Vasopressin and Oxytocin Release As Influenced by Thyrotropin-Releasing Hormone in Euhydrated and Dehydrated Rats

Total Page:16

File Type:pdf, Size:1020Kb

Vasopressin and Oxytocin Release As Influenced by Thyrotropin-Releasing Hormone in Euhydrated and Dehydrated Rats JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2002, 53, 3, 423437 www.jpp.krakow.pl J. CIOSEK VASOPRESSIN AND OXYTOCIN RELEASE AS INFLUENCED BY THYROTROPIN-RELEASING HORMONE IN EUHYDRATED AND DEHYDRATED RATS Department of Pathophysiology, Medical University of Lodz, Poland Since the thyrotropin-releasing hormone (TRH) can modulate the processes of vasopressin (AVP) and oxytocin (OT) biosynthesis and release mainly at the hypothalamo-neurohypophysial level, the present experiments were undertaken to estimate whether TRH, administered intravenously in different doses, modifies these mechanisms under conditions of osmotic stimulation, brought about by dehydration. AVP and OT contents in the hypothalamus and neurohypophysis as well as plasma levels of AVP, OT, free thyroxine (FT4) and free triiodothyronine (FT3) were studied after intravenously TRH treatment in euhydrated and dehydrated for two days male rats. Under conditions of equilibrated water metabolism TRH diminished significantly the hypothalamic and neurohypophysial AVP and OT content but was without the effect on plasma oxytocin level; however, TRH in a dose of 100 ng/100 g b.w. raised plasma AVP level. TRH, injected i.v. to dehydrated animals, resulted in a diminution of AVP content in the hypothalamus but did not affect the hypothalamic OT stores. After osmotic stimulation, neurohypophysial AVP and OT release was significantly restricted in TRH-treated rats. Under the same conditions, injections of TRH were followed by a significant decrease of plasma OT level. I.v. injected TRH enhanced somewhat FT3 concentration in blood plasma of euhydrated animals but diminished FT4 plasma level during dehydration. Data from the present study suggest that TRH displays different character of action on vasopressin and oxytocin secretion in relation to the actual state of water metabolism. Key words: thyrotropin-releasing hormone, intravenously administration, vasopressin, oxytocin, dehydration 424 INTRODUCTION Many neuropeptides and neurotransmitters may be involved in the control of the vasopressin and oxytocin secretion from the neurohypophysis (1-3). Thyrotropin-releasing hormone (TRH), the hypothalamic neuropeptide, is known to participate in the regulation of thyrotropin (TSH) secretion. Within the central nervous system (CNS) large amounts of TRH and of its receptors are distributed also over extrahypothalamic regions (4, 5). It is thought that, in the central nervous system, TRH may be involved in some regulatory events different from its TSH-releasing properties. TRH has been hypothesized to serve in CNS as a neurotransmitter or neuromodulator at a pre- or post-synaptic site (6, 7). Outside the CNS, TRH immunoreactivity was observed in the gastrointestinal tract; the largest amounts of TRH were found to be localized within the pancreas (mainly in beta cells) (8). TRH inhibits gastric motility, acid secretion, and absorbtion of sugars from the gut (9, 10, 11). TRH has been implicated in the regulation of appetite and food intake (12, 13). An inhibitory effect of TRH on pancreatic enzyme secretion has been shown in rats (14, 15), dogs (16) and humans (17). There are some reports which indicate that TRH affects the neurohypophysis. When injected i.v., TRH was found to stimulate the release of vasopressin and oxytocin in the rabbit (18). Other authors noted that neither oxytocin nor vasopressin was released following i.v. TRH injection in euhydrated rats (19, 20). On the other hand, TRH injected intracerebroventricularly (i.c.v.) was shown to inhibit vasopressin release in euhydrated or dehydrated rats (1, 21, 22). The same effect of TRH has been observed in conditions in vitro (23). The present study has been performed, therefore, to investigate possible effects of intravenously (i.v.) injected thyrotropin-releasing hormone on the hypothalamo-neurohypophysial vasopressin and oxytocin content as well as their release in rats euhydrated or deprived of water. MATERIALS AND METHODS All experiments were designed in accordance with the generally accepted ethical standarts and the guidelines established by the Ethical Committee of Medical University of Lodz. Animals Three-month old male Wistar rats were housed under a 12/12 hr light-dark schedule (lights on from 6 a.m.) and at a room temperature. The animals received standard pelleted food; before experimental use, they had free access to tap water. Experimental design Sixty rats were used for the experiments. The animals were divided into three groups: A animals injected intravenously (i.v.), once daily over 2 days, with 0.9% sodium chloride 425 solution in a daily dose of 0,1 ml/100 g b.w.; B animals similarly injected i.v. with thyrotropin- releasing hormone [TRH; SIGMA Chemical Co.; lot 4640815] in a daily dose of 10 ng/100 g b.w.; C animals similarly injected i.v. with TRH in a daily dose of 100 ng/100 g b.w. In each group two further experimental subgroups were set up: I controls not dehydrated; II animals dehydrated for two days. The animals of subgroups A-I - C-I were decapitated 20 min after last i.v. injection of TRH or saline. The rats in subgroups A-II, B-II and C-II were killed after two days of water deprivation; the last i.v. injection of TRH or vehicle was given 20 min before killing. Experimental procedure The experiments were carried out between 9.00 and 10.00 a.m. On the day of the experiments after the decapitation of rats mixed arterial-venous blood from the trunk was collected in heparinized tubes for AVP, OT as well as FT3 and FT4 estimation. Moreover, the blood was preserved for evaluation serum osmolality or collected in heparinized capillaries for determination of the haematocrite index. Serum osmolality was estimated using a Knauer semimicroosmometer (Halbmikro-Osmometer, Knauer, Weissenschaftliche Geräte KG, Berlin). The neurohormones were extracted from the plasma using C18 Sep-pak columns (Sep-Pak(R) C18 Cartridges, lot No W9224G1; Waters Corp., Milford, Massachusetts) as described by Forsling (24); the final extracts were preserved in frozen sealed vials until radioimmunoassay. The recoveries of hormones during extraction procedure were greater than 80% and therefore values were not corrected for procedural loses. The brain with intact pituitary was quickly (i.e., not later than 2 min after decapitation) removed, the infundibular stalk cut up and the neurointermediate lobe was separated from the anterior lobe. From the brain, rapidly frozen for a few minutes at 70° C, the hypothalamic block was dissected as previously described (25). The wet weight of such a block of the brain was 38.5 ± 1.7 mg (mean ± S.D.). We did not recount the neurohormones content per milligram of hypothalamic tissue because of fact that the biosynthesis of vasopressin and oxytocin exists only in some areas of the hypothalamus (supraoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus). Hence it appears that the presence of the neurohormones in the isolated block of tissue (containing the hypothalamus and a part of thalamus) is not uniformly and the results could be falsely diminished. The neurointermediate lobe (respectively, the hypothalamus) was homogenized at + 4° C by sonication in MicrosonTM Ultrasonic Homogenizer (Labcaire, UK) in 2.0 ml of 0.25% (resp. 0.5%) acetic acid dissolved in 0.9% saline. The tissue suspension was transferred into a centrifuge tube and then the sample was heated for 5 min on boiling water bath (in order to inactivate the proteolytic enzymes contained in the homogenized tissue) and next centrifuged at 2000 rpm at +4° C for 20 min. The supernatants were removed, frozen, and stored at 70° C until radioimmunoassay. Radioimmunoassays The AVP and OT content of the neurohypophysial and hypothalamic extracts as well as plasma AVP and OT levels were determined by double-antibody specific radioimmunoassay as previously described by Ciosek et al. (25). Anti-AVP and anti-OT antibodies were raised by Dr. M. Or³owska- Majdak (Department of Physiology and Biochemistry, Medical University of Lodz). The antibody titer was 1 : 24000 for anti-AVP and 1 : 80000 for anti-OT (both final dilutions). Cross reactivity for anti-AVP antibodies was with oxytocin 0.016%, with lysine vasopressin (LVP) 2.7%, with gonadotropin-releasing hormone (Gn-RH), TRH, leucine enkephalin (Leu-Enk), angiotensin II (Ang II) and substance P (SP) less than 0.002%. Cross reactivity for anti-OT antibodies was with vasopressin 1.12%, with Gn-RH, TRH, Leu-Enk, Ang II and SP less than 0.002%. The sensitivity 426 of anti-AVP and anti-OT antisera was 1.25 pg AVP or OT per tube. Arginine vasopressin (Peninsula Lab. Ltd.; catalog No. RAS 8103, lot 032179) as well as oxytocin (Peninsula Lab. Ltd.; catalog No. RAS 8152, lot 027179) were used for standard curves preparation as well as for iodination with 125I using the chloramine-T method. Intra-assay coefficient of variation (cv) for the AVP and OT was 2.0% and 3.7%, respectively. Plasma free thyroxine (FT4) and free triiodothyronine (FT3) concentrations were determined in duplicate by RIA kits provided by POLATOM (Orodek Badawczo-Rozwojowy Izotopów, Otwock-wierk, Poland; lot No 112028 and 11027, respectively). The intra-assay cv for FT4 and for FT3 were 5.03% and 4.88%, respectively. Statistical evaluation of the results The vasopressin and oxytocin content was finally expressed in nanograms for whole hypothalamus or neurointermediate lobe and in picograms per millilitre of plasma. The plasma FT4 and FT3 concentrations were expressed in picomols per liter. All results were reported as the mean ± standard error of the mean (S.E.M.). Statistical analysis of the experimental data was performed using a Pentium I computer and STATISTICA software. Significance of the differences between the means was assessed using non-parametric analysis of variance (ANOVA) followed by two-way Wilcoxon test. P<0.05 was used as the minimal level of significance. RESULTS Validation of the actual state of water metabolism In untreated, euhydrated animals the serum osmolality and haematocrite index were 250.5 ± 2.98 mOsm/Kg H2O and 42.9 ± 0.87, respectively (Tabl.
Recommended publications
  • Reorganization of Neural Peptidergic Eminence After Hypophysectomy
    The Journal of Neuroscience, October 1994, 14(10): 59966012 Reorganization of Neural Peptidergic Systems Median Eminence after Hypophysectomy Marcel0 J. Villar, Bjiirn Meister, and Tomas Hiikfelt Department of Neuroscience, The Berzelius Laboratory, Karolinska Institutet, Stockholm, 171 77 Sweden Earlier studies have shown the formation of a novel neural crease to a final stage of a few, strongly immunoreactive lobe after hypophysectomy, an experimental manipulation fibers in the external layer at longer survival times. Vaso- that causes transection of neurohypophyseal nerve fibers active intestinal polypeptide (VIP)- and peptide histidine- and removal of pituitary hormones. The mechanisms that isoleucine (PHI)-IR fibers in hypophysectomized animals had underly this regenerative process are poorly understood. already contacted portal vessels 5 d after hypophysectomy, The localization and number of peptide-immunoreactive and from then on progressively increased in numbers. Fi- (-IR) fibers in the median eminence were studied in normal nally, most of the peptide fibers described above formed rats and in rats at different times of survival after hypophy- dense innervation patterns around the large blood vessels sectomy using indirect immunofluorescence histochemistry. along the lateral borders of the median eminence. The number of vasopressin (VP)-IR fibers increased in the The present results show that hypophysectomy induces external layer of the median eminence in 5 d hypophysec- a wide variety of changes in hypothalamic neurosecretory tomized rats. Oxytocin (OXY)-IR fibers decreased in the in- fibers. Not only is the expression of several peptides in these ternal layer and progressively extended into the external fibers modified following different survival times, but a re- layer.
    [Show full text]
  • Effect of Early Vasopressin Vs Norepinephrine On
    Protocol Number: CRO1888 VANISH Vasopressin vs Noradrenaline as Initial therapy in Septic Shock PROTOCOL NUMBER: CRO1888 EudraCT NUMBER: 2011-005363-24 SPONSOR: Imperial College London FUNDER: National Institute for Health Research DEVELOPMENT PHASE: PHASE IV STUDY COORDINATION CENTRE: Imperial Clinical Trials Unit PROTOCOL Version & Date: Version 2.1, 02.08.2013 Property of: Dr Anthony Gordon May not be used, divulged or published without the consent of: Dr Anthony Gordon Confidential Final Version2.1, 02.08.2013 Page 1 of 31 Downloaded From: https://jamanetwork.com/ on 09/29/2021 Protocol Number: CRO1888 Study Management Group Chief Investigator: Dr Anthony Gordon Co-investigators: Dr Stephen Brett Prof Gavin Perkins Prof Deborah Ashby Statistician: Dr Alexina Mason Trial Management: Ms Neeraja Thirunavukkarasu Study Coordination Centre For general queries, supply of trial documentation, and collection of data, please contact: Study Coordinator: Ms Neeraja Thirunavukkarasu Address: ICU – 11N, Charing Cross Hospital, Fulham Palace Road London W6 8RF E-mail: [email protected] Clinical Queries Clinical queries should be directed to Ms Neeraja Thirunavukkarasu who will direct the query to the appropriate person Sponsor Imperial College London is the main research Sponsor for this study. For further information regarding the sponsorship conditions, please contact the Head of Regulatory Compliance at: Joint Research Compliance Office 510, Lab block, 5th Floor Charing Cross Hospital Fulham Palace Road London W6 8RF Tel: 0203 311 0213 Fax: 0203 311 0203 Funder National Institute for Health Research – Research for Patient Benefit and Clinician Scientist award schemes This protocol describes the VANISH study and provides information about procedures for entering participants.
    [Show full text]
  • Vasopressin Versus Norepinephrine in Septic Shock: a Propensity Score Matched Efficiency Retrospective Cohort Study in the VASST Coordinating Center Hospital James A
    Russell et al. Journal of Intensive Care (2018) 6:73 https://doi.org/10.1186/s40560-018-0344-2 RESEARCH Open Access Vasopressin versus norepinephrine in septic shock: a propensity score matched efficiency retrospective cohort study in the VASST coordinating center hospital James A. Russell1,2*, Hugh Wellman3 and Keith R. Walley1,2 Abstract Purpose: It is not clear whether vasopressin versus norepinephrine changed mortality in clinical practice in the Vasopressin and Septic Shock Trial (VASST) coordinating center hospital after VASST was published. We tested the hypothesis that vasopressin changed mortality compared to norepinephrine using propensity matching of vasopressin to norepinephrine-treated patients in the VASST coordinating center hospital before (SPH1) and after (SPH2) VASST was published. Methods: Vasopressin-treated patients were propensity score matched to norepinephrine-treated patients based on age, APACHE II, respiratory, renal, and hematologic dysfunction, mechanical ventilation status, medical/surgical status, infection site, and norepinephrine dose. The propensity score estimated the probability that a patient would have received vasopressin given baseline characteristics. For sensitivity analysis, we then excluded patients who had underlying severe congestive heart failure. The primary outcome was 28-day mortality. Results: Vasopressin- and norepinephrine-treated patients were similar after matching in SPH1 (pre-VASST); vasopressin-treated patients (n = 158) had a significantly higher mortality than norepinephrine-treated patients (n = 158) (60.8 vs. 46.2%, p = 0.009). In SPH2 after matching, the 28-day mortality rates were not significantly different; 31.2% and 26.9% in the vasopressin (n = 93) and norepinephrine (n = 93) groups, respectively (p = 0.518). The day 1 vasopressin dose in SPH1 vs.
    [Show full text]
  • Responses Induced by Arginine-Vasopressin Injection in the Plasma Concentrations of Adrenocorticotropic Hormone, Cortisol, Growt
    249 Responses induced by arginine-vasopressin injection in the plasma concentrations of adrenocorticotropic hormone, cortisol, growth hormone and metabolites around weaning time in goats K Katoh, M Yoshida, Y Kobayashi, M Onodera, K Kogusa and Y Obara Department of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori, Aoba-ku, Sendai 981-8555, Japan (Requests for offprints should be addressed to Y Obara; Email: [email protected]) Abstract In order to assess the biological significance of weaning responses induced by stimulation with AVP were weaker and water deprivation on the control of plasma con- than those induced in 13-week-old goats. Additionally, centrations of adrenocorticotropic hormone (ACTH), cor- there were no responses in any hormone patterns to CRH tisol, growth hormone (GH) and metabolites in response stimulation in 4-week-old goats. In experiment 3, 13- to stimulation with arginine-vasopressin (AVP) and week-old goats were injected with CRH alone followed corticotropin-releasing hormone (CRH), we carried out by injection with AVP for two consecutive days of water three experiments in which male goats before and after deprivation. The animals were subjected to withdrawal of weaning were intravenously injected with AVP or CRH up to 20% of the total blood volume and water deprivation alone, or in combination with each other. In experiment 1, for up to 28 h. However, no significant differences in 17-week-old (post-weaning) goats were intravenously plasma ACTH, cortisol or GH levels were observed injected with AVP or CRH alone at the doses of 0·1, 0·3 between days 1 and 2.
    [Show full text]
  • GIP-Dependent Expression of Hypothalamic Genes
    GIP-dependent expression of hypothalamic genes Suresh Ambati1, Jiuhua Duan1a, Diane L. Hartzell1, Yang-Ho Choi3, Mary Anne Della- Fera1 and Clifton A. Baile1,2 1Department of Animal and Dairy Science, 2Department of Foods and Nutrition, University of Georgia, Athens GA 30602, USA. 3Department of Animal Science and Institute of Agriculture & Life Sciences, Gyeongsang National University, Jinju 660-701, Korea Correspondence: Dr. Clifton A. Baile, 444 Rhodes Center, University of Georgia, Athens GA 30602-2771. Tel: (706) 542-4094; Fax: (706) 542-7925; e-mail: [email protected] Short Title: GIP-dependent expression of hypothalamic genes a Current address: Dept. of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada M5S 1A1 1 SUMMARY GIP (glucose dependent insulinotrophic polypeptide), originally identified as an incretin peptide synthesized in the gut, has recently been identified, along with its receptors (GIPR), in the brain. Our objective was to investigate the role of GIP in hypothalamic gene expression of biomarkers linked to regulating energy balance and feeding behavior related neurocircuitry. Rats with lateral cerebroventricular cannulas were administered 10 g GIP or 10 l artificial cerebrospinal fluid (aCSF) daily for 4 days, after which whole hypothalami were collected. Real time Taqman™ RT-PCR was used to quantitatively compare the mRNA expression levels of a set of genes in the hypothalamus. Administration of GIP resulted in up-regulation of hypothalamic mRNA levels of AVP (46.9+4.5%), CART (25.9+2.7%), CREB1 (38.5+4.5%), GABRD (67.1+11%), JAK2 (22.1+3.6%), MAPK1 (33.8+7.8%), NPY (25.3 5.3%), OXT (49.1+5.1%), STAT3 (21.6+3.8%), and TH (33.9+8.5%).
    [Show full text]
  • Incidence of Hypotension After Discontinuation of Norepinephrine
    J Korean Med Sci. 2020 Jan 6;35(1):e8 https://doi.org/10.3346/jkms.2020.35.e8 eISSN 1598-6357·pISSN 1011-8934 Original Article Incidence of Hypotension after Emergency & Critical Care Medicine Discontinuation of Norepinephrine or Arginine Vasopressin in Patients with Septic Shock: a Systematic Review and Meta-Analysis Jae-Uk Song ,1* Jonghoo Lee ,2* Hye Kyeong Park ,3 Gee Young Suh ,4,5 and Kyeongman Jeon 4,5 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea 2Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Received: Jul 26, 2019 Medicine, Jeju, Korea Accepted: Nov 12, 2019 3Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea Address for Correspondence: 4Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Kyeongman Jeon, MD, PhD Medicine, Seoul, Korea Division of Pulmonary and Critical Care 5Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Medicine, Department of Medicine, and Sungkyunkwan University School of Medicine, Seoul, Korea Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea. ABSTRACT E-mail: [email protected] Background: There has been no consensus regarding the discontinuation order *Jae-Uk Song and Jonghoo Lee contributed of vasopressors in patients recovering from septic shock treated with concomitant equally to this work. norepinephrine (NE) and arginine vasopressin (AVP). The aim of this study was to compare © 2020 The Korean Academy of Medical the incidence of hypotension within 24 hours based on whether NE or AVP was discontinued Sciences.
    [Show full text]
  • Desensitization of Rat Renal Thick Ascending Limb Cells to Vasopressin
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 2407-2411, April 1988 Physiological Sciences Desensitization of rat renal thick ascending limb cells to vasopressin (Brattleboro rats/urine concentration/glucagon/calcitonin) JEAN-MARC ELALOUF*, DAOUDI CHABANE SARI, NICOLE ROINEL, AND CHRISTIAN DE ROUFFIGNAC Service de Biologie Cellulaire, Centre d'Etudes Nucleaires de Saclay, 91191 Gif-sur-Yvette Cedex, France Communicated by Gerhard Giebisch, December 8, 1987 ABSTRACT Previous studies from this laboratory have collecting duct but also enhances Cl, Na, K, Mg, and Ca demonstrated that vasopressin stimulates K, Mg, Ca, Cl, and reabsorption in the thick ascending limb of Henle's loop Na reabsorption by the thick ascending limb of Henle's loop (TALH) of the rat kidney (2-4). In addition, three hor- (TALH) of the rat kidney. Micropuncture of superficial neph- mones-glucagon, calcitonin, and parathyroid hormone rons and clearance experiments were performed to determine (PTH)-act on the same pool of adenylate cyclase as vaso- whether desensitization of the TALH to vasopressin may be pressin in the rat TALH (5) and also strongly stimulate K, demonstrated in vivo and whether such desensitization is Mg, and Ca reabsorption in this nephron segment (6, 7). The specific for the effects of vasopressin (i.e., homologous) or also present study was undertaken to determine whether (i) the alters the response to the other hormones acting on the same biological response of the TALH to vasopressin can be pool of adenylate cyclase in this nephron segment. Brattleboro desensitized in vivo, (ii) this desensitization is homologous or rats, with hereditary hypothalamic diabetes insipidus (DI), heterologous, and (iii) the TALH and the collecting ducts can were given i.m.
    [Show full text]
  • Balance of Brain Oxytocin and Vasopressin: Implications For
    Opinion Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors 1 2 Inga D. Neumann and Rainer Landgraf 1 Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany 2 Max Planck Institute of Psychiatry, Munich, Germany Oxytocin and vasopressin are regulators of anxiety, ([5] for review of human data), for opposing effects of OXT stress-coping, and sociality. They are released within and AVP on the fine-tuned regulation of emotional behav- hypothalamic and limbic areas from dendrites, axons, ior. Specifically, OXT exerts anxiolytic and antidepressive and perikarya independently of, or coordinated with, effects, whereas AVP predominantly increases anxiety- secretion from neurohypophysial terminals. Central oxy- and depression-related behaviors. We will therefore put tocin exerts anxiolytic and antidepressive effects, where- forward the hypothesis that a dynamic balance between as vasopressin tends to show anxiogenic and depressive the activities of brain OXT and AVP systems impacts upon actions. Evidence from pharmacological and genetic hypothalamic and limbic circuitries involved in a broad association studies confirms their involvement in indi- spectrum of emotional behaviors extending to psychopa- vidual variation of emotional traits extending to psycho- thology. pathology. Based on their opposing effects on emotional behaviors, we propose that a balanced activity of both Central release patterns of OXT and AVP: coordinated brain neuropeptide systems is important for appropriate and independent secretion into blood emotional behaviors. Shifting the balance between the Following their neuronal synthesis in the hypothalamic neuropeptide systems towards oxytocin, by positive supraoptic (SON) and paraventricular (PVN) nuclei (OXT, social stimuli and/or psychopharmacotherapy, may help AVP), or in regions of the limbic system (AVP), both to improve emotional behaviors and reinstate mental neuropeptides are centrally released to regulate neuronal health.
    [Show full text]
  • Downloaded from Bioscientifica.Com at 09/27/2021 12:13:16PM Via Free Access 82 C Y Y CHENG, J Y S CHU and Others
    81 REVIEW Vasopressin-independent mechanisms in controlling water homeostasis Carrie Y Y Cheng*, Jessica Y S Chu* and Billy K C Chow School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, People’s Republic of China (Correspondence should be addressed to B K C Chow; Email: [email protected]) *(C Y Y Cheng and J Y S Chu contributed equally this work) Abstract The maintenance of body water homeostasis depends on the balance between water intake and water excretion. In the kidney, vasopressin (Vp) is a critical regulator of water homeostasis by controlling the insertion of aquaporin 2 (AQP2) onto the apical membrane of the collecting duct principal cells in the short term and regulating the gene expression of AQP2 in the long term. A growing body of evidence from both in vitro and in vivo studies demonstrated that both secretin and oxytocin are involved as Vp-independent mechanisms regulating the renal water reabsorption process, including the translocation and expression of AQP2. This review focuses on how these two hormones are potentially involved as Vp-independent mechanisms in controlling water homeostasis. Journal of Molecular Endocrinology (2009) 43, 81–92 Introduction sensation of thirst and the availability of water, and water excretion controlled by the antidiuretic hormone Osmoregulation involves sophisticatedly integrated Vp and the medullary osmotic gradient. physiological and behavioral responses to maintain the osmolality of the fluid bathing body cells. The regulation of renal handling of water and electrolytes by Vasopressin the antidiuretic hormone, vasopressin (Vp), and the regulation of water and salt intake by the dipsogenic Vp is a pleiotropic peptide which affects a wide range of peptide, angiotensin, are involved in the physiological peripheral and central regulated functions in order to and behavioral approaches respectively.
    [Show full text]
  • Vasopressin Mediates the Response of the Combined Dexamethasone/CRH Test in Hyper-Anxious Rats: Implications for Pathogenesis of Affective Disorders Martin E
    Vasopressin Mediates the Response of the Combined Dexamethasone/CRH Test in Hyper-anxious Rats: Implications for Pathogenesis of Affective Disorders Martin E. Keck, M.D., Alexandra Wigger, Ph.D., Tobias Welt, B.Sc., Marianne B. Müller, M.D., Angela Gesing, Ph.D., Johannes M.H.M. Reul, Ph.D., Florian Holsboer, M.D., Ph.D., Rainer Landgraf, Ph.D., and Inga D. Neumann, Ph.D. To investigate the neuroendocrine alterations linked to corticotrope cells. We tested this hypothesis by in situ inborn emotionality in two Wistar rat lines selectively bred hybridization and in vivo microdialysis, and found an for either high (HAB) or low (LAB) anxiety-related increase in both basal synthesis and release of vasopressin behavior, we administered the combined dexamethasone within the PVN of the male HAB rats. As expected, (DEX)/corticotropin-releasing hormone (CRH) test. DEX pretreatment with a selective vasopressin type 1 receptor (12:00 M. (noon); 30 ␮g/kg) resulted in a significantly less antagonist abolished the CRH-stimulated increase in efficient suppression of the diurnal increase in the ACTH secretion in the DEX-pretreated male HAB rats. circulating corticotropin (ACTH) levels in the male HAB The results indicate that vasopressin-mediated effects are rats than in the male LAB rats. In addition, plasma ACTH critically involved in the profound disturbance of the and corticosterone responses to subsequent CRH (7:30 P.M.; hypothalamic-pituitary-adrenocortical system in male HAB 50 ng/kg) were significantly higher in male HAB rats. The rats, thus revealing striking parallels to the neuroendocrine rise in ACTH after CRH in the DEX-pretreated male HAB situation in human depression.
    [Show full text]
  • Identifying the Role of Vasopressin and Oxytocin in the Microbiota-Gut-Brain-Behavior Axis Nicole Peters
    Georgia State University ScholarWorks @ Georgia State University Neuroscience Institute Dissertations Neuroscience Institute 8-13-2019 Identifying the Role of Vasopressin and Oxytocin in the Microbiota-Gut-Brain-Behavior Axis Nicole Peters Follow this and additional works at: https://scholarworks.gsu.edu/neurosci_diss Recommended Citation Peters, Nicole, "Identifying the Role of Vasopressin and Oxytocin in the Microbiota-Gut-Brain-Behavior Axis." Dissertation, Georgia State University, 2019. https://scholarworks.gsu.edu/neurosci_diss/45 This Dissertation is brought to you for free and open access by the Neuroscience Institute at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Neuroscience Institute Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. IDENTIFYING THE ROLE OF VASOPRESSIN AND OXYTOCIN IN THE MICROBIOTA-GUT-BRAIN-BEHAVIOR AXIS by NICOLE PETERS Under the Direction of Geert de Vries, PhD ABSTRACT The gut microbiota is a complex ecosystem of microorganisms that form a bidirectional communication pathway with the brain, called the gut-brain axis. In addition to their roles in mediating host metabolism and digestion, a wealth of research is identifying roles for the gut microbiota in neural development and function, immune modulation, and behavioral expression. Many neural targets of gut-brain axis signaling have been identified, but little attention has been paid to vasopressin and oxytocin. Vasopressin and oxytocin are neuropeptides that are targets of immune signaling and are implicated in the control of anxiety-like, depressive-like, and social behaviors, making them likely mediators in the communication between the gut and the brain. As the immune system is a main signaling pathway in the gut-brain axis, it is possible that vasopressin and oxytocin would be affected through immune system activation to result in behavioral alterations seen in microbiota dysbiosis.
    [Show full text]
  • Cholecystokinin Evokes Secretion of Oxytocin and Vasopressin from Rat
    Proc. Natl. Acad. Sci. USA Vol. 86, pp. 5198-5201, July 1989 Neurobiology Cholecystokinin evokes secretion of oxytocin and vasopressin from rat neural lobe independent of external calcium (neurohypophysis/receptors/neurosecretion/neuropeptide/protein kinase C) C. A. BONDY*t, R. T. JENSEN*, L. S. BRADY§, AND H. GAINER* *Laboratory of Neurochemistry, National Institute of Neurological and Communicative Disorders and Stroke, tDigestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, and §Unit on Functional Neuroanatomy, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892 Communicated by William A. Hagins, April 5, 1989 ABSTRACT Cholecystokinin (CCK) and its receptors are albumin (1.5 mg/ml)] maintained at 370C and equilibrated abundantly represented in the central nervous system. However, with frequent washes for 90 min prior to starting the exper- a specific role or mechanism ofaction for CCKin this context has iment. The incubation and stimulus assembly have been not been established. CCK coexists with oxytocin in magnocel- described in detail elsewhere (4). The stream of 02 suffusing lular neurons of the hypothalamic-neurohypophysial system, the medium was turned offduring periods of peptide addition sharing common neurosecretory vesicles with oxytocin in the (and for the same period in control preparations) to avoid neural lobe of the pituitary. The neural lobe, which consists oxidation of CCK and related peptides, which can destroy primarily of oxytocin- and vasopressin-containing axons and their activity. Medium was collected at 5- or 10-min intervals nerve terminals and their surrounding glia, provides a relatively for determination of OT and VP content by specific radio- simple model system allowing for the study of the regulation of immunoassay as described (4).
    [Show full text]