Kernel Partial Correlation Coefficient | a Measure of Conditional Dependence Zhen Huang, Nabarun Deb, and Bodhisattva Sen∗ 1255 Amsterdam Avenue New York, NY 10027 e-mail:
[email protected] 1255 Amsterdam Avenue New York, NY 10027 e-mail:
[email protected] 1255 Amsterdam Avenue New York, NY 10027 e-mail:
[email protected] Abstract: In this paper we propose and study a class of simple, nonparametric, yet interpretable measures of conditional dependence between two random variables Y and Z given a third variable X, all taking values in general topological spaces. The popu- lation version of any of these nonparametric measures | defined using the theory of reproducing kernel Hilbert spaces (RKHSs) | captures the strength of conditional de- pendence and it is 0 if and only if Y and Z are conditionally independent given X, and 1 if and only if Y is a measurable function of Z and X. Thus, our measure | which we call kernel partial correlation (KPC) coefficient | can be thought of as a nonparamet- ric generalization of the classical partial correlation coefficient that possesses the above properties when (X; Y; Z) is jointly normal. We describe two consistent methods of es- timating KPC. Our first method of estimation is graph-based and utilizes the general framework of geometric graphs, including K-nearest neighbor graphs and minimum spanning trees. A sub-class of these estimators can be computed in near linear time and converges at a rate that automatically adapts to the intrinsic dimensionality of the underlying distribution(s). Our second strategy involves direct estimation of con- ditional mean embeddings using cross-covariance operators in the RKHS framework.