National Aviation Plan

Total Page:16

File Type:pdf, Size:1020Kb

National Aviation Plan i 2017 BLM National Aviation Plan This plan provides comprehensive information regarding BLM aviation organizations, responsibilities, administrative procedures and policy. This plan is implemented through BLM Instruction Memorandum. The primary distribution of this document is electronic and available at: https://www.nifc.gov/aviation/av_BLMlibrary.html BLM Fire and Aviation Directorate National Aviation Office 208-387-5180 aviation.blm.gov National Interagency Fire Center 3833 South Development Ave. Boise, ID, 83705 ii 2018 BLM National Aviation Plan 1.0 Aviation Plan ........................................................................................................................ 1 1.1 Purpose ............................................................................................................................. 1 1.2 Mission Statement ............................................................................................................. 1 1.3 Aviation Program Objectives .............................................................................................. 1 1.4 National Fire Aircraft Management Strategy ....................................................................... 2 1.5 Authority ............................................................................................................................ 3 1.6 Policy ................................................................................................................................. 3 2.0 Aviation Management Organizations ................................................................................. 4 2.1 Department of the Interior (DOI) ......................................................................................... 4 2.2 National Aviation Groups/Committees ................................................................................ 4 2.3 Bureau of Land Management (BLM) .................................................................................. 6 2.4 National Aviation Office - NAO (FA-500) ............................................................................ 7 2.5 BLM State/District/Field Office Organizations ....................................................................11 2.6 Aviation Positions ..............................................................................................................14 3.0 Administrative Requirements ............................................................................................17 3.1 General .............................................................................................................................17 3.2 Reporting and Documentation Requirements ....................................................................17 3.3 Aviation Plans: National, State, Unit, and Project ..............................................................17 3.4 Aircrew Orientation Briefing Package ................................................................................18 3.5 Land Use Policy for Aviation Activities ..............................................................................18 3.6 Budget ..............................................................................................................................19 3.7 Aircraft Flight Service Ordering .........................................................................................19 3.8 Aircraft Contracts ..............................................................................................................21 3.9 End Product Contracts ......................................................................................................25 3.10 BLM Supplemental Fire Aircraft Acquisition ....................................................................27 3.11 Cooperator Aircraft ..........................................................................................................28 3.12 Senior Executive Service (SES) Flights...........................................................................29 3.13 BLM Law Enforcement Flights ........................................................................................29 3.14 Search and Rescue (SAR) Flights ...................................................................................29 3.15 National Guard and United States Military Aircraft Flights ...............................................30 3.17 Dispatching BLM Aircraft - Flight Requests .....................................................................32 3.18 Aircraft Use Payment Systems ........................................................................................34 3.19 Coding for Flight Use Reports .........................................................................................35 3.20 FEPP ..............................................................................................................................36 3.21 FBMS ..............................................................................................................................36 3.22 Aviation Program Reviews ..............................................................................................36 3.23 New Program Requests ..................................................................................................36 4.0 Aviation Safety Management Systems .............................................................................37 4.1 General .............................................................................................................................37 4.2 Safety Management Systems (SMS) ................................................................................37 iii 2018 BLM National Aviation Plan 4.3 Policy ................................................................................................................................37 4.4 Risk Management .............................................................................................................40 4.5 Assurance .........................................................................................................................41 4.6 Promotion .........................................................................................................................43 5.0 Aviation Operations ...........................................................................................................44 5.1 General .............................................................................................................................44 5.2 Policy, Operational Guides and Handbooks ......................................................................44 5.3 Public/Civil Aircraft Operations ..........................................................................................44 5.4 BLM Employees on Non-BLM Aircraft ...............................................................................45 5.5 Passengers .......................................................................................................................45 5.6 Emergency Exception to Policy: ........................................................................................46 5.7 Categories of Flight ...........................................................................................................46 5.8 Flight Planning ..................................................................................................................47 5.9 Flight Following .................................................................................................................47 5.10 Radio Frequency Management/Communications ............................................................49 5.11 Overdue, Missing or Downed Aircraft ..............................................................................49 5.12 Mishap Response ...........................................................................................................49 5.13 Transportation of Hazardous Materials ...........................................................................50 5.14 Invasive Species Control .................................................................................................50 5.15 Fire Chemicals and Aerial Application Policy near Waterways ........................................50 5.16 Search and Rescue (SAR) ..............................................................................................50 5.17 Large Airtanker (LAT), Very Large Airtanker (VLAT) and CL-215/415 (Scoopers) Operations ......................................................................................................................51 5.18 Airtanker Base Operations ..............................................................................................51 5.19 SEAT Operations ............................................................................................................51 5.20 Foreign Airtanker Operations ..........................................................................................51 5.21 Air Attack, ASM and Leadplane Operations ....................................................................51 5.22 Helicopter Operations .....................................................................................................52 5.23 Aerial Ignition Operations ................................................................................................54 5.24 Wild Horse & Burro Operations (WH&B) .........................................................................54 5.25 Aerial Capture, Eradication and Tagging of Animals (ACETA) ........................................54
Recommended publications
  • Weather and Aviation: How Does Weather Affect the Safety and Operations of Airports and Aviation, and How Does FAA Work to Manage Weather-Related Effects?
    Kulesa 1 Weather and Aviation: How Does Weather Affect the Safety and Operations of Airports and Aviation, and How Does FAA Work to Manage Weather-related Effects? By Gloria Kulesa Weather Impacts On Aviation In addition, weather continues to play a significant role in a number of aviation Introduction accidents and incidents. While National Transportation Safety Board (NTSB) reports ccording to FAA statistics, weather is most commonly find human error to be the the cause of approximately 70 percent direct accident cause, weather is a primary of the delays in the National Airspace contributing factor in 23 percent of all System (NAS). Figure 1 illustrates aviation accidents. The total weather impact that while weather delays declined with overall is an estimated national cost of $3 billion for NAS delays after September 11th, 2001, delays accident damage and injuries, delays, and have since returned to near-record levels. unexpected operating costs. 60000 50000 40000 30000 20000 10000 0 1 01 01 0 01 02 02 ul an 01 J ep an 02 J Mar May S Nov 01 J Mar May Weather Delays Other Delays Figure 1. Delay hours in the National Airspace System for January 2001 to July 2002. Delay hours peaked at 50,000 hours per month in August 2001, declined to less than 15,000 per month for the months following September 11, but exceeded 30,000 per month in the summer of 2002. Weather delays comprise the majority of delays in all seasons. The Potential Impacts of Climate Change on Transportation 2 Weather and Aviation: How Does Weather Affect the Safety and Operations of Airports and Aviation, and How Does FAA Work to Manage Weather-related Effects? Thunderstorms and Other Convective In-Flight Icing.
    [Show full text]
  • Soaring Weather
    Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven­ contributions to meteorology. For example, soar­ tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun­ altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be­ denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur­ a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft.
    [Show full text]
  • 16.00 Introduction to Aerospace and Design Problem Set #3 AIRCRAFT
    16.00 Introduction to Aerospace and Design Problem Set #3 AIRCRAFT PERFORMANCE FLIGHT SIMULATION LAB Note: You may work with one partner while actually flying the flight simulator and collecting data. Your write-up must be done individually. You can do this problem set at home or using one of the simulator computers. There are only a few simulator computers in the lab area, so not leave this problem to the last minute. To save time, please read through this handout completely before coming to the lab to fly the simulator. Objectives At the end of this problem set, you should be able to: • Take off and fly basic maneuvers using the flight simulator, and describe the relationships between the control yoke and the control surface movements on the aircraft. • Describe pitch - airspeed - vertical speed relationships in gliding performance. • Explain the difference between indicated and true airspeed. • Record and plot airspeed and vertical speed data from steady-state flight conditions. • Derive lift and drag coefficients based on empirical aircraft performance data. Discussion In this lab exercise, you will use Microsoft Flight Simulator 2000/2002 to become more familiar with aircraft control and performance. Also, you will use the flight simulator to collect aircraft performance data just as it is done for a real aircraft. From your data you will be able to deduce performance parameters such as the parasite drag coefficient and L/D ratio. Aircraft performance depends on the interplay of several variables: airspeed, power setting from the engine, pitch angle, vertical speed, angle of attack, and flight path angle.
    [Show full text]
  • Aviation Annual Report
    2018 Aviation Annual Report Aviation Aircraft Use Summary U.S. Forest Service 2018 Table of Contents Executive Summary ....................................................................................................................................... 1 Table 1 – 2018 Forest Service Total Aircraft Available ..................................................................... 2 Introduction: The Forest Service Aviation Program...................................................................................... 3 Aviation Utilization and Cost Information .................................................................................................... 4 2018 At-A-Glance ...................................................................................................................................... 4 Aviation Use .......................................................................................................................................... 4 Table 2 and Figure 1 – Aircraft Total Use CY 2014-2018................................................................... 4 Figure 2 – CY 2018 Flight Hours by Month........................................................................................ 5 Table 3 and Figure 3 – Percent of CY 2018 Flight Time by Aircraft Type .......................................... 5 Table 4 – CY 2018 Aircraft Use by Region/Agency ............................................................................ 6 Aviation Cost ........................................................................................................................................
    [Show full text]
  • The Discovery of the Sea
    The Discovery of the Sea "This On© YSYY-60U-YR3N The Discovery ofthe Sea J. H. PARRY UNIVERSITY OF CALIFORNIA PRESS Berkeley • Los Angeles • London Copyrighted material University of California Press Berkeley and Los Angeles University of California Press, Ltd. London, England Copyright 1974, 1981 by J. H. Parry All rights reserved First California Edition 1981 Published by arrangement with The Dial Press ISBN 0-520-04236-0 cloth 0-520-04237-9 paper Library of Congress Catalog Card Number 81-51174 Printed in the United States of America 123456789 Copytightad material ^gSS3S38SSSSSSSSSS8SSgS8SSSSSS8SSSSSS©SSSSSSSSSSSSS8SSg CONTENTS PREFACE ix INTROn ilCTION : ONE S F A xi PART J: PRE PARATION I A RELIABLE SHIP 3 U FIND TNG THE WAY AT SEA 24 III THE OCEANS OF THE WORI.n TN ROOKS 42 ]Jl THE TIES OF TRADE 63 V THE STREET CORNER OF EUROPE 80 VI WEST AFRICA AND THE ISI ANDS 95 VII THE WAY TO INDIA 1 17 PART JJ: ACHJF.VKMKNT VIII TECHNICAL PROBL EMS AND SOMITTONS 1 39 IX THE INDIAN OCEAN C R O S S T N C. 164 X THE ATLANTIC C R O S S T N C 1 84 XJ A NEW WORT D? 20C) XII THE PACIFIC CROSSING AND THE WORI.n ENCOMPASSED 234 EPILOC.IJE 261 BIBLIOGRAPHIC AI. NOTE 26.^ INDEX 269 LIST OF ILLUSTRATIONS 1 An Arab bagMa from Oman, from a model in the Science Museum. 9 s World map, engraved, from Ptolemy, Geographic, Rome, 1478. 61 3 World map, woodcut, by Henricus Martellus, c. 1490, from Imularium^ in the British Museum.
    [Show full text]
  • Efficient Light Aircraft Design – Options from Gliding
    Efficient Light Aircraft Design – Options from Gliding Howard Torode Member of General Aviation Group and Chairman BGA Technical Committee Presentation Aims • Recognise the convergence of interest between ultra-lights and sailplanes • Draw on experiences of sailplane designers in pursuit of higher aerodynamic performance. • Review several feature of current sailplanes that might be of wider use. • Review the future for the recreational aeroplane. Lift occurs in localised areas A glider needs efficiency and manoeuvrability Drag contributions for a glider Drag at low speed dominated by Induced drag (due to lift) Drag at high ASW-27 speeds Glider (total) drag polar dominated by profile drag & skin friction So what are the configuration parameters? - Low profile drag: Wing section design is key - Low skin friction: maximise laminar areas - Low induced drag – higher efficiencies demand greater spans, span efficiency and Aspect Ratio - Low parasitic drag – reduce excrescences such as: undercarriage, discontinuities of line and no leaks/gaps. - Low trim drag – small tails with efficient surface coupled with low stability for frequent speed changing. - Wide load carrying capacity in terms of pilot weight and water ballast Progress in aerodynamic efficiency 1933 - 2010 1957: Phoenix (16m) 1971: Nimbus 2 (20.3m) 2003: Eta (30.8m) 2010: Concordia (28m) 1937: Wiehe (18m) Wooden gliders Metal gliders Composite gliders In praise of Aspect Ratio • Basic drag equation in in non-dimensional, coefficient terms: • For an aircraft of a given scale, aspect ratio is the single overall configuration parameter that has direct leverage on performance. Induced drag - the primary contribution to drag at low speed, is inversely proportional to aspect ratio • An efficient wing is a key driver in optimising favourable design trades in other aspects of performance such as wing loading and cruise performance.
    [Show full text]
  • Preventive Maintenance
    Maintenance Aspects of Owning Your Own Aircraft Introduction According to 14 CFR Part 43, Maintenance, Preventive Maintenance, Rebuilding, and Alteration, the holder of a pilot certificate issued under 14 CFR Part 61 may perform specified preventive maintenance on any aircraft owned or operated by that pilot, as long as the aircraft is not used under 14 CFR Part 121, 127, 129, or 135. This pamphlet provides information on authorized preventive maintenance. How To Begin Here are several important points to understand before you attempt to perform your own preventive maintenance: First, you need to understand that authorized preventive maintenance cannot involve complex assembly operations. Second, you should carefully review 14 CFR Part 43, Appendix A, Subpart C (Preventive Maintenance), which provides a list of the authorized preventive maintenance work that an owner pilot may perform. Third, you should conduct a self-analysis as to whether you have the ability to perform the work satisfactorily and safely. Fourth, if you do any of the preventive maintenance authorized in 14 CFR Part 43, you will need to make an entry in the appropriate logbook or record system in order to document the work done. The entry must include the following information: • A description of the work performed, or references to data that are acceptable to the Administrator. • The date of completion. • The signature, certificate number, and kind of certificate held by the person performing the work. Note that the signature constitutes approval for return to service only for work performed. Examples of Preventive Maintenance Items The following is a partial list of what a certificated pilot who meets the conditions in 14 CFR Part 43 can do: • Remove, install, and repair landing gear tires.
    [Show full text]
  • NASA Styrofoam Tray Glider.Pdf
    RIGHT FLIGHT Objectives The students will: Construct a flying model glider. Determine weight and balance of a glider. Standards and Skills Science Science as Inquiry Physical Science Science and Technology Unifying Concepts and Processes Science Process Skills Observing Measuring Collecting Data Inferring Predicting Making Models Controlling Variables Mathematics Problem Solving Reasoning Prediction Measurement Background On December 17, 1903, two brothers, Wilbur and Orville Wright, became the first humans to fly a controllable, powered airplane. To unravel the mysteries of flight, the Wright brothers built and experimented extensively with model gliders. Gliders are airplanes without motors or a power source. 52 Aeronautics: An Educator’s Guide EG-2002-06-105-HQ Building and flying model gliders helped the Wright brothers learn and understand the importance of weight and balance in air- planes. If the weight of the airplane is not positioned properly, the airplane will not fly. For example, too much weight in the front (nose) will cause the airplane to dive toward the ground. The precise balance of a model glider can be determined by varying the location of small weights. Wilbur and Orville also learned that the design of an airplane was very important. Experimenting with models of different designs showed that airplanes fly best when the wings, fuselage, and tail are designed and balanced to interact with each other. The Wright Flyer was the first airplane to complete a controlled takeoff and landing. To manage flight direction, airplanes use control surfaces. Elevators are control surfaces that make the nose of the airplane pitch up and down. A rudder is used to move the nose left and right.
    [Show full text]
  • Tail Strikes: Prevention Regardless of Airplane Model, Tail Strikes Can Have a Number of Causes, Including Gusty Winds and Strong Crosswinds
    Tail Strikes: Prevention Regardless of airplane model, tail strikes can have a number of causes, including gusty winds and strong crosswinds. But environmental factors such as these can often be overcome by a well-trained and knowledgeable flight crew following prescribed procedures. Boeing conducts extensive research into the causes of tail strikes and continually looks for design solutions to prevent them, such as an improved elevator feel system. Enhanced preventive measures, such as the tail strike protection feature in some by Capt. Dave Carbaugh, Chief Pilot, Boeing 777 models, further reduce the probability of incidents. Flight Operations Safety Tail strikes can cause significant damage and cost taiL strikes: an overview a constant feel elevator pressure, which has operators millions of dollars in repairs and lost reduced the potential of varied feel pressure revenue. In the most extreme scenario, a tail strike A tail strike occurs when the tail of an airplane on the yoke contributing to a tail strike. The can cause pressure bulkhead failure, which can strikes the ground during takeoff or landing. 747-400 has a lower rate of tail strikes than ultimately lead to structural failure; however, long Although many tail strikes occur on takeoff, most the 747-100/-200/-300. shallow scratches that are not repaired correctly occur on landing. Tail strikes are often due to In addition, some 777 models incorporate a tail can also result in increased risks. Yet tail strikes can human error. strike protection system that uses a combination be prevented when flight crews understand their Tail strikes can cause significant damage to of software and hardware to protect the airplane.
    [Show full text]
  • Military Aviation Safety
    Order Code RL31571 CRS Report for Congress Received through the CRS Web Military Aviation Safety Updated November 25, 2003 /name redacted/ Specialist in National Defense Foreign Affairs, Defense, and Trade Division Congressional Research Service ˜ The Library of Congress Military Aviation Safety Summary Military aviation safety is a concern to policy makers in both the Department of Defense (DoD) and Congress. DoD is concerned about improving safety because aviation accidents erode DoD’s war fighting capabilities in many tangible and intangible ways. DoD aviation accidents are classified by the severity of injury or property damage. Class A accidents are the most severe events and the rate at which these accidents occur is the most frequently used yardstick for measuring aviation safety. The Office of the Secretary of Defense, and the military Services (including the Coast Guard) have different roles and responsibilities in military aviation safety promotion and mishap investigations. Generally speaking, the Services have the most active and involved role in promoting aviation safety. The Services conduct two types of mishap investigations, generally referred to as safety investigations and legal investigations. In the commercial and civil sector, the National Transportation Safety Board (NTSB) conducts a single investigation. The status of military aviation safety depends heavily on one’s viewpoint. There is no consensus on how well the Services are doing in promoting and improving aviation safety. Some believe that the current mishap rate is acceptable. Others believe that it is unacceptable and can be improved. Others believe that DoD should strive for, and achieve, a “zero mishap rate.” Over the past 50 years, data show that the total annual number of accidents and the rate at which they occur have significantly decreased.
    [Show full text]
  • The Future of the Knot As a Unit of Speed
    FORUM The Future of the Knot as a Unit of Speed Oliver Stewart FEW will deny the merits of the knot as a unit of speed. It does in one syllable what all other units of speed take three or more to do. It is accepted and used by a great many countries, including those like France which show a general pre- ference for the metric system. Aviation has taken to it as well as shipping. It is not therefore surprising that the full acceptance of the Systeme International d'Unitis (or S.I.) is meeting with some opposition when it offers to supplant the knot. At present the situation is that the knot is to continue for a 'limited time' as a speed unit for use in aviation and shipping. Just how limited the time will be has not been revealed, but the member countries of the European Economic Com- munity have set i January 1978 as the date after which 'only a prescribed system of metric units may be used'. Strictly interpreted the S.I. admits one and only one speed unit, the metre per second; if the minute or the hour were to be intro- duced in place of the second, decimalization would break down. This would mean that the familiar kilometre per hour would be inadmissible as a substitute for the knot, although the present trend is in that direction. Both the metre and the second are now denned in terms of atomic radiation with a precision far ahead of anything previously known and give the measurer the highest attainable accuracy.
    [Show full text]
  • Ground Operations Occurrences at Australian Airports 1998 to 2008
    Publication Date: June 2010 ISBN 978-1-74251-061-3 The Australian Transport Safety ATSB TRANSPORT SAFETY REPORT Bureau (ATSB) is an independent Aviation Research & Analysis AR-2009-042 Commonwealth Government statutory Agency. The Bureau is governed by a Final Commission and is entirely separate from transport regulators, policy makers and service providers. The ATSB's function is to improve safety Ground operations occurrences at and public confidence in the aviation, marine and rail modes of transport through excellence in: Australian airports independent investigation of transport accidents and other safety occurrences; 1998 to 2008 safety data recording, analysis and research; and fostering safety awareness, knowledge and action. The ATSB does not investigate for the purpose of apportioning blame or to Abstract provide a means for determining liability. The aviation industry has been slow to acknowledge the risks associated with ground operations. The ATSB performs its functions in accordance with the provisions of the While most occurrences on airport aprons and taxiways do not have consequences in terms of loss of Transport Safety Investigation Act 2003 and, where applicable, relevant life, they are often associated with aircraft damage, delays to passengers and avoidable financial costs international agreements. to industry. The focus of this report is to examine ground occurrences involving high capacity aircraft When the ATSB issues a safety operations. recommendation, the person, organisation or agency must provide a written response within 90 days. That This report examines occurrences involving ground operations and foreign object debris that occur at response must indicate whether the Australian airports which receive high capacity aircraft.
    [Show full text]