Index Seminum 2018.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Index Seminum 2018.Pdf BOTANICKÁ ZÁHRADA UNIVERZITY KOMENSKÉHO Botanická 3 841 04 BRATISLAVA S L O V A K I A INDICATIONES CLIMATICES ET GEOGRAPHIE Positio geographica horti botanici: Latitudo geographica 48°09’ Longitudo geographica 17°06’ Altitudo super mare 145 m Indicationes climatices: (pro 51 annis 1940 – 1990) Mensibus I II III IV V VI VII VIII IX X XI XII Media annua Temperatura °C -1,3 1,0 5,4 10,9 15,7 18,9 20,7 20,1 16,3 10,6 5,0 1,1 10,4 Precipitatio mm 45 44 40 42 57 63 62 58 37 47 59 51 605 1 SEMINA E PLANTIS IN CALDARIIS ET IN HORTO BOTANICO CULTARUM Actinidiaceae 1 Actinidia chinensis Planch. Adoxaceae 2 Sambucus caerulea Raf. 3 Sambucus williamsii Baumg. 4 Viburnum opulus L. subsp. trilobum (Marshall) R. T. Clausen 5 Viburnum tinus L. Alangiaceae 6 Alangium chinense (Lour.) Harms subsp. pauciflorum W. P. Fang Alliaceae 7 *Allium angulosum L. 2.1 8 *Allium carinatum L. 10.5 9 Allium obliguum L. Altingiaceae 10 Liquidambar orientalis Mill. 11 Liquidambar styraciflua L. Amaryllidaceae 12 Narcissus serotinus L. Anacardiaceae 13 Toxicodendron vernicifluum (Stokes) F. A. Barkley Apocynaceae 14 Asclepias curassavica L. 15 Vincetoxicum rossicum (Kleopow) Barbar. Aquifoliaceae 16 Ilex cornuta Lindl. & Paxton 2 Araceae 17 Anthurium gracile (Rudge) Lindl. 18 Remusatia vivipara (Roxb.) Schott 19 Sauromatum venosum (Dryand. ex Aiton) Kunth ̶ bulbs Araliaceae 20 Aralia chinensis Blume Aristolochiaceae 21 Aristolochia macrophylla Willd. Asparagaceae 22 Anemarrhena asphodeloides Bunge 23 Asparagus aphyllus L. 24 Danae racemosa Moench Asteraceae 25 *Pulicaria dysenterica (L.) Bernh. 1.1 26 Artemisia cana Pursh 27 Aster albescens Wall. 28 Baccharis halimifolia L. 29 Hieracium aurantiacum L. 30 Kleinia herreiana (Dinter) Merxm. 31 Stehelina uniflosculosa Sibth. & Sm. Berberidaceae 32 Berberis julianae C. K. Schneid. 33 Berberis thibetica C. K. Schneid. 34 Berberis virgetorum C. K. Schneid. 35 Berberis vulgaris L. 36 Berberis wilsoniae Hemsl. 37 Mahonia aquifolium (Pursh) Nutt. 38 Nandina domestica Thunb. 3 Betulaceae 39 Alnus cremastogyne Burkill 40 Betula ermanii Cham. 41 Betula lenta L. 42 Ostrya carpinifolia Scop. 43 Ostrya japonica Sarg. Bignoniaceae 44 Campsis radicans (L.) Seem. 45 Catalpa speciosa Warder ex Engelm. Brassicaceae 46 Arabis blepharophylla Hook. & Arn. 47 Arabis procurrens Waldst. & Kit. ´´Variegata´´ Bromeliaceae 48 Aechmea bromeliifolia (Rudge) Baker ex Benth. & Hook f. Burseraceae 49 Bursera fagaroides Engl. Cactaceae 50 Melocactus sp. U 164 Campanulaceae 51 Adenophora taquetii H. Lév. 52 Campanula carpatica Jacq. 53 Campanula hofmannii (Pant.) Greuter & Burdet 54 Campanula latifolia L. Cannabaceae 55 Celtis australis L. Caprifoliaceae 56 Heptacodium miconioides Rehder 57 Kolkwitzia amabilis Graebn. 4 58 Lonicera maackii (Rupr.) Herder 59 Lonicera nigra L. 60 Lonicera quiquelocularis Hardw. Caryophyllaceae 61 Dianthus myrtinervius Griseb. 62 Gypsophila silenoides Rupr. 63 Lychnis viscaria L. ´´Splendens´´ 64 Minuartia capillacea Graebn. 65 Silene zawadskii Griseb. & Schenk Celastraceae 66 Celastrus scandens L. 67 Euonymus sachalinensis Maxim. Cephalotaxaceae 68 Cephalotaxus harringtonii K. Koch Cneoraceae 69 Cneorum tricoccon L. Commelinaceae 70 Palisota bracteosa C. B. Clarke Convolvulaceae 71 Ipomea pubescens Lam. Coriariaceae 72 Coriaria myrtifolia L. Cupressaceae 73 Calocedrus decurrens (Torr.) Florin 74 Cryptomeria japonica D. Don 75 Cunninghamia lanceolata Hook. 76 Cupressus bakeri Jeps. 77 Cupressus dupreziana A. Camus 5 78 Cupressus funebris Endl. 79 Cupressus glabra Sudw. 80 Cupressus goveniana Gordon var. abramsiana (C. B. Wolf) Little 81 Cupressus sempervirens L. 82 Chamaecyparis lawsoniana (A. Murray) Parl. 83 Chamaecyparis obtusa Siebold & Zucc. 84 Juniperus deltoides R. P. Adams 85 Juniperus deppeana Steud. 86 Sequoia sempervirens Endl. 87 Sequoiadendron giganteum (Lindl.) J. Buchholz 88 Taxodium distichum (L.) Rich. Cyperaceae 89 *Cladium mariscus (L.) Pohl 29.2 Dioscoreaceae 90 Tacca chantieri André Ebenaceae 91 Diospyros lotus L. Elaeagnaceae 92 Elaeagnus montana Makino Ericaceae 93 Gaultheria procumbens L. Euphorbiaceae 94 Jatropha podagrica Hook. Fabaceae 95 Albizia julibrissin Durazz. 96 Amorpha glabra Poir. 97 Argyrocytisus battandieri (Maire) Raynaud 98 Baptisia australis (L.) R. Br. 6 99 Campylotropis macrocarpa (Bunge) Rehder 100 Colutea arborescens L. 101 Cytisus oromediterraneus (G. López & C. E. Jarvis) Rivas Mart. & al. 102 Desmanthus illinoensis MacMill. 103 Spartium junceum L. Geraniaceae 104 Pelargonium luridum Sweet Gesneriaceae 105 Ramonda myconi (L.) Rchb. 106 Sinningia bullata Chautems & M. Peixoto Grossulariaceae 107 Ribes fasciculatum Siebold & Zucc. Hamamelidaceae 108 Corylopsis platypetala Rehder & E. H. Wilson 109 Hamamelis japonica Siebold & Zucc. 110 Hamamelis virginiana L. Hyacinthaceae 111 Bellevalia romana Sweet 112 Muscari neglectum Ten. Hydrangeaceae 113 Hydrangea macrophylla Kempei f. normalis 114 Hydrangea petiolaris Siebold & Zucc. Hypericaceae 115 Hypericum foliosum Jacq. 116 Hypericum hircinum L. 117 Hypericum oblongifolium Hook. 118 Hypericum prolificum L. 119 Hypericum pseudohenryi N. Robson 7 Iridaceae 120 Iris foetidissima L. 121 Sisyrinchium macrocarpum Hieron. Juglandaceae 122 Pterocarya fraxinifolia (Poir.) Spach Lamiaceae 123 Betonica officinalis L. 124 Callicarpa giraldii Hesse ex Rehder 125 Callicarpa japonica Thunb. 126 Callicarpa kwantungensis Chun 127 Hyssopus officinalis L. 128 Mentha pulegium L. 129 Monarda didyma L. 130 Origanum laevigatum Boiss. 131 Phlomis fruticosa Sieber ex C. Presl 132 Stachys monieri (Gouan) P. W. Ball ´´Humello´´ 133 Thymus pulegioides L. Lardizabalaceae 134 Holboellia coriacea Diels 135 Sinofranchetia chinensis Hemsl. Lythraceae 136 Punica granatum L. 137 Decodon verticillatus Elliott Magnoliaceae 138 Liriodendron tulipifera L. 139 Magnolia kobus DC. 140 Magnolia kobus DC. var. stellata (Siebold & Zucc.) Blackburn Malvaceae 141 Firmiana sinplex W. Wight 8 142 Pavonia missionum Ekmann 143 Sidalcea malviflora A. Gray Maranthaceae 144 Thalia dealbata Frasser Melanthiaceae 145 Zigadenus nuttallii S. Watson Meliaceae 146 Turraea obtusifolia Hochst. Myrtaceae 147 Syzygium paniculatum Gaertn. Nyssaceae 148 Camptotheca acuminata Decne. Oleaceae 149 Fraxinus americana L. 150 Fraxinus ornus L. 151 Ligustrum japonicum Thunb. 152 Syringa fauriei H. Lév. 153 Syringa reticulata (Blume) H. Hara var. amurensis (Rupr.) J. S. Pringle 154 Syringa reticulata (Blume) H. Hara subsp. pekinensis (Rupr.) P. S. Green & M. C. Chang Onagraceae 155 Fuchsia magellanica Lam. 156 Fuchsia regia (Vand. ex Vell.) Munz subsp. serrae P. E. Berry Orchidaceae 157 Epipactis helleborine (L.) Crantz Phyllanthaceae 158 Flueggea sufruticosa Baill. 9 Pinaceae 159 Abies cilicica (Antoine & Kotchy) Carrière 160 Abies nordmanniana Spach 161 Abies pindrow Spach 162 Cedrus libani A. Rich. 163 Pinus banksiana Lindl. & Gord. 164 Pinus halapensis Mill. 165 Pinus rigida Mill. 166 Tsuga canadensis Carrière Plantaginaceae 167 Digitalis lutea L. 168 Erinus alpinus L. 169 Globularia nudicaulis L. 170 Globularia trichosantha Fisch. & C. A. Mey. Platanaceae 171 +Platanus orientalis L. Plumbaginaceae 172 Ceratostigma willmottianum Stapf Poaceae 173 Phaenosperma globosum Munro ex Benth. Ranunculaceae 174 *Clematis recta L. 10.3, 10.5 175 Actaea alba Mill. 176 Actaea rubra Willd. 177 Aquilegia saximontana Rydb. ex B. L. Rob. Rhamnaceae 178 Hovenia dulcis Thunb. 179 Paliurus spina-christi Mill. 180 Ziziphus jujuba Lam. 10 Rosaceae 181 *Sorbus pekarovae J. Májovský & D. Bernátová 29.1 182 Chaenomeles cathayensis Hemsl. 183 Chaenomeles japonica (Thunb.) Pers. 184 Chaenomeles speciosa Nakai 185 Cotoneaster acutifolius Turcz. 186 Cotoneaster emeiensis J. Fryer & B. Hylmö 187 Cotoneaster harrysmithii Flink & B. Hylmö 188 Cotoneaster roseus Edgew. 189 Cotoneaster rugosus E. Pritz. 200 Cotoneaster salicifolius Franch. 201 Cotoneaster wardii W. W. Sm. 202 Crataegus cruss-galli L. 203 Crataegus punctata Jacq. 204 Cydonia oblonga Mill. 205 Dryas octopetala L. 206 Photinia davidiana Cardot 207 Prinsepia uniflora Batalin 208 Pyracantha coccinea M. Roem. 209 Pyracantha fortuneana (Maxim.) H. L. Li 210 Rhaphiolepis umbellata C. K. Schneid. 211 Rhodotypos scandens Makino 212 Rosa glauca Pourr. 213 Rosa hugonis Hemsl. 214 Rosa roxburghii Sweet 215 Sorbus aucuparia Poir. 216 Spiraea nipponica Maxim. 217 Spiraea veitchii Hemsl. Rutaceae 218 Citrus trifoliata L. 11 219 Ruta corsica DC. 220 Tetradium daniellii (Ben.) T. G. Hartley 221 Zanthoxylum armatum DC. 222 Zanthoxylum bungeanum Maxim. 223 Zanthoxylum simulans Hance Salicaceae 224 Poliothyrsis sinensis Oliv. Sapindaceae 225 Acer buergerianum Miq. 226 Acer cappadocicum Gled. 227 Acer cappadocicum Gled. subsp. lobelii (Ten.) A. E. Murray 228 Acer circinatum Pursh 229 Acer macrophyllum Pursh 230 Acer miyabei Maxim. 231 Acer oliverianum Pax 232 Acer opalus Mill. 233 Acer sempervirens L. 234 Acer tataricum L. 235 Acer tataricum L. subsp. aidzuense (Franch.) P. C. de Jong Saxifragaceae 236 Tellima grandiflora (Pursh) Douglas ex Lindl. Scrophulariaceae 237 Buddleja albiflora Hemsl. 238 Penstemon fruticosus Greene 239 Penstemon heterodoxus A. Gray 240 Penstemon hirsutus Willd. ´´Nana´´ 241 Veronica allionii Vill. 242 Veronica petraea Baumg. 243 Wulfenia baldaccii Degen 12 Smilacaceae 244 Smilax aspera L. Solanaceae 245 Cestrum parqui (Lam.) L'Hér. 246 Datura wrightii Regel 247 Nicandra physaloides (L.) Gaertn. 248 Nicotiana rustica L. Styracaceae 249 Pterostyrax hispidus Siebold & Zucc. Thymelaeaceae 250 Daphne laureola L. Typhaceae 251 Typha domingensis Pers. Ulmaceae
Recommended publications
  • Gori River Basin Substate BSAP
    A BIODIVERSITY LOG AND STRATEGY INPUT DOCUMENT FOR THE GORI RIVER BASIN WESTERN HIMALAYA ECOREGION DISTRICT PITHORAGARH, UTTARANCHAL A SUB-STATE PROCESS UNDER THE NATIONAL BIODIVERSITY STRATEGY AND ACTION PLAN INDIA BY FOUNDATION FOR ECOLOGICAL SECURITY MUNSIARI, DISTRICT PITHORAGARH, UTTARANCHAL 2003 SUBMITTED TO THE MINISTRY OF ENVIRONMENT AND FORESTS GOVERNMENT OF INDIA NEW DELHI CONTENTS FOREWORD ............................................................................................................ 4 The authoring institution. ........................................................................................................... 4 The scope. .................................................................................................................................. 5 A DESCRIPTION OF THE AREA ............................................................................... 9 The landscape............................................................................................................................. 9 The People ............................................................................................................................... 10 THE BIODIVERSITY OF THE GORI RIVER BASIN. ................................................ 15 A brief description of the biodiversity values. ......................................................................... 15 Habitat and community representation in flora. .......................................................................... 15 Species richness and life-form
    [Show full text]
  • Abelia X Grandiflora Abeliophyllum Distichum Abies Alba Abies Alba Pendula Abies Balsamea Nana Abies Balsamea Piccolo Abies Ceph
    Abelia x grandiflora Abeliophyllum distichum Abies alba Abies alba Pendula Abies balsamea Nana Abies balsamea Piccolo Abies cephalonica Abies concolor Abies concolor Argentea Abies concolor Compacta Abies concolor Piggelmee Abies concolor Violacea Abies fraseri Abies grandis Abies homolepis Abies koreana Abies koreana Bonsai Blue Abies koreana Brevifolia Abies koreana Cis Abies koreana Molli Abies koreana Oberon Abies koreana Piccolo Abies koreana Samling Abies koreana Silberlocke Abies koreana Tundra Abies lasiocarpa Argentea Abies lasiocarpa Compacta Abies nordmanniana Abies nordmanniana Barabits Abies nordmanniana Barabits Giant Abies nordmanniana Emerald Pearl Abies nordmanniana Golden Spreader Abies nordmanniana Pendula Abies pinsapo Glauca Abies pinsapo Kelleris Abies pinsapo var. tazaotana Abies procera Abies procera Glauca Abies procera Rattail Abies sibirica Abies veitchii Abies x arnoldiana Jan Pawel II Abies x insignis Pendula Acaena buchananii Acaena caesiiglauca Frikart Acaena inermis Acaena magellanica Acaena microphylla Acaena microphylla Kupferteppich Acaena microphylla Purpurteppich Acaena novae-zelandiae Acaena pinnatifida Acantholimon glumaceum Acanthus hungaricus Acanthus mollis Acantus spinosus Acer campestre Acer campestre Elsrijk Acer campestre Nanum Acer campestre Queen Elizabeth Acer capillipes Acer freemanii Autumn Blaze Acer griseum Acer japonicum Aconitifolium Acer japonicum Bloodgood Acer japonicum Crimson Queen Acer japonicum Sango-kaku Acer japonicum Vitifolium Acer negundo Aureovariegatum Acer negundo Flamingo
    [Show full text]
  • NOTES Watsonia 25 (2005) NORTH WALES SPECIES of RUBUS L
    Watsonia 25: 289–298 (2005) NOTES Watsonia 25 (2005) 289 Notes NORTH WALES SPECIES OF RUBUS L. (ROSACEAE) IN THE ISLE OF WIGHT In 1982 two sizeable populations of Rubus effrenatus Newton, a species up till then (and still) otherwise known only in north-west Wales, v.cc. 46–49, were discovered in the Isle of Wight, v.c. 10, at a distance of 11 km from each other. One population is near the Island’s southernmost tip, mainly among bracken along a crescent of gravel overlying the chalk on the north face of Head Down but with an outlying patch in a deep ‘green lane’ about 1·4 km to the north-west. The other site is towards the Island’s south-east corner, along a much-frequented public footpath forming the north boundary of Sandown Golf Course, a relic fragment of a once-extensive tract of partly- wooded acid ground that constituted Blackpan and Lake Commons. The species is unrepresented in Rubus collections made in these two localities by 19th century specialists in the genus, and that negative evidence, taken together with a subjective impression that both populations have expanded slightly in the years since their discovery, could be interpreted as indicating a relatively recent arrival in each case (Allen 2003). Though the two may have had independent origins, it is equally possible that one population has been derived from the other – in which case that on Head Down seems the more likely to be the parent colony. In 2002–4 two successive finds of another Rubus species provided a near-duplicate of this very unexpected national distribution pattern.
    [Show full text]
  • Functional Characterization of Prenyltransferases Involved in the Biosynthesis of Polycyclic Polyprenylated Acylphloroglucinols in the Genus Hypericum
    Functional characterization of prenyltransferases involved in the biosynthesis of polycyclic polyprenylated acylphloroglucinols in the genus Hypericum Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Mohamed Mamdouh Sayed Nagia aus Kalyobiya/ Ägypten 1. Referent: Professor Dr. Ludger Beerhues 2. Referent: Professor Dr. Alain Tissier eingereicht am: 30.07.2018 mündliche Prüfung (Disputation) am: 15.10.2018 Druckjahr 2018 „Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes“ „Und sag: O mein Herr, mehre mein Wissen“ Der Edle Qur’an [20: 114] Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Nagia, M., Gaid, M., Biedermann, E., Fiesel, T., El-Awaad, I., Haensch, R., Wittstock, U., and Beerhues, L. Sequential regiospecific gem-diprenylation of tetrahydroxyxanthone by prenyltransferases from Hypericum sp. (Submitted). Nagia, M., Gaid, M., Beuerle, T., and Beerhues, L. Successive xanthone prenylation in Hypericum sampsonii. Planta Medica International Open 4, Tu-SL-01 (2017). doi: 10.1055/s-0037-1608308 Tagungsbeiträge A. Vorträge Nagia M., Gaid M., Biedermann E., Beuerle T., Beerhues L., Successive xanthone prenylation in Hypericum sampsonii, 65th Annual Meeting of the Society for Medicinal Plant and Natural Product Research, Basel, Switzerland, 3. – 7. September 2017. Nagia M., Gaid M., Behrends S., Beerhues L., Novel PPAP-related prenyltransferases, 4. SynFoBiA -Kolloquium des Pharmaverfahrenstechnik (PVZ), Braunschweig, Germany, 26. February 2016. Nagia M., Gaid M., Beurele T., Biedermann E., Beerhues L., Aromatic Prenyltransferases from Hypericum sampsonii, Postgraduate workshop of the section „Natural Products“ German Society for Plant Sciences (DBG), Meisdorf, Germany , 11.
    [Show full text]
  • Chemical and Biological Research on Herbal Medicines Rich in Xanthones
    molecules Review Chemical and Biological Research on Herbal Medicines Rich in Xanthones Jingya Ruan 1, Chang Zheng 1, Yanxia Liu 1, Lu Qu 2, Haiyang Yu 2, Lifeng Han 2, Yi Zhang 1,2,* and Tao Wang 1,2,* 1 Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; [email protected] (J.R.); [email protected] (C.Z.); [email protected] (Y.L.) 2 Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshan Road, Nankai District, Tianjin 300193, China; [email protected] (L.Q.); [email protected] (H.Y.); [email protected] (L.H.) * Correspondence: [email protected] (Y.Z.); [email protected] (T.W.); Tel./Fax: +86-22-5959-6163 (Y.Z. & T.W.) Received: 11 September 2017; Accepted: 9 October 2017; Published: 11 October 2017 Abstract: Xanthones, as some of the most active components and widely distributed in various herb medicines, have drawn more and more attention in recent years. So far, 168 species of herbal plants belong to 58 genera, 24 families have been reported to contain xanthones. Among them, Calophyllum, Cratoxylum, Cudrania, Garcinia, Gentiana, Hypericum and Swertia genera are plant resources with great development prospect. This paper summarizes the plant resources, bioactivity and the structure-activity relationships (SARs) of xanthones from references published over the last few decades, which may be useful for new drug research and development on xanthones. Keywords: herbal medicines; xanthones; plant sources; pharmacology; gambogic acid; structure-activity relationships 1. Introdution Xanthones (IUPAC name 9H-xanthen-9-one) are a kind of phenolic acid with a three-ring skeleton, widely distributed in herbal medicines.
    [Show full text]
  • Global Survey of Ex Situ Betulaceae Collections Global Survey of Ex Situ Betulaceae Collections
    Global Survey of Ex situ Betulaceae Collections Global Survey of Ex situ Betulaceae Collections By Emily Beech, Kirsty Shaw and Meirion Jones June 2015 Recommended citation: Beech, E., Shaw, K., & Jones, M. 2015. Global Survey of Ex situ Betulaceae Collections. BGCI. Acknowledgements BGCI gratefully acknowledges the many botanic gardens around the world that have contributed data to this survey (a full list of contributing gardens is provided in Annex 2). BGCI would also like to acknowledge the assistance of the following organisations in the promotion of the survey and the collection of data, including the Royal Botanic Gardens Edinburgh, Yorkshire Arboretum, University of Liverpool Ness Botanic Gardens, and Stone Lane Gardens & Arboretum (U.K.), and the Morton Arboretum (U.S.A). We would also like to thank contributors to The Red List of Betulaceae, which was a precursor to this ex situ survey. BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) BGCI is a membership organization linking botanic gardens is over 100 countries in a shared commitment to biodiversity conservation, sustainable use and environmental education. BGCI aims to mobilize botanic gardens and work with partners to secure plant diversity for the well-being of people and the planet. BGCI provides the Secretariat for the IUCN/SSC Global Tree Specialist Group. www.bgci.org FAUNA & FLORA INTERNATIONAL (FFI) FFI, founded in 1903 and the world’s oldest international conservation organization, acts to conserve threatened species and ecosystems worldwide, choosing solutions that are sustainable, based on sound science and take account of human needs. www.fauna-flora.org GLOBAL TREES CAMPAIGN (GTC) GTC is undertaken through a partnership between BGCI and FFI, working with a wide range of other organisations around the world, to save the world’s most threated trees and the habitats which they grow through the provision of information, delivery of conservation action and support for sustainable use.
    [Show full text]
  • Number 3, Spring 1998 Director’S Letter
    Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m.
    [Show full text]
  • PROCEEDINGS IUFRO Kanazawa 2003 INTERNATONAL
    Kanazawa University PROCEEDINGS 21st-Century COE Program IUFRO Kanazawa 2003 Kanazawa University INTERNATONAL SYMPOSIUM Editors: Naoto KAMATA Andrew M. LIEBHOLD “Forest Insect Population Dan T. QUIRING Karen M. CLANCY Dynamics and Host Influences” Joint meeting of IUFRO working groups: 7.01.02 Tree Resistance to Insects 7.03.06 Integrated management of forest defoliating insects 7.03.07 Population dynamics of forest insects 14-19 September 2003 Kanazawa Citymonde Hotel, Kanazawa, Japan International Symposium of IUFRO Kanazawa 2003 “Forest Insect Population Dynamics and Host Influences” 14-19 September 2003 Kanazawa Citymonde Hotel, Kanazawa, Japan Joint meeting of IUFRO working groups: WG 7.01.02 "Tree Resistance to Insects" Francois LIEUTIER, Michael WAGNER ———————————————————————————————————— WG 7.03.06 "Integrated management of forest defoliating insects" Michael MCMANUS, Naoto KAMATA, Julius NOVOTNY ———————————————————————————————————— WG 7.03.07 "Population Dynamics of Forest Insects" Andrew LIEBHOLD, Hugh EVANS, Katsumi TOGASHI Symposium Conveners Dr. Naoto KAMATA, Kanazawa University, Japan Dr. Katsumi TOGASHI, Hiroshima University, Japan Proceedings: International Symposium of IUFRO Kanazawa 2003 “Forest Insect Population Dynamics and Host Influences” Edited by Naoto KAMATA, Andrew M. LIEBHOLD, Dan T. QUIRING, Karen M. CLANCY Published by Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, JAPAN March 2006 Printed by Tanaka Shobundo, Kanazawa Japan ISBN 4-924861-93-8 For additional copies: Kanazawa University 21st-COE Program,
    [Show full text]
  • New Phytologist SI Template
    Supporting Information Article title: Pore constrictions in intervessel pit membranes reduce the risk of embolism spreading in angiosperm xylem Authors: Lucian Kaack, Matthias Weber, Emilie Isasa, Zohreh Karimi, Shan Li, Luciano Pereira, Christophe Trabi, Ya Zhang, H. Jochen Schenk, Bernhard Schuldt, Volker Schmidt, Steven Jansen The following Supporting Information is available for this article: Fig. S1 Frequency distribution of the number of intervessel pits per average vessel. Fig. S2 TEM images of intervessel pit membranes of different thickness. Fig. S3 Results of Model 1, Scenario 2; relation of TPM and pore constriction size. Fig. S4 Three-dimensional graph based on the risky scenario of Model 2, with 0.5 probability of having a large pore in a single pit membrane layer. Fig. S5 Two-dimensional graph based on Model 2 showing the probability of a large pore in a vessel of up 400,000 pits per vessel. Table S1 Dataset of the 31 angiosperm species studied, with reference to the anatomical and hydraulic traits measured. Methods S1 R script of Model 3 Methods S2 Protocols: plant material, xylem embolism resistance, transmission electron microscopy, vessel and pit dimensions Fig. S1 Frequency distribution of the number of intervessel pits per average vessel for 72 angiosperm tree species of 16 families, which varied asymmetrically from 510 to 370,755, and was calculated by dividing the total intervessel pit membrane area per vessel by the average area of intervessel pit membranes. Data are based on multiple data sets (Wheeler et al., 2005; Jansen et al., 2011; Lens et al., 2011; Nardini et al., 2012; Scholz et al., 2013; Klepsch et al., 2016; and original data).
    [Show full text]
  • Pest Management of the New Zealand Flower Thrips on Stonefruit in Canterbury in Relation to Previous Research and Knowledge Gained from the Research in This Study
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. PEST MANAGEMENT OF THE NEW ZEALAND FLOWER THRIPS THRIPS OBSCURATUS (CRAWFORD) (THYSANOPTERA: THRIPIDAE) ON STONEFRUIT IN CANTERBURY, NEW ZEALAND. A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF CANTERBURY D. A. J. TEULON LINCOLN COLLEGE 1988 DEDICATED TO JOHN FRANCIS BRUGES 1957-1987 Abstract of a thesis submitted in partial fulfilment of the requirements for the degree of Ph.D. PEST MANAGEMENT OF THE NEW ZEALAND FLOWER THRIPS THRIPS OBSCURATUS (CRAWFORD) (THYSANOPTERA: THRIPIDAE) ON STONEFRUIT IN CANTERBURY, NEW ZEALAND. by D.AJ. TEULON The New Zealand flower thrips (Thrips obscuratus (Crawford» is an important pest of stonefruit during flowering and at harvest in New Zealand. The biology and control of this species fonned the basis for this study. A simple method for laboratory rearing is described that facilitated studies on the bionomics of T. obscuratus. Aspects of reproduction, fecundity, requirements for oviposition and development, development rates, temperature thresholds, thennal constants, and lifespan are detailed. T. obscuratus has been reported from at least 223 eqdemic and introduced plant species.
    [Show full text]
  • Assessing the Effects of Vegetation Types on Carbon Storage Fifteen
    Forest Ecology and Management 258 (2009) 1437–1441 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Assessing the effects of vegetation types on carbon storage fifteen years after reforestation on a Chinese fir site Qinkui Wang a, Silong Wang a,b,*, Jianwei Zhang c a Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China b Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences, Huitong 418307, PR China c USDA Forest Service, Pacific Southwest Research Station, 3644 Avtech Parkway, Redding, CA 96002, USA ARTICLE INFO ABSTRACT Article history: Forest ecosystems play a significant role in sequestering carbon (C) in biomass and soils. Plantations Received 13 April 2009 established in subtropical China since the 1980s, mainly of Chinese fir (Cunninghamia lanceolata (Lamb.) Received in revised form 9 June 2009 Hook) in monocultures, have proved to be major C sinks. However, information is lacking about whether Accepted 27 June 2009 mixing Chinese fir with broadleaved tree species will increase stand growth and C sequestration. We address this question by comparing a pure Chinese fir plantation and two mixed plantations established Keywords: in 1990 at Huitong Experimental Station of Forest Ecology, Hunan Province, China. The mixed Carbon storage plantations include Chinese fir and either Kalopanax septemlobus (Thunb.) Koidz or Alnus cremastogyne Mixed plantation Burk., planted at 4:1 ratios. We found that total C storage was 123, 131 and 142 Mg haÀ1 in the pure Broadleaved tree Coniferous plantation plantation, mixed plantation with K. septemlobus, and mixed plantation with A. cremastogyne, respectively.
    [Show full text]
  • Plastome Structure and Phylogenetic Relationships of Styracaceae (Ericales)
    Plastome Structure and Phylogenetic Relationships of Styracaceae (Ericales) Xiu-lian Cai Hainan University Jacob B. Landis Cornell University Hong-Xin Wang Hainan University Jian-Hua Wang Hainan University Zhi-Xin Zhu Hainan University Huafeng Wang ( [email protected] ) Hainan University https://orcid.org/0000-0002-0218-1728 Review Keywords: Styracaceae, Plastome, Genome structure, Phylogeny, positive selection Posted Date: January 29th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-55283/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Background: The Styracaceae are a woody, dicotyledonous family containing 12 genera and an estimated 160 species. Recent studies have shown that Styrax and Sinojackia are monophyletic, Alniphyllum and Bruinsmia cluster into a clade with an approximately 20-kb inversion in the Large Single-Copy (LSC) region. Halesia and Pterostyrax are not supported as monophyletic, while Melliodendron and Changiostyrax always form sister clades . Perkinsiodendron and Changiostyrax were newly established genera of Styracaceae. However, the phylogenetic relationship of Styracaceae at the genera level needs further research. Results: We collected 28 complete plastomes of Styracaceae, including 12 sequences newly reported here and 16 publicly available complete plastome sequences, comprising 11 of the 12 genera of Styracaceae. All species possessed the typical quadripartite structure of angiosperm plastomes, and the sequence difference is small, except for the large 20-kb (14 genes) inversion region found in Alniphyllum and Bruinsmia. Seven coding sequences (rps4, rpl23, accD, rpoC1, psaA, rpoA and ndhH) were identied to possess positively selected sites. Phylogenetic reconstructions based on seven data sets (i.e., LSC, SSC, IR, Coding, Non-coding, combination of LSC+SSC and concatenation of LSC+SSC+one IR) produced similar topologies.
    [Show full text]