Otto Neugebauer and the Exploration of Ancient Near Eastern Mathematics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
History of Mathematics in Mathematics Education. Recent Developments Kathy Clark, Tinne Kjeldsen, Sebastian Schorcht, Constantinos Tzanakis, Xiaoqin Wang
History of mathematics in mathematics education. Recent developments Kathy Clark, Tinne Kjeldsen, Sebastian Schorcht, Constantinos Tzanakis, Xiaoqin Wang To cite this version: Kathy Clark, Tinne Kjeldsen, Sebastian Schorcht, Constantinos Tzanakis, Xiaoqin Wang. History of mathematics in mathematics education. Recent developments. History and Pedagogy of Mathematics, Jul 2016, Montpellier, France. hal-01349230 HAL Id: hal-01349230 https://hal.archives-ouvertes.fr/hal-01349230 Submitted on 27 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HISTORY OF MATHEMATICS IN MATHEMATICS EDUCATION Recent developments Kathleen CLARK, Tinne Hoff KJELDSEN, Sebastian SCHORCHT, Constantinos TZANAKIS, Xiaoqin WANG School of Teacher Education, Florida State University, Tallahassee, FL 32306-4459, USA [email protected] Department of Mathematical Sciences, University of Copenhagen, Denmark [email protected] Justus Liebig University Giessen, Germany [email protected] Department of Education, University of Crete, Rethymnon 74100, Greece [email protected] Department of Mathematics, East China Normal University, China [email protected] ABSTRACT This is a survey on the recent developments (since 2000) concerning research on the relations between History and Pedagogy of Mathematics (the HPM domain). Section 1 explains the rationale of the study and formulates the key issues. -
Early-Dynastic Tables from Southern Mesopotamia, Or the Multiple Facets of the Quantification of Surfaces (Preprint)
Mathematics, Administrative and Economic Activities in the Ancient Worlds C. Michel & K. Chemla (eds) Springer 2020 Chapter 9 Christine Proust 1 Early-Dynastic Tables from Southern Mesopotamia, or the Multiple Facets of the Quantification of Surfaces (preprint) Abstract How were surfaces evaluated before the invention of the sexagesimal place value notation in Mesopotamia? This chapter examines a group of five tablets containing tables for surfaces of squares and rectangles dated to the Early Dynastic period (ca. 2600-2350 BCE) and unearthed in southern Mesopotamia. In order to capture the methods used by ancient scribes to quantify surfaces, special attention is paid to the layout and organization of the tables, as well as to the way in which measurement values are written down. It is argued that these methods vary according to the dimensions of the squares or rectangles concerned: the quantification of small surfaces does not use the same mathematical tools as the quantification of large parcels of land. The chapter shows a reciprocal influence between the metrological systems adopted by the ancient scribes and the methods of calculation of surface they implemented. Some methods may reflect ancient land-surveying practices, and others may testify the emergence of new mathematical concepts applied to all kinds of surfaces, large or small. Ultimately, several different conceptualizations of the notion of surface emerge from the examination of these tables. Introduction2 This contribution is an attempt to understand how surfaces were quantified in southern Mesopotamia during the Early Dynastic period (ca. 2600-2350 BCE – see chronology in Appendix 9.B), that is, before the invention of the sexagesimal place value notation. -
Oral Presentation
Oral Presentation A LOOK AT OTTO TOEPLITZ’S (1927) “THE PROBLEM OF UNIVERSITY INFINITESIMAL CALCULUS COURSES AND THEIR DEMARCATION FROM INFINITESIMAL CALCULUS IN HIGH SCHOOLS”1 Michael N. Frieda & Hans Niels Jahnkeb aBen Gurion University of the Negev, bUniversität Duisburg-Essen This paper discusses Otto Toeplitz’s 1927 paper “The problem of university infinitesimal calculus courses and their demarcation from infinitesimal calculus in high schools.” The “genetic approach” presented in Toeplitz’s paper is still of interest to mathematics educators who wish to use the history of mathematics in their teaching, for it suggests a rationale for studying history that does not trivialize history of mathematics and shows how history of mathematics can supply not only content for mathematics teaching but also, as Toeplitz is at pains to emphasize, a guide for examining pedagogical problems. At the same time, as we shall discuss in our paper, an attentive reading of Toeplitz’s paper brings out tensions and assumptions about mathematics, history of mathematics and historiography. TOEPLITZ’S LIFE IN MATHEMATICS, HISTORY OF MATHEMATICS, AND MATHEMATICS TEACHING Before starting our examination of the paper which is our focus in this paper, we ought to have some sense of who its author, Otto Toeplitz, was as an intellectual and educational figure. Toeplitz was born in Breslau, Germany (now, Wrocław, Poland) in 1881 and died in Jerusalem in 1940. His doctoral dissertation, Über Systeme von Formen, deren Funktionaldeterminante identisch verschwindet (On Systems of Forms whose Functional Determinant Vanishes Identically) was written under the direction of Jacob Rosanes and Friedrich Otto Rudolf Sturm at the University of Breslau in 1905. -
Jewish Mathematicians in German-Speaking Academic Culture
Opening of the exhibition Transcending Tradition: Jewish Mathematicians in German-Speaking Academic Culture Tel Aviv, 14 November 2011 Introduction to the Exhibition Moritz Epple Ladies and Gentlemen, Mathematics is a science that strives for universality. Humans have known how to calculate as long as they have known how to write, and mathematical knowledge has crossed boundaries between cultures and periods. Nevertheless, the historical conditions under which mathematics is pursued do change. Our exhibition is devoted to a period of dramatic changes in the culture of mathematics. Let me begin with a look back to summer 1904, when the International Congress of Mathematicians convened for the third time. The first of these congresses had been held in Zürich in 1897, the second in Paris in 1900. Now it was being organized in Germany for the first time, this time in the small city of Heidelberg in Germany’s south-west. 2 The congress was dedicated to the famous 19th-century mathematician Carl Gustav Jacobi, who had lived and worked in Königsberg. A commemorative talk on Jacobi was given by Leo Königsberger, the local organizer of the congress. The Göttingen mathematician Hermann Minkowski spoke about his recent work on the “Geometry of Numbers”. Arthur Schoenflies, who also worked in Göttingen and who a few years later would become the driving force behind Frankfurt’s new mathematical institute, gave a talk about perfect sets, thereby advancing the equally young theory of infinite sets. The Heidelberg scholar Moritz Cantor presented new results on the history of mathematics, and Max Simon, a specialist for mathematics education, discussed the mathematics of the Egyptians. -
Why Toeplitz–Hankel? Motivations and Panorama
Cambridge University Press 978-1-107-19850-0 — Toeplitz Matrices and Operators Nikolaï Nikolski , Translated by Danièle Gibbons , Greg Gibbons Excerpt More Information 1 Why Toeplitz–Hankel? Motivations and Panorama Topics • Four cornerstones of the theory of Toeplitz operators: the Riemann–Hilbert problem (RHP), the singular integral operators (SIO), the Wiener–Hopf op- erators (WHO), and last (but not least) the Toeplitz matrices and operators (TMO) (strictly speaking, compressions of multiplication operators). • The founding contributions of Bernhard Riemann, David Hilbert, George Birkhoff, Otto Toeplitz, Gábor Szego,˝ Norbert Wiener, and Eberhard Hopf. • The modern and post-modern periods of the theory. Biographies Bernhard Riemann, Vito Volterra, David Hilbert, Henri Poincaré, Otto Toeplitz, Hermann and Marie Hankel. 1.1 Latent Maturation: The RHP and SIOs The most ancient form of a “Toeplitz problem,” which was not identified as such for a hundred years (!), is the Riemann, or Riemann–Hilbert, problem. 1.1.1 Nineteenth Century: Riemann and Volterra Bernhard Riemann submitted his thesis in 1851 (under the direction of Gauss) and presented his inaugural dissertation entitled “Grundlagen für eine allge- meine Theorie der Funktionen einer veränderlich complexen Grösse” (also available in [Riemann, 1876]). Its principal value lay in its pioneering intro- duction of geometrical methods to the theory of functions, and in the objects that we now know under the names of Riemann surfaces, conformal mappings, and variational techniques. Moreover, among the 22 sections of this 43-page text (in today’s format) there was a short Section 19 containing what is known 1 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-19850-0 — Toeplitz Matrices and Operators Nikolaï Nikolski , Translated by Danièle Gibbons , Greg Gibbons Excerpt More Information 2 Why Toeplitz–Hankel? Motivations and Panorama (following Hilbert) as the ‘Riemann problem,” one of the cornerstones of the future theory of Toeplitz operators. -
The Calculus: a Genetic Approach / Otto Toeplitz ; with a New Foreword by David M
THE CALCULUS THE CALCULUS A Genetic Approach OTTO TOEPLITZ New Foreword by David Bressoud Published in Association with the Mathematical Association of America The University of Chicago Press Chicago · London The present book is a translation, edited after the author's death by Gottfried Kothe and translated into English by LuiseLange. The German edition, DieEntwicklungder Infinitesimalrechnung,was published by Springer-Verlag. The University of Chicago Press,Chicago 60637 The University of Chicago Press,ltd., London © 1963 by The University of Chicago Foreword © 2007 by The University of Chicago All rights reserved. Published 2007 Printed in the United States of America 16 15 14 13 12 11 10 09 08 07 2 3 4 5 ISBN-13: 978-0-226-80668-6 (paper) ISBN-10: 0-226-80668-5 (paper) Library of Congress Cataloging-in-Publication Data Toeplitz, Otto, 1881-1940. [Entwicklung der Infinitesimalrechnung. English] The calculus: a genetic approach / Otto Toeplitz ; with a new foreword by David M. Bressoud. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-226-80668-6 (pbk. : alk. paper) ISBN-10: 0-226-80668-5 (pbk. : alk. paper) 1. Calculus. 2. Processes, Infinite. I. Title. QA303.T64152007 515-dc22 2006034201 § The paper used in this publication meets the minimum requirements of the American National Standard for Information Sciences-Permanence of Paper for Printed Library Materials, ANSI Z39.48-1992. FOREWORDTO THECALCULUS: A GENETICAPPROACHBYOTTO TOEPLITZ September 30, 2006 Otto Toeplitz is best known for his contributions to mathematics, but he was also an avid student of its history. He understood how useful this history could be in in forming and shaping the pedagogy of mathematics. -
OTTO TOEPLITZ: ALGEBRAIKER DER UNENDLICHEN MATRIZEN 3 Aus Königsberg Und Rademacher Aus Breslau
OTTO TOEPLITZ: ALGEBRAIKER DER UNENDLICHEN MATRIZEN STEFAN MÜLLER-STACH Zusammenfassung. Otto Toeplitz ist ein Mathematiker, dessen Schicksal ex- emplarisch für die Vernichtung der jüdischen wissenschaftlichen Elite in Deutsch- land durch die Nationalsozialisten ist. Sein Einfluss in der Mathematik ist noch heute, besonders durch den Begriff der Toeplitzmatrizen, deutlich spürbar. Die kulturgeschichtliche Bedeutung von Toeplitz ist ebenso groß. Als Gründungs- herausgeber von zwei Zeitschriften hat er sein Engagement für die Didaktik und die Wissenschaftsgeschichte untermauert. Wir geben einen Einblick in sein Schicksal und seine Gedankenwelt unter dem Einfluss von David Hilbert und Felix Klein. Einleitung Die Mathematischen Semesterberichte wurden 1932 von Heinrich Behnke und Otto Toeplitz gegründet. Heinrich Behnke mit seinen herausragenden Verdiensten um die Mathematikdidaktik, die Lehrerfortbildung, seinem mathematischen Œuvre und seiner in der Nachkriegszeit so einflussreichen Schule ist im Hinblick auf die Semesterberichte schon gewürdigt worden [10, 11]. Mit dem vorliegenden Aufsatz wollen wir nun stattdessen einmal Otto Toeplitz gerecht werden. Es soll insbesondere herausgearbeitet werden, wie nahe die Idee der Semester- berichte zur Gedankenwelt von Toeplitz und der von Behnke ist. Toeplitz, der aus Breslau stammte, wurde zunächst in Göttingen von David Hilbert und Felix Klein stark beeinflusst. Ab den 1920er Jahren entwickelte er aber vollkommen eigene Ideen, sowohl in seiner Forschung als auch im Bereich der Wissenschaftsgeschichte und der Hochschuldidaktik. Die beiden von ihm gegründeten Zeitschriften, seine historischen Seminare sowie seine Reden und Schriften zeigen seine Individualität und seine mittlerweile erreichte inhaltliche Distanz zu seinen beiden Vorbildern, mit denen er auch eine umfangreiche Korrespondenz unterhielt. Für Toeplitz bedeutete Deutschland die Erfüllung seiner wissenschaftlichen Träu- me. Durch die Nationalsozialisten wurde Toeplitz aus seinem Amt entfernt und emigrierte 1939 nach Jerusalem, wo er Anfang 1940 starb. -
Akkadisches Wörterbuch
Originalveröffentlichung in: Volker Sellin, Eike Wolgast, Sebastian Zwies (Hg.), Die Forschungsvorhaben der Heidelberger Akademie der Wissenschaften 1909-2009, Heidelberg 2009, S. 166-170 166 Die Forschungsvorhaben der Philosophisch-historischen Klasse Akkadisches Wörterbuch Laufzeit: 1949-1981. Forschungsstellen: Orientalistische Seminare der Universitäten Wien und Münster. Leitung: Adam Falkenstein (Heidelberg, 1955-1966), Prof. Dr. Wolfram von Soden (Wien/Münster, 1949-1981). Wissenschaftliche Mitarbeiter/Mitarbeiterinnen: Dr. Rykle Borger (Münster, 1949-1956), Wolfgang Röllig (Heidelberg, 1956-1961, seit 1961 in Münster), Dr. Dietz Otto Edzard (Heidelberg/München, 1956-1960), Ebbe E. Knudsen (Münster, 1959-1960), Willem H. P. Römer (Münster, 1962-1963), Dr. Joachim Krecher (Münster, 1965), Dr. Hermann Hunger (Münster, 1965-1967), Dr. Gabriella Guidi (Rom, 1967-1971), Dr. Heiner Lutzmann (Münster, 1971-12/1980). Kommission (seit 1971): Die ordentlichen Mitglieder der Akademie Herbert Donner (1976-1981), Eberhard Otto (1971-1974); das korrespondierende Mitglied der Akademie Wolfram von Soden (1971-1981, Vorsitz 1971-1981); Prof. Dr. Joachim Krecher (Münster, 1971-1981), Dr. Heiner Lutzmann (1971-1981). Akkadisches Wörterbuch 167 Der Berliner Assyriologe Bruno Meissner (1868-1947), der schon 1898 ein Supplement zu den assyrischen Wörterbüchern veröffentlicht hatte, entschloss sich, seinerseits ein akkadisches Wörterbuch vorzulegen, als Carl Bezolds als Torso empfundenes Glos sar im Jahr 1926 erschienen war (vgl. hierzu S. 87-90). Auf -
Tablettes Mathématiques De Nippur.1Er Partie:Reconstitution Du Cursus Scolaire. 2Me Partie
Tablettes mathématiques de Nippur. 1er partie: Reconstitution du cursus scolaire. 2me partie: Édition des tablettes conservées au Musée Archéologique d’Istanbul, avec la collaboration de Veysel Donbaz et de Asuman Dönmez, translittération des textes lexicaux et littéraires par Antoine Cavigneaux by Christine Proust Varia Anatolica 18. Paris: Institut Français d’Études Anatoliennes Georges-Dumezil, 2007. Pp. 356 + 49 plates, CD-ROM. ISBN 978--2-- 906053--92--9.Paper ¤ 75.00 Reviewed by Duncan J. Melville St Lawrence University [email protected] The decipherment of cuneiform and the recovery of Mesopotamian mathematics, and especially that of the Old Babylonian period, open- ed an exciting early chapter in the history of mathematics. The pi- oneering work of Neugebauer, Thureau-Dangin, and others revealed a complex algorithmic and algebraic body of mathematics involv- ing often ingenious constructions and presenting a sustained interest in quadratic mathematics more than 1000 years before Pythagoras. Inevitably, in this reconstruction, the fundamental problem texts doc- umenting the extent and depth of the mathematical knowledge of the period took center stage. A key characteristic of Mesopotamian mathematics is that the sources are principally from an educational context: the tablets are school tablets produced by students and their teachers, and they derive from the business of teaching and learning mathematics. It is only comparatively recently that scholars have turned their attention from establishing the boundaries of Old Baby- lonian mathematical knowledge to determining how, and how much of, that mathematics was learned by students of the time. Proust’s volume fits squarely into this current trend in understanding ancient pedagogy. -
The Enjoyment of Math
The Enjoyment of Math The Enjoyment of Math BY HANS RADEMACHER AND OTTO TOEPLITZ TRANSLATED BY HERBERT ZUCKERMAN PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Published 1957 by Princeton University Press, Princeton, New Jersey In the United Kingdom: Princeton University Press, Chichester, West Sussex All Rights Reserved Library of Congress Card No.: 57-627 ISBN 0-691-07958-7 (hardcover edition) ISBN 0-691-02351-4 (paperback edition) This is a translation from Von Zahlen und Figuren: Proben Mathematischen Denkens fUr Liebhaber der Mathematik, by Hans Rademacher and Otto Toeplitz, second edition originally published by Julius Springer, Berlin, 1933. Chapters 15 and 28 by Herbert Zuckerman have been added to the English language edition. Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources First Princeton Paperback edition, 1966 Second paperback and eighth hardcover printing, 1970 Seventh printing, for the Princeton Science Library, 1994 Printed in the United States of America 15 14 13 12 II 10 9 8 7 Preface Otto Toeplitz, co-author of this book, died in Jerusalem on Fe bruary 19, 1940, after having left Germany in the Spring of 1939. Toeplitz began his academic career in Gottingen as a disciple of David Hilbert, was then professor in Kiel and later in Bonn. His scientific work is centered around the theory of integral equations and the theory of functions of infinitely many variables, fields to which he has made lasting contributions. The plan for this book arose at frequent meetings which the authors had, while Toeplitz was in Kiel and I was at the University of Hamburg. -
A Bibliography of Publications By, and About, Max Born
A Bibliography of Publications by, and about, Max Born Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 07 June 2021 Version 1.125 Title word cross-reference 1=r [DL08]. 137 [Bor35b]. $2.50 [Mor54]. $3.80 [Kle70c]. $4.95 [Kle70b]. 2 [Bor18g, Pac10]. n log n [ADO11]. 1 [Lor10]. 14.99/$25.00 [Ber04]. 1801 [vS21]. 1911 [Meh75]. 1916-1955 [Mar73]. 1926 [Bor54a]. 1928 [HKP+32a, HKP+32b]. 1933 [Kr¨o98]. 1945 [Bor45b]. 1947 [Bor63-28]. 1951 [Bor63b]. 1955 [For70]. 1957 [BBF+57a]. 1970 [KS71, Lin98]. 1995 [Kr¨o98]. 20 [Goe88]. 24.80 [Kle70a]. 240pp [Ber04]. 3.85 [Bro72]. 37th [Bor53c]. 4 [RSS+07]. 480pp [Ber04]. 4th [Bor50b]. 1 2 50th [Bor59b, Bor63v]. 55 [BB69a]. 60th [Ber15, Sho20]. 7 [Sho20]. 7th [Sho20]. 80th [Ano63, CS79b, Ros79]. 978 [Sho20]. 978-1-108-47743-7 [Sho20]. ˆın [Bor69f]. Abbildungsfehler [Bor32c]. aberrations [Bor32c]. Abhandlungen [BB22a, BB63g, Bor63c, Bor63d, Seg64]. Ableitung [Bor10b]. Ablenkung [vS21]. Abraham [BvL23, BvL63]. Absolute [BS35, BL18b, Bor18d, BL63b]. absoluten [Bor18d]. absorbance [BL11]. absorbierenden [BL11]. absorbing [BL11]. absorption [Bor32d]. Absorptionsbanden [Bor32d]. Absorptionsverm¨ogen [BL11]. Achievement [Bor68a]. Achtzehn [BBF+57b, ABH+55, ABH+87]. achtzigsten [Hei62]. Activity [Bor35c, Bor15d, Bor15e, Bor22e, Bor36a, Bor63-51, Bor63-52]. Adiabatenprinzip [Bor26b, Bor63j]. Adiabatensatzes [BF28, BF63b]. adiabatic [Bor26b, BF63b, BF28, Bor63j]. Adsorption [BW63a, BF30, BW31a, BW31b, BF63c]. -
Curriculum Vitae: Full Name: Jens Egede Høyrup. Born: Copenhagen
Curriculum vitae: Full name: Jens Egede Høyrup. Born: Copenhagen, 1943. “Studentereksamen” (corresponds to French baccalauréat/German Abitur) 1962. Studies of physics with mathematics as a second subject, University of Copenhagen, Niels Bohr Institute, 1962–1965, 1966–1969. 1965–66, French bourse d’état, with studies of physics at Institut Henri Poincaré, Paris. 1969, cand. scient. (dissertation in particle physics). 1969–1970, conscientious objector’s civil service. 1971–1973, assistant lecturer in physics at Danmarks Ingeniørakademi. 1973–1989 “lektor” (corresponds to British “senior lecturer”), since 1989 “docent” (corresponds to British “reader”) at Roskilde University, 1973–1978 in the Department of Social Sciences, 1978–1992 in the Institute of Educational Research, Media Studies and Philosophy of Science, 1992–1997 in the Department of Languages and Culture, since 1997 in the Section for Philosophy and Science Studies. Since 2005 emeritus. Jan. 1990 Gast-Dozent, Karl-Marx-Universität Leipzig. Sept. 1994 – Jan. 1995 guest researcher at Max-Planck-Institut für Wissenschaftsgeschichte, Berlin. Many shorter stays since then. December 2016 to December 2019, visiting scholar (not in permanent residence). 1995 Dr. phil. (corresponds approximately to French Doctorat d’état/German Habilitation). 2008/2009, George Sarton Memorial Chair, University of Ghent. 26.4.2013, Awarded Zhu Kezhen Visiting Professorship, Institute for History of Natural Science of the Chinese Academy of Science, and appointed permanent Honorary Research Fellow at the Institute for the History of Natural Science, Chinese Academy of Sciences. 26.7.2013, awarded Kenneth O. May Medal and Prize “for outstanding contributions to the history of mathematics”. April – June 2019, visiting professor, Department of the History of Science, Tsinghua University, Beijing.