­ ton collisions at 540 GeV — by far the highest collision energies ever achieved. Although there is still much to be done before the scheme becomes fully operational, this achievement is a major milestone in the CERN antiproton story. The origins of the project Antiprotons, since they presuma­ bly have the same properties as protons except for the sign of their electric charge, can be accelerated and stored in the same magnet ring as protons. Thus colliding beam sys­ tems, like the familiar electron-posi­ tron machines, are, in principle, fea­ sible. However until recently it was not possible to produce antiproton tion, the antiprotons emerge with a for colliding beam physics. It in­ beams of sufficient intensity and wide range of momenta, distinctly volves using electron beams travel­ density to give sufficient collisions in unsuitable for a magnet system in a ling along with the antiproton beam a reasonable enough time for useful beam transfer line, an accelerator or at the same velocity. The electron physics to be done. a storage ring which is designed to beam, which is much easier to con­ This situation has changed with handle a well defined particle mo­ trol, has particles at precisely the the invention of 'beam cooling'.
    [Show full text]
  • The Standard Model 30 Years of Glory
    FR0107537 LAX66-128 March 2001 The Standard Model 30 Years of Glory Jacques Lefrangois Laboratoire de l'Accelerateur Lineaire IN2P3-CNRS et Universite de Paris-Sud, BP 34, F-91898 Orsay Cedex Lectures given at the 11th Advanced Study Institute on Techniques and Concepts in High Energy Physics, St. Croix, Virgin Islands, USA, June 15-26, 2000 U.E.R Institut National de de Physique Nucleaire 1'Universite Paris-Sud et de Physique des Particules 5 2/ § 8 B.P. 34 ~ Bailment 200 ~ 91898 ORSAY CEDEX LAL 00-128 March 2001 Doc. Enreg. ie. THE STANDARD MODEL 30 YEARS OF GLORY Jacques Lefrangois Laboratoire de VAccelerateur Lineaire IN2P3-CNRS et Universite PARIS-SUD Centre Scientifique d'Orsay - Bat. 200 - B.P. 34 91898 ORSAY Cedex (France) [email protected] In these three lectures, I will try to give a flavour of the achievements of the past 30 years, which saw the birth, and the detailed confirma- tion of the Standard Model (SM). However I have to start with three disclaimers: B Most of the subject is now history, but I am not an historian, I hope the main core will be exact but I may err on some details. • Being an experimentalist, I will mostly focus on the main exper- imental results, giving, when appropriate, some emphasis to the role of well conceived apparatus. This does not mean that I min- imise the key role of theorist, it only reflects the fact that the same story told by a theorist would correspond to another interesting series of lectures. • Finally, in some cases, I may show a bias coming from the fact that I have seen from closer what has happened in Europe.
    [Show full text]
  • CERN Courier – Digital Edition Welcome to the Digital Edition of the December 2014 Issue of CERN Courier
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 4 N UMBER 1 0 D ECEMBER 2 0 1 4 CERN Courier – digital edition Welcome to the digital edition of the December 2014 issue of CERN Courier. As CERN’s 60th-anniversary year comes to an end, CERN Courier gives a voice to some of the organization’s pioneers who are no longer with us. Extracts from audio recordings in CERN’s archives bring to life the spirit of adventure of the early CERN. One of the studies that CERN pioneered was the measurement of the “g-2” parameter of the muon – an experiment that in its latest incarnation is setting up in Fermilab. The year also saw the 50th anniversary of the International Centre for Theoretical Physics in Trieste, and an interview with the centre’s current director reveals interesting similarities and contrasts between the two organizations. The end of the year also offers the traditional seasonal Bookshelf. Happy reading! To sign up to the new-issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. IceCube: neutrinos and more DETECTORS PEOPLE THE ICTP CUORE: the coldest CERN Council heart in the selects the next AT 50 EDITOR: CHRISTINE SUTTON, CERN known universe director-general An interview with DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p5 p5 Fernando Quevedo p37 CERNCOURIER www. V OLUME 5 4 N UMBER 1 0 D ECEMBER 2 0 1 4 CERN Courier December 2014 High Vacuum Contents Covering current developments in high-energy physics and related fi elds worldwide CERN Courier is distributed to member-state governments, institutes and laboratories Monitoring and Control affi liated with CERN, and to their personnel.
    [Show full text]
  • The Discovery of the W and Z Particles
    June 16, 2015 15:44 60 Years of CERN Experiments and Discoveries – 9.75in x 6.5in b2114-ch06 page 137 The Discovery of the W and Z Particles Luigi Di Lella1 and Carlo Rubbia2 1Physics Department, University of Pisa, 56127 Pisa, Italy [email protected] 2GSSI (Gran Sasso Science Institute), 67100 L’Aquila, Italy [email protected] This article describes the scientific achievements that led to the discovery of the weak intermediate vector bosons, W± and Z, from the original proposal to modify an existing high-energy proton accelerator into a proton–antiproton collider and its implementation at CERN, to the design, construction and operation of the detectors which provided the first evidence for the production and decay of these two fundamental particles. 1. Introduction The first experimental evidence in favour of a unified description of the weak and electromagnetic interactions was obtained in 1973, with the observation of neutrino interactions resulting in final states which could only be explained by assuming that the interaction was mediated by the exchange of a massive, electrically neutral virtual particle.1 Within the framework of the Standard Model, these observations provided a determination of the weak mixing angle, θw, which, despite its large experimental uncertainty, allowed the first quantitative prediction for the mass values of the weak bosons, W± and Z. The numerical values so obtained ranged from 60 to 80 GeV for the W mass, and from 75 to 92 GeV for the Z mass, too large to be accessible by any accelerator in operation at that time.
    [Show full text]
  • Jet Physics in the ATLAS Experiment At
    Jet Physics in the ATLAS experiment at LHC Vincenzo Cavasinni on behalf of the ATLAS Collaboration Dipartimento di fisica `E.Fermi' and INFN Pisa, ITALY E-mail: [email protected] Jet physics represents a powerful tool to investigate the properties of quark and gluon interactions. With the advent of LHC, these studies have been possible at an energy never investigated before. In this proceedings we review the main char- acteristics of jets measured by the ATLAS experiment in proton-proton collisions at center-of-mass energies of 7 and 8 TeV. The experimental results are compared with the predictions of the Quantum Chromodymamics, QCD, the standard theory of quark-gluon interactions. A good agreement is found between data and QCD predictions. The jet mesurements provide also a clue in the search for new physics: a few examples of searches for excited quarks and supersymmetric particles are presented. 1 Introduction The proton-proton collider LHC started operations at at center-of-mass energy of 7 TeV in 2010. ATLAS, one of the two multipurpose experiments, has collected an integrated luminosity of ≈ 40pb−1 in 2010 and ≈ 5fb−1 in 2011 . Jet production, consequence of the fragmentation of quarks and gluons in hadronic collisions, is the high-pT process with the highest cross section. Their measurement allows a direct access to the elementary interactions between the constituents of the incoming protons. The emergence of jets in hadron collisions has been proved by the UA2 experiment at ATL-PHYS-PROC-2012-152 30 August 2012 the CERN pp¯ Collider in 1983 [1].
    [Show full text]
  • The Light Gluino Gap Arxiv:1803.01880V1 [Hep-Ph] 5 Mar
    Prepared for submission to JHEP The Light Gluino Gap Jared A. Evansa;b and David McKeenc aDepartment of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA bDepartment of Physics, University of Cincinnati, Cincinnati, Ohio 45221, USA cPittsburgh Particle Physics, Astrophysics, and Cosmology Center, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, USA E-mail: [email protected], [email protected] Abstract: A variety of experimental searches and theoretical efforts have constrained gluinos that undergo an all-hadronic decay with no missing energy, as can arise in R-parity violating or stealth supersymmetry. Although the g~ ! jj decay is robustly excluded, there is gap in current experimental coverage for gluinos with masses between 51–76 GeV that decay into three light-flavor quarks. In this work, we probe this gap with published multi-jet data from the UA2 experiment. Despite setting the strongest current limit on this region, we find that UA2 data is unable to close this gap for g~ ! jjj decays. In addition to this three-jet gap, we note an additional gap for all- hadronic g~ ! n parton decays with n ≥ 4 for light gluinos (51 GeV < mg~ . 300 GeV) not covered by the current search program. arXiv:1803.01880v1 [hep-ph] 5 Mar 2018 Contents 1 Introduction1 2 The UA2 Experiment4 3 Limits on gluinos from multi-jets6 4 Discussion7 1 Introduction The large hadron collider (LHC) has pushed the lower bound on the gluino mass to above 1 TeV for nearly any decay path [1], and for particular decay paths, limits are above 2 TeV; see, e.g., [2].
    [Show full text]
  • Measurements of Single Diffraction at √S = 630
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 9 December, 1997 Measurements of Single Diffraction at √s = 630 GeV; Evidence for a Non-Linear α(t) of the omeron P A. Brandt1, S. Erhana, A. Kuzucu2, D. Lynn3, M. Medinnis4, N. Ozdes2, P.E. Schleinb M.T. Zeyrek5, J.G. Zweizig6 University of California∗, Los Angeles, California 90095, USA. J.B. Cheze, J. Zsembery Centre d’Etudes Nucleaires-Saclay, 91191 Gif-sur-Yvette, France. (UA8 Collaboration) Abstract We report measurements of the inclusive differential cross section for the single- diffractive reactions: p +p ¯ p + X and p +p ¯ X +p ¯ at √s = 630 GeV, i → f i → f in the momentum transfer range, 0.8 < t < 2.0 GeV2 and final state Feynman- − xp > 0.90. Based on the assumption of factorization, several new features of the omeron Flux Factor are determined from simultaneous fits to our UA8 data and P lower energy data from the CHLM collaboration at the CERN-Intersecting Storage Rings. Prominent among these is that the effective omeron Regge trajectory requires ′′ P − a term quadratic in t, with coefficient, α = 0.079 0.012 GeV 4. We also show that ± the data require a omeron-proton cross section that first decreases with increasing P diffractive mass (corresponding to the term in the triple-Regge expansion) PPR and then increases at larger mass (the term), similar to real particle total arXiv:hep-ex/9710004v3 8 Apr 1998 PPP − cross sections. We measure the product, Kσ = 0.72 0.10 mb GeV 2, where K 0 ± is the normalization constant of the omeron Flux Factor in the proton and σ is P 0 the scale constant in the omeron-proton total cross section.
    [Show full text]
  • Intermediate Vector Bosons Production and Identification at the CERN Proton-Antiproton Collider G
    europhysics BULLETIN OF THE EUROPEAN PHYSICAL SOCIETY news J.A. Volume 14 Number 10 October 1983 Intermediate Vector Bosons Production and Identification at the CERN Proton-Antiproton Collider G. Brianti and E. Gabathuler, Geneva The recent discoveries1) of the massive boson which is exchanged between them is W± and Z° intermediate vector bosons at called the gluon. This massless particle was CERN are a triumph not only for the discovered4) at the PETRA storage ring in electroweak theory2) which gives a stan­ DESY in 1978. The fourth force is the gravi­ dard prescription of how to unify the tational force which holds our Universe electromagnetic and weak interactions, but together. also for the engineers and physicists who The concept of the electroweak interac­ produced and detected pp collisions in the tion is that both the electromagnetic and SPS collider at CERN. weak forces stem from a single "elec­ One of the main achievements of ele­ troweak" force. At very high energies, as mentary particle physics in recent years has for example in the early moments after the been the development of a new class of big bang, the two interactions would be in­ unified theories which describe the forces distinguishable, i.e. the two forces have of nature that appeared up to that time to the same strength, and therefore the be independent of each other. In the in­ photon and the three weak bosons (W+, teractions between elementary particles a W and Z°) form the same family of four force is transmitted between two particles particles. The electroweak theory not only by the exchange of another intermediary requires these four particles but specifies particle, which is referred to as a vector that the W± should be very heavy, ~ 80 boson.
    [Show full text]
  • 3 Wissenschaftliche Texte Und Populärwissenschaftliche Texte Im Vergleich
    Master Das Uebersetzen von populaerwissenschaftlichen Ausstellungstexten : Am Beispiel der Ausstellung "Universum der Teilchen" (CERN) BUCHMANN, Nadine Isabelle Abstract En 2013, l'auteur du présent mémoire a traduit en allemand les textes de l'exposition permanente, interactive et multimédia qui est présentée dans le centre des visiteurs du Centre Européen de Recherche Nucléaire (CERN). Pour ce travail de traduction, le texte source a été approché sous quatre points de vue : l'hypertexte, la pédagogie muséale, la vulgarisation scientifique et la terminologie. Après la présentation de quelques réflexions théoriques en rapport avec ces quatre perspectives, le mémoire décrit comment elles ont influencé la stratégie de traduction et détaille quels changements ont été nécessaires pour que le texte cible soit tout aussi lisible, compréhensible et stimulant pour les visiteurs germanophones que le texte de départ pour les visiteurs maitrisant l'anglais. Les résultats de ces réflexions sont ensuite résumés sous une forme d'un guide à l'intention de traducteurs procédant à une traduction de textes d'expositions de vulgarisations scientifique. Reference BUCHMANN, Nadine Isabelle. Das Uebersetzen von populaerwissenschaftlichen Ausstellungstexten : Am Beispiel der Ausstellung "Universum der Teilchen" (CERN). Master : Univ. Genève, 2014 Available at: http://archive-ouverte.unige.ch/unige:40321 Disclaimer: layout of this document may differ from the published version. 1 / 1 Nadine Buchmann Das Übersetzen von populärwissenschaftlichen Ausstellungstexten Am Beispiel der Ausstellung „Universum der Teilchen“ (CERN) Directrice de mémoire: Gunhilt Perrin Juré: Detlef Kotte Jurée: Donatella Pulitano Mémoire présenté à la Faculté de traduction et d’interprétation (Département de traduction, Unité d’allemand) pour l’obtention de la Maîtrise universitaire en traduction, mention traduction specialisée 2 INHALTSVERZEICHNIS 0 Einleitung ...............................................................................................................
    [Show full text]