Correlation.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  The Locally Gaussian Partial Correlation Håkon Otneim∗ Dag Tjøstheim†The Locally Gaussian Partial Correlation Håkon Otneim∗ Dag Tjøstheim† Abstract It is well known that the dependence structure for jointly Gaussian variables can be fully captured using correlations, and that the conditional dependence structure in the same way can be described using partial correlations. The partial correlation does not, however, characterize conditional dependence in many non-Gaussian populations. This paper introduces the local Gaussian partial correlation (LGPC), a new measure of conditional dependence. It is a local version of the partial correlation coefficient that characterizes conditional dependence in a large class of populations. It has some useful and novel properties besides: The LGPC reduces to the ordinary partial correlation for jointly normal variables, and it distinguishes between positive and negative conditional dependence. Furthermore, the LGPC can be used to study departures from conditional independence in specific parts of the distribution. We provide several examples of this, both simulated and real, and derive estimation theory under a local likelihood framework. Finally, we indicate how the LGPC can be used to construct a powerful test for conditional independence, which, again, can be used to detect Granger causality in time series. 1 Introduction Estimation of conditional dependence and testing for conditional independence are extremely important topics in classical as well as modern statistics. In the last two decades, for instance, there has been a very intense development using conditional dependence in probabilistic network theory. This comes in addition to conditional multivariate time series analysis and copula analysis. For jointly Gaussian variables, conditional dependence is measured by the partial correlation coefficient. Given three jointly Gaussian stochastic variables X1, X2 and X3, X1 and X2 are conditionally independent given X3 if and only if the partial correlation between X1 and X2 given X3 is equal to zero.
- 
												  Estimation of Correlation Coefficient in Data with Repeated MeasuresPaper 2424-2018 Estimation of correlation coefficient in data with repeated measures Katherine Irimata, Arizona State University; Paul Wakim, National Institutes of Health; Xiaobai Li, National Institutes of Health ABSTRACT Repeated measurements are commonly collected in research settings. While the correlation coefficient is often used to characterize the relationship between two continuous variables, it can produce unreliable estimates in the repeated measure setting. Alternative correlation measures have been proposed, but a comprehensive evaluation of the estimators and confidence intervals is not available. We provide a comparison of correlation estimators for two continuous variables in repeated measures data. We consider five methods using SAS/STAT® software procedures, including a naïve Pearson correlation coefficient (PROC CORR), correlation of subject means (PROC CORR), partial correlation adjusting for patient ID (PROC GLM), partial correlation coefficient (PROC MIXED), and a mixed model (PROC MIXED) approach. Confidence intervals were calculated using the normal approximation, cluster bootstrap, and multistage bootstrap. The performance of the five correlation methods and confidence intervals were compared through the analysis of pharmacokinetics data collected on 18 subjects, measured over a total of 76 visits. Although the naïve estimate does not account for subject-level variability, the method produced a point estimate similar to the mixed model approach under the conditions of this example (complete data). The mixed model approach and corresponding confidence interval was the most appropriate measure of correlation as the method fully specifies the correlation structure. INTRODUCTION The correlation coefficient ρ is often used to characterize the linear relationship between two continuous variables. Estimates of the correlation (r) that are close to 0 indicate little to no association between the two variables, whereas values close to 1 or -1 indicate a strong association.
- 
												  Testing the Causal Direction of Mediation Effects in Randomized Intervention StudiesPrevention Science (2019) 20:419–430 https://doi.org/10.1007/s11121-018-0900-y Testing the Causal Direction of Mediation Effects in Randomized Intervention Studies Wolfgang Wiedermann1 & Xintong Li1 & Alexander von Eye2 Published online: 21 May 2018 # Society for Prevention Research 2018 Abstract In a recent update of the standards for evidence in research on prevention interventions, the Society of Prevention Research emphasizes the importance of evaluating and testing the causal mechanism through which an intervention is expected to have an effect on an outcome. Mediation analysis is commonly applied to study such causal processes. However, these analytic tools are limited in their potential to fully understand the role of theorized mediators. For example, in a design where the treatment x is randomized and the mediator (m) and the outcome (y) are measured cross-sectionally, the causal direction of the hypothesized mediator-outcome relation is not uniquely identified. That is, both mediation models, x → m → y or x → y → m, may be plausible candidates to describe the underlying intervention theory. As a third explanation, unobserved confounders can still be responsible for the mediator-outcome association. The present study introduces principles of direction dependence which can be used to empirically evaluate these competing explanatory theories. We show that, under certain conditions, third higher moments of variables (i.e., skewness and co-skewness) can be used to uniquely identify the direction of a mediator-outcome relation. Significance procedures compatible with direction dependence are introduced and results of a simulation study are reported that demonstrate the performance of the tests. An empirical example is given for illustrative purposes and a software implementation of the proposed method is provided in SPSS.
- 
												  Partial Correlation LectureAnalytical Paleobiology Workshop 2018 Partial Correlation Instructor Michał Kowalewski Florida Museum of Natural History University of Florida [email protected] Partial Correlation Partial correlation attempts to estimate relationship between two variables after accounting for other variables. Synthetic Example Z <- rnorm(100, 20, 3) # let Z (‘human impact’) be independent X <- rnorm(100, 20, 1) + Z # ley X (‘vegetation density’) be strongly dependent on Z Y <- rnorm(100, 20, 1) +Z # let Y (‘animal diversity’) be also strongly dependent on Z Note that in this example X (vegetation density) and Y (animal diversity) are not interrelated directly However, they appear strongly correlated because they are both strongly influenced by Z One way to re-evaluate X and Y while minimizing effects of Z is partial correlation Computing Partial Correlation For a simplest case of three linearly related variables (x, y, z) partial correlation of x and y given z can be computed from residuals of OLS linear regression models z ~ x and z ~ y 1. Compute residuals for x (dependent) ~ z (independent) model 2. Compute residuals for y (dependent) ~ z (independent) model 3. Compute correlation between the residuals rxy_z = cor(lm(X ~ Z)$residuals), lm(Y ~ Z)$residuals)) What are residuals? OLS residuals for y = vegetation density Partial correlation XY_Z is -0.081 (recall that r for XY was 0.901) partial correlations human.impact versus vegetation.density 0.72651264 human.impact versus animal.diversity 0.71126584 vegetation.density versus animal.diversity -0.08147584 Partial and Semi-Partial Correlation “The partial correlation can be explained as the association between two random variables after eliminating the effect of all other random variables, while the semi-partial correlation eliminates the effect of a fraction of other random variables, for instance, removing the effect of all other random variables from just one of two interesting random variables.
- 
												  Local White Matter Architecture Defines Functional Brain Dynamics2018 IEEE International Conference on Systems, Man, and Cybernetics Local White Matter Architecture Defines Functional Brain Dynamics Yo Joong Choe* Sivaraman Balakrishnan Aarti Singh Kakao Dept. of Statistics and Data Science Machine Learning Dept. Seongnam-si, South Korea Carnegie Mellon University Carnegie Mellon University [email protected] Pittsburgh, PA, USA Pittsburgh, PA, USA [email protected] [email protected] Jean M. Vettel Timothy Verstynen U.S. Army Research Laboratory Dept. of Psychology and CNBC Aberdeen Proving Ground, MD, USA Carnegie Mellon University [email protected] Pittsburgh, PA, USA [email protected] Abstract—Large bundles of myelinated axons, called white the integrity of the myelin sheath is critical for synchroniz- matter, anatomically connect disparate brain regions together ing information transmission between distal brain areas [2], and compose the structural core of the human connectome. We fostering the ability of these networks to adapt over time recently proposed a method of measuring the local integrity along the length of each white matter fascicle, termed the local [4]. Thus, variability in the myelin sheath, as well as other connectome [1]. If communication efficiency is fundamentally cellular support mechanisms, would contribute to variability constrained by the integrity along the entire length of a white in functional coherence across the circuit. matter bundle [2], then variability in the functional dynamics To study the integrity of structural connectivity, we recently of brain networks should be associated with variability in the introduced the concept of the local connectome. This is local connectome. We test this prediction using two statistical ap- proaches that are capable of handling the high dimensionality of defined as the pattern of fiber systems (i.e., number of fibers, data.
- 
												  Linear Mixed Model Selection by Partial CorrelationLINEAR MIXED MODEL SELECTION BY PARTIAL CORRELATION Audry Alabiso A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2020 Committee: Junfeng Shang, Advisor Andy Garcia, Graduate Faculty Representative Hanfeng Chen Craig Zirbel ii ABSTRACT Junfeng Shang, Advisor Linear mixed models (LMM) are commonly used when observations are no longer independent of each other, and instead, clustered into two or more groups. In the LMM, the mean response for each subject is modeled by a combination of fixed effects and random effects. The fixed effects are characteristics shared by all individuals in the study; they are analogous to the coefficients of the linear model. The random effects are specific to each group or cluster and help describe the correlation structure of the observations. Because of this, linear mixed models are popular when multiple measurements are made on the same subject or when there is a natural clustering or grouping of observations. Our goal in this dissertation is to perform fixed effect selection in the high-dimensional linear mixed model. We generally define high-dimensional data to be when the number of potential predictors is large relative to the sample size. High-dimensional data is common in genomic and other biological datasets. In the high-dimensional setting, selecting the fixed effect coefficients can be difficult due to the number of potential models to choose from. However, it is important to be able to do so in order to build models that are easy to interpret.
- 
												  From Distance Correlation to Multiscale Graph Correlation ArxivFrom Distance Correlation to Multiscale Graph Correlation Cencheng Shen∗1, Carey E. Priebey2, and Joshua T. Vogelsteinz3 1Department of Applied Economics and Statistics, University of Delaware 2Department of Applied Mathematics and Statistics, Johns Hopkins University 3Department of Biomedical Engineering and Institute of Computational Medicine, Johns Hopkins University October 2, 2018 Abstract Understanding and developing a correlation measure that can detect general de- pendencies is not only imperative to statistics and machine learning, but also crucial to general scientific discovery in the big data age. In this paper, we establish a new framework that generalizes distance correlation — a correlation measure that was recently proposed and shown to be universally consistent for dependence testing against all joint distributions of finite moments — to the Multiscale Graph Correla- tion (MGC). By utilizing the characteristic functions and incorporating the nearest neighbor machinery, we formalize the population version of local distance correla- tions, define the optimal scale in a given dependency, and name the optimal local correlation as MGC. The new theoretical framework motivates a theoretically sound ∗[email protected] arXiv:1710.09768v3 [stat.ML] 30 Sep 2018 [email protected] [email protected] 1 Sample MGC and allows a number of desirable properties to be proved, includ- ing the universal consistency, convergence and almost unbiasedness of the sample version. The advantages of MGC are illustrated via a comprehensive set of simula- tions with linear, nonlinear, univariate, multivariate, and noisy dependencies, where it loses almost no power in monotone dependencies while achieving better perfor- mance in general dependencies, compared to distance correlation and other popular methods.
- 
												  Regression Analysis and Statistical ControlCHAPTER 4 REGRESSION ANALYSIS AND STATISTICAL CONTROL 4.1 INTRODUCTION Bivariate regression involves one predictor and one quantitative outcome variable. Adding a second predictor shows how statistical control works in regression analysis. The previous chap- ter described two ways to understand statistical control. In the previous chapter, the outcome variable was denoted , the predictor of interest was denoted , and the control variable was Y X1 distribute called X2. 1. We can control for an X variable by dividing data into groups on the basis of X 2 or 2 scores and then analyzing the X1, Y relationship separately within these groups. Results are rarely reported this way in journal articles; however, examining data this way makes it clear that the nature of an X1, Y relationship can change in many ways when you control for an X2 variable. 2. Another way to control for an X2 variable is obtaining a partial correlation between X1 and Y, controlling for X2. This partial correlation is denoted r1Y.2. Partial correlations are not often reported in journalpost, articles either. However, thinking about them as correlations between residuals helps you understand the mechanics of statistical control. A partial correlation between X1 and Y, controlling for X2, can be understood as a correlation between the parts of the X1 scores that are not related to X2, and the parts of the Y scores that are not related to X2. This chapter introduces the method of statistical control that is most widely used and reported. This method involves using both X1 and X2 as predictors of Y in a multiple linear regression.
- 
												  Financial Development and Economic Growth: a Meta-AnalysisA Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Valickova, Petra; Havranek, Tomas; Horváth, Roman Working Paper Financial development and economic growth: A meta-analysis IOS Working Papers, No. 331 Provided in Cooperation with: Leibniz Institute for East and Southeast European Studies (IOS), Regensburg Suggested Citation: Valickova, Petra; Havranek, Tomas; Horváth, Roman (2013) : Financial development and economic growth: A meta-analysis, IOS Working Papers, No. 331, Institut für Ost- und Südosteuropaforschung (IOS), Regensburg, http://nbn-resolving.de/urn:nbn:de:101:1-201307223036 This Version is available at: http://hdl.handle.net/10419/79241 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under
- 
												  A Comparative Study of Statistical Methods Used to IdentifyBriefings in Bioinformatics Advance Access published August 20, 2013 BRIEFINGS IN BIOINFORMATICS. page1of13 doi:10.1093/bib/bbt051 A comparative study of statistical methods used to identify dependencies between gene expression signals Suzana de Siqueira Santos, Daniel YasumasaTakahashi, Asuka Nakata and Andre¤Fujita Submitted: 18th April 2013; Received (in revised form): 10th June 2013 Abstract One major task in molecular biology is to understand the dependency among genes to model gene regulatory net- works. Pearson’s correlation is the most common method used to measure dependence between gene expression signals, but it works well only when data are linearly associated. For other types of association, such as non-linear Downloaded from or non-functional relationships, methods based on the concepts of rank correlation and information theory-based measures are more adequate than the Pearson’s correlation, but are less used in applications, most probably because of a lack of clear guidelines for their use. This work seeks to summarize the main methods (Pearson’s, Spearman’s and Kendall’s correlations; distance correlation; Hoeffding’s D measure; Heller^Heller^Gorfine measure; mutual in- http://bib.oxfordjournals.org/ formation and maximal information coefficient) used to identify dependency between random variables, especially gene expression data, and also to evaluate the strengths and limitations of each method. Systematic Monte Carlo simulation analyses ranging from sample size, local dependence and linear/non-linear and also non-functional relationships are shown. Moreover, comparisons in actual gene expression data are carried out. Finally, we provide a suggestive list of methods that can be used for each type of data set.
- 
												  A Tutorial on Regularized Partial Correlation NetworksPsychological Methods © 2018 American Psychological Association 2018, Vol. 1, No. 2, 000 1082-989X/18/$12.00 http://dx.doi.org/10.1037/met0000167 A Tutorial on Regularized Partial Correlation Networks Sacha Epskamp and Eiko I. Fried University of Amsterdam Abstract Recent years have seen an emergence of network modeling applied to moods, attitudes, and problems in the realm of psychology. In this framework, psychological variables are understood to directly affect each other rather than being caused by an unobserved latent entity. In this tutorial, we introduce the reader to estimating the most popular network model for psychological data: the partial correlation network. We describe how regularization techniques can be used to efficiently estimate a parsimonious and interpretable network structure in psychological data. We show how to perform these analyses in R and demonstrate the method in an empirical example on posttraumatic stress disorder data. In addition, we discuss the effect of the hyperparameter that needs to be manually set by the researcher, how to handle non-normal data, how to determine the required sample size for a network analysis, and provide a checklist with potential solutions for problems that can arise when estimating regularized partial correlation networks. Translational Abstract Recent years have seen an emergence in the use of networks models in psychological research to explore relationships of variables such as emotions, symptoms, or personality items. Networks have become partic- ularly popular in analyzing mental illnesses, as they facilitate the investigation of how individual symptoms affect one-another. This article introduces a particular type of network model: the partial correlation network, and describes how this model can be estimated using regularization techniques from statistical learning.
- 
												  Correlation: Measure of RelationshipCorrelation: Measure of Relationship • Bivariate Correlations are correlations between two variables. Some bivariate correlations are nondirectional and these are called symmetric correlations. Other bivariate correlations are directional and are called asymmetric correlations. • Bivariate correlations control for neither antecedent variables (previous) nor intervening (mediating) variables. Example 1: An antecedent variable may cause both of the other variables to change. Without the antecedent variable being operational, the two observed variables, which appear to correlate, may not do so at all. Therefore, it is important to control for the effects of antecedent variables before inferring causation. Example 2: An intervening variable can also produce an apparent relationship between two observed variables, such that if the intervening variable were absent, the observed relationship would not be apparent. • The linear model assumes that the relations between two variables can be summarized by a straight line. • Correlation means the co-relation, or the degree to which two variables go together, or technically, how those two variables covary. • Measure of the strength of an association between 2 scores. • A correlation can tell us the direction and strength of a relationship between 2 scores. • The range of a correlation is from –1 to +1. • -1 = an exact negative relationship between score A and score B (high scores on one measure and low scores on another measure). • +1 = an exact positive relationship between score A and score B (high scores on one measure and high scores on another measure). • 0 = no linear association between score A and score B. • When the correlation is positive, the variables tend to go together in the same manner.