University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Student Research Projects, Dissertations, and Theses - Chemistry Department Chemistry, Department of 7-2010 Rhodium-Catalyzed Hydroboration: Directed Asymmetric Desymmetrization Judy L. Miska University of Nebraska at Lincoln,
[email protected] Follow this and additional works at: https://digitalcommons.unl.edu/chemistrydiss Part of the Organic Chemistry Commons Miska, Judy L., "Rhodium-Catalyzed Hydroboration: Directed Asymmetric Desymmetrization" (2010). Student Research Projects, Dissertations, and Theses - Chemistry Department. 10. https://digitalcommons.unl.edu/chemistrydiss/10 This Article is brought to you for free and open access by the Chemistry, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Student Research Projects, Dissertations, and Theses - Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. RHODIUM-CATALYZED HYDROBORATION: DIRECTED ASYMMETRIC DESYMMETRIZATION By Judy Lynn Miska A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Chemistry Under the Supervision of Professor James M. Takacs Lincoln, Nebraska July, 2010 Rhodium-Catalyzed Hydroboration: Directed Asymmetric Desymmetrization Judy Lynn Miska, M.S. University of Nebraska, 2010 Adviser: James M. Takacs Rhodium-catalyzed asymmetric hydroboration in conjunction with directing groups can be used control relative and absolute stereochemistry. Hydroboration has the potential to create new C–C, C–O, and C–N bonds from an intermediate C–B bond with retention of stereochemistry. Desymmetrization resulting in the loss of one or more symmetry elements can give rise to molecular chirality, i.e., the conversion of a prochiral molecule to one that is chiral.