Novel Chromosome Organization Pattern in Actinomycetales–Overlapping

Total Page:16

File Type:pdf, Size:1020Kb

Novel Chromosome Organization Pattern in Actinomycetales–Overlapping bioRxiv preprint doi: https://doi.org/10.1101/094169; this version posted December 14, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Novel chromosome organization pattern in actinomycetales–overlapping 2 replication cycles combined with diploidy 3 4 Kati Böhm1, Fabian Meyer1, Agata Rhomberg1, Jörn Kalinowski2, Catriona Donovan1, 5 and Marc Bramkamp1* 6 7 1Ludwig-Maximilians-Universität München, Fakultät Biologie, Großhaderner Straße 2- 8 4, 82152 Planegg-Martinsried, Germany 9 2Universität Bielefeld, Center for Biotechnology (CeBiTec), 33594 Bielefeld, Germany 10 11 Keywords: Corynebacterium, cell cylce, origin, ParB, ParA, replication, diploidy 12 13 *Corresponding author: Marc Bramkamp 14 Email: [email protected]; Phone: +49-(0)89-218074611; Fax: +49-(0)89- 15 218074621 16 17 18 1 bioRxiv preprint doi: https://doi.org/10.1101/094169; this version posted December 14, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 19 Abstract 20 21 Bacteria regulate chromosome replication and segregation tightly with cell division to 22 ensure faithful segregation of DNA to daughter generations. The underlying 23 mechanisms have been addressed in several model species. It became apparent 24 that bacteria have evolved quite different strategies to regulate DNA segregation and 25 chromosomal organization. We have investigated here how the actinobacterium 26 Corynebacterium glutamicum organizes chromosome segregation and DNA 27 replication. Unexpectedly, we find that C. glutamicum cells are at least diploid under 28 all conditions tested and that these organisms have overlapping C-periods during 29 replication with both origins initiating replication simultaneously. Based on 30 experimentally obtained data we propose growth rate dependent cell cycle models for 31 C. glutamicum. 32 33 Introduction 34 35 Bacterial chromosome organization is highly regulated, where replication coincides 36 with segregation of sister nucleoids and is tightly coordinated with cell division (1). 37 Cell cycle control mechanisms exist, which ensure constant DNA content throughout 38 cell generations. In particular, the action of the key replication initiator protein DnaA is 39 timed by various regulatory systems, for instance via the CtrA protein cascade in 40 Caulobacter crescentus or SeqA in Escherichia coli (2-6). Upon replication initiation 41 DnaA binds to the origin of replication (oriC) and mediates duplex unwinding prior to 42 loading of the replication machinery (7,8). The two evolving replication forks migrate 43 along the left and right arm of the circular chromosome towards the terminus of 2 bioRxiv preprint doi: https://doi.org/10.1101/094169; this version posted December 14, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 44 replication (terC), where FtsK-dependent XerCD recombinases resolve decatenated 45 chromosomes as a final step (9,10). Replication usually takes place within defined 46 cellular regions via stably assembled protein complexes, namely replisomes, of 47 rather static or dynamic nature (11,12). 48 The bacterial cell cycle can be divided in different stages illustrated in Figure 1. The 49 time of DNA-replication is termed C-period, which is followed by a time interval 50 necessary for cell division executed by the divisiome (D-period). Several bacteria like 51 Mycobacterium smegmatis and C. crescentus replicate their genome once within a 52 generation, where C-periods are temporally separated from each other (13,14). At 53 slow growing conditions a non-replicative state termed B-period precedes the C- 54 period (not shown), thus the bacterial cell cycle resembles in some aspects the 55 eukaryotic cell cycle (G1, S, G2 phases). Contrary to this, fast growing organisms 56 such as Bacillus subtilis, E. coli and Vibrio cholerae can overlap C-periods during fast 57 growth, a phenomenon termed multifork replication (15-17). Under these conditions a 58 new round of replication is reinitiated before termination of the previous one. 59 Therefore, generation times are considerably shorter than the duration of the C- 60 period. However, only one round of replication is initiated per cell cycle and usually 61 one C-period is completed at the time point of cell division (18). Many bacteria 62 contain only one copy of the chromosome. However, several bacteria and archaea 63 can have increased DNA contents due to oligo- or polyploidy (19). Polyploid cells 64 harbor multiple, fully replicated chromosome copies throughout their life cycle, which 65 has been frequently found in prokaryotes including certain gram-positive bacteria, 66 proteobacteria, Deinococcales, cyanobacteria and also archaea (20-27). 67 Besides the distinct cell cycle modes chromosome localization patterns differ 68 between model organisms. In a non-replicating, slow-growing E. coli cell the single 3 bioRxiv preprint doi: https://doi.org/10.1101/094169; this version posted December 14, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 69 chromosome is placed symmetrically with oriC and terC regions located at midcell 70 and the replichores spatially separated to the two cell halves (28). Upon replication 71 initiation the two sister chromosomes segregate bidirectionally to opposite cell halves 72 with replisomes positioned at midcell (29,30). Finally, oriC and terC are confined to 73 cell quarter regions. Contrary to this, the model organisms C. crescentus, Vibrio 74 cholerae and Pseudomonas aeruginosa localize their nucleoids about the 75 longitudinal axis with chromosome arms adjacent to each other (31-34). Sister 76 replichores move to the opposite cell half with the segregated oriC facing towards the 77 pole, mirroring the second chromosome at the transverse axis. The oriC region of C. 78 crescentus and V. cholera is positioned by polar landmark proteins (35,36), where 79 replisomes assemble and simultaneously move towards midcell in the course of 80 replication (12,17). For the most part, P. aeruginosa places its replication machinery 81 centrally (34). Finally, B. subtilis switches from the longitudinal chromosome 82 organization to the E. coli “left-oriC-right” configuration during replication initiation 83 (37). 84 The mitotic-like ParABS system has been identified as a driving force behind 85 coordinated nucleoid partitioning for more than two third of bacterial species 86 analyzed, with exceptions specifically within the phylum of γ-proteobacteria such as 87 E. coli (38). This segregation mechanism involves components similar to the plasmid 88 encoded par genes responsible for active segregation of low-copy-number plasmids 89 (39). Thereby, the ParB protein binds a variable number of centromere-like DNA 90 sequences called parS sites in oriC-proximity (40) and spreads along the DNA 91 forming large protein-DNA complexes (41-43). Interaction of ParB with the Walker- 92 type ATPase ParA mediates ATP-hydrolysis and thereby ParA detachment from DNA 93 (44), driving apart the sister chromosomes as the protein interaction translocates the 4 bioRxiv preprint doi: https://doi.org/10.1101/094169; this version posted December 14, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 94 oriC towards the opposite cell half (33,45,46). The precise mechanism of the 95 ParABS-mediated DNA segregation has been under debate, however, to date 96 dynamic diffusion-ratchet and DNA-relay models are favored, where nucleoid and 97 plasmid movement is mediated along a ParA gradient caused by local ParB- 98 stimulated depletion of DNA-bound ParA (47-49). Deletion of this partitioning system 99 has mild effects in B. subtilis and V. cholerae cells, but causes severe chromosome 100 segregation defects in other organisms and is essential for viability in C. crescentus 101 and Myxococcus xanthus (46,50-56). 102 Here we present the cell cycle and spatiotemporal organization of oriCs and 103 replisomes in C. glutamicum, a rod-shaped polar growing actinobacterium. It is 104 closely related to pathogens like C. diphteriae and M. tuberculosis, the latter being 105 amongst the top ten causes of fatal infections worldwide (57). Besides this, C. 106 glutamicum is of great economic importance as an amino acid and vitamin producer 107 and extensive efforts in metabolic engineering are being carried out concerning 108 metabolite production and yield increase (58). Although, its metabolism is one of the 109 best studied amongst model organisms the underlying cell cycle parameters and 110 chromosome organization patterns had so far not been analyzed in detail. C. 111 glutamicum relies on a ParABS system to segregate their nucleoids prior to cell 112 division (51,59,60). Chromosome segregation influences division site selection and, 113 hence, growth and chromosome organization are tightly coupled in C. glutamicum 114 (59). This may in part explain why protein machineries that have been described in 115 various bacterial species like the Min system or a nucleoid occlusion system, both 116 being involved in division septum placement are absent in C. glutamicum (61). 117 In this study, we tracked in vivo fluorescently labeled centromer-binding protein ParB 118 and replisome sliding clamp DnaN to investigate spatiotemporal oriC and replisome 5 bioRxiv preprint doi: https://doi.org/10.1101/094169; this version posted December 14, 2016.
Recommended publications
  • Genomic Homogeneity Between Mycobacterium Avium Subsp. Avium and Mycobacterium Avium Subsp
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2003 Genomic homogeneity between Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis belies their divergent growth rates John P. Bannantine ARS-USDA, [email protected] Qing Zhang 2University of Minnesota, Minneapolis, [email protected] Ling-Ling Li University of Minnesota, Minneapolis, [email protected] Vivek Kapur University of Minnesota, Minneapolis, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Bannantine, John P.; Zhang, Qing; Li, Ling-Ling; and Kapur, Vivek, "Genomic homogeneity between Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis belies their divergent growth rates" (2003). Publications from USDA-ARS / UNL Faculty. 2372. https://digitalcommons.unl.edu/usdaarsfacpub/2372 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BMC Microbiology BioMed Central Research article Open Access Genomic homogeneity between Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis belies their
    [Show full text]
  • Nomenclature of Bacteria with Special Reference to the Order Actinomycetales'
    INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY VOL. 21, No. 2 April 1971, pp. 197-206 Printed in U.S.A. Copyright 0 1971 International Association of Microbiological Societies Nomenclature of Bacteria with Special Reference to the Order Actinomycetales' THOMAS G. PRIDHAM Northern Regional Research Laboratory,z Peoria, Illinois 61604 The number of names for streptomycetes that is in the scientific literature now is exceeded only by those for organisms placed in the genus Bacillus Cohn 1872. The genus Streptomyces Waksman and Henrici 1943 may well rank in first place if names in the patent and quasiscientific literature are included. The overwhelming number of names and the lack of a precise definition of a particular species or subspecies, of type or neotype strains, and of certain essential details have brought about problems in assessing the status of many names. The major problems encountered in a 2-year study are discussed, and a simple format is suggested, use of which may help to clarify future nomenclature. Twelve years ago, I presented (29) before ture of Bacteria (20); type strains, where these the First Latin-American Congress for Micro- can be located and obtained, are being as- biology held at Mexico, D.F., some suggestions sembled and recharacterized (35 -38) through on establishing a logical order in streptomycete the International Streptomyces Project, and a classification. minumum set of substrata and tests have been (i) Compilation and evaluation of available recommended for description of A ctino- literature on nomenclature and characterization mycetales in patents (1 1, 12). of streptomycetes. One item upon which insufficient attention (ii) Decision on the proper code of nomen- has been focused is nomenclature.
    [Show full text]
  • Glycomyces, a New Genus of the Actinomycetales D
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Oct. 1985, p. 417-421 Vol. 35, No. 4 0020-7713/85/040417-05$02.00/0 Glycomyces, a New Genus of the Actinomycetales D. P. LABEDA,l* R. T. TESTA,2 M. P. LECHEVALIER,3 AND H. A. LECHEVALIER3 U. S. Department of Agriculture, Agricultural Research Sewice, Northern Regional Research Center, Peoria, Illinois 61604'; Medical Research Division, American Cyanamid Co., Pearl River, New York 109652; and Waksman Institute of Microbiology, Rutgers, The State University, Piscataway, New Jersey 088543 We describe two species of the new genus Glycomyces, Glycomyces harbinensis sp. nov. and Glycomyces rutgersensis sp. nov. Members of this genus are aerobic, produce nonfragmenting vegetative hyphae, and form chains of conidia on aerial sporophores. The cell walls are type I1 (rneso-diaminopimelic acid and glycine are present), and the whole-cell sugar patterns are type D (xylose and arabinose are present). The phospholipid pattern of both species is type P-I (no nitrogenous phospholipids). The guanine-plus-cytosine content of the deoxyribonucleic acid ranges from 71 to 73 mol%. The type strain of type species G. harbinensis is strain NRRL 15337 (= LL-D05139), and the type strain of G. rutgersensis is strain NRRL B-16106 (= LL-1-20). During the course of isolation of actinomycete strains Gordon et al. (8). Esculin hydrolysis was evaluated by the from soil for an antibiotic screening program, a novel isolate method of Williams et al. (27), and Tween 80 hydrolysis was was obtained from a soil sample from Harbin, People's evaluated by the method of Sierra (26). Phosphatase activity Republic of China.
    [Show full text]
  • Biofilm Degradation of Nontuberculous Mycobacteria
    processes Article Biofilm Degradation of Nontuberculous Mycobacteria Formed on Stainless Steel Following Treatment with Immortelle (Helichrysum italicum) and Common Juniper (Juniperus communis) Essential Oils Dolores Peruˇc 1,* , Dalibor Brozni´c 2 , Željka Maglica 3, Zvonimir Marijanovi´c 4, Ljerka Karleuša 5 and Ivana Gobin 1 1 Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; [email protected] 2 Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; [email protected] 3 Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia; [email protected] 4 Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia; [email protected] 5 Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-(0)51-651-145; Fax: +385-(0)51-651-177 Abstract: Nontuberculous mycobacteria, like other opportunistic premise plumbing pathogens, pro- duce resistant biofilms on various surfaces in the plumbing system including pipes, tanks, and fittings. Citation: Peruˇc,D.; Brozni´c,D.; Since standard methods of water disinfection are ineffective in eradicating biofilms, research into new Maglica, Ž.; Marijanovi´c,Z.; Karleuša, agents is necessary. Essential oils (EOs) have great potential as anti-biofilm agents. Therefore, the pur- L.; Gobin, I. Biofilm Degradation of pose of this research was to investigate the potential anti-biofilm effect of common juniper (Juniperus Nontuberculous Mycobacteria communis) and immortelle (Helichrysum italicum) EOs. Minimum inhibitory concentrations (MIC), Formed on Stainless Steel Following Treatment with Immortelle minimum bactericidal concentrations (MBC), and minimum effective concentrations of EOs on My- (Helichrysum italicum) and Common cobacterium avium, M.
    [Show full text]
  • Human Microbiota Network: Unveiling Potential Crosstalk Between the Different Microbiota Ecosystems and Their Role in Health and Disease
    nutrients Review Human Microbiota Network: Unveiling Potential Crosstalk between the Different Microbiota Ecosystems and Their Role in Health and Disease Jose E. Martínez †, Augusto Vargas † , Tania Pérez-Sánchez , Ignacio J. Encío , Miriam Cabello-Olmo * and Miguel Barajas * Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain; [email protected] (J.E.M.); [email protected] (A.V.); [email protected] (T.P.-S.); [email protected] (I.J.E.) * Correspondence: [email protected] (M.C.-O.); [email protected] (M.B.) † These authors contributed equally to this work. Abstract: The human body is host to a large number of microorganisms which conform the human microbiota, that is known to play an important role in health and disease. Although most of the microorganisms that coexist with us are located in the gut, microbial cells present in other locations (like skin, respiratory tract, genitourinary tract, and the vaginal zone in women) also play a significant role regulating host health. The fact that there are different kinds of microbiota in different body areas does not mean they are independent. It is plausible that connection exist, and different studies have shown that the microbiota present in different zones of the human body has the capability of communicating through secondary metabolites. In this sense, dysbiosis in one body compartment Citation: Martínez, J.E.; Vargas, A.; may negatively affect distal areas and contribute to the development of diseases. Accordingly, it Pérez-Sánchez, T.; Encío, I.J.; could be hypothesized that the whole set of microbial cells that inhabit the human body form a Cabello-Olmo, M.; Barajas, M.
    [Show full text]
  • Composition of the Adult Digestive Tract Bacterial Microbiome Based On
    Segata et al. Genome Biology 2012, 13:R42 http://genomebiology.com/2012/13/6/R42 RESEARCH Open Access Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples Nicola Segata1, Susan Kinder Haake2,3†, Peter Mannon4†, Katherine P Lemon5,6†, Levi Waldron1, Dirk Gevers7, Curtis Huttenhower1 and Jacques Izard5,8* Abstract Background: To understand the relationship between our bacterial microbiome and health, it is essential to define the microbiome in the absence of disease. The digestive tract includes diverse habitats and hosts the human body’s greatest bacterial density. We describe the bacterial community composition of ten digestive tract sites from more than 200 normal adults enrolled in the Human Microbiome Project, and metagenomically determined metabolic potentials of four representative sites. Results: The microbiota of these diverse habitats formed four groups based on similar community compositions: buccal mucosa, keratinized gingiva, hard palate; saliva, tongue, tonsils, throat; sub- and supra-gingival plaques; and stool. Phyla initially identified from environmental samples were detected throughout this population, primarily TM7, SR1, and Synergistetes. Genera with pathogenic members were well-represented among this disease-free cohort. Tooth-associated communities were distinct, but not entirely dissimilar, from other oral surfaces. The Porphyromonadaceae, Veillonellaceae and Lachnospiraceae families were common to all sites, but the distributions of their genera varied significantly. Most metabolic processes were distributed widely throughout the digestive tract microbiota, with variations in metagenomic abundance between body habitats. These included shifts in sugar transporter types between the supragingival plaque, other oral surfaces, and stool; hydrogen and hydrogen sulfide production were also differentially distributed.
    [Show full text]
  • Comparative Analyses of Whole-Genome Protein Sequences
    www.nature.com/scientificreports OPEN Comparative analyses of whole- genome protein sequences from multiple organisms Received: 7 June 2017 Makio Yokono 1,2, Soichirou Satoh3 & Ayumi Tanaka1 Accepted: 16 April 2018 Phylogenies based on entire genomes are a powerful tool for reconstructing the Tree of Life. Several Published: xx xx xxxx methods have been proposed, most of which employ an alignment-free strategy. Average sequence similarity methods are diferent than most other whole-genome methods, because they are based on local alignments. However, previous average similarity methods fail to reconstruct a correct phylogeny when compared against other whole-genome trees. In this study, we developed a novel average sequence similarity method. Our method correctly reconstructs the phylogenetic tree of in silico evolved E. coli proteomes. We applied the method to reconstruct a whole-proteome phylogeny of 1,087 species from all three domains of life, Bacteria, Archaea, and Eucarya. Our tree was automatically reconstructed without any human decisions, such as the selection of organisms. The tree exhibits a concentric circle-like structure, indicating that all the organisms have similar total branch lengths from their common ancestor. Branching patterns of the members of each phylum of Bacteria and Archaea are largely consistent with previous reports. The topologies are largely consistent with those reconstructed by other methods. These results strongly suggest that this approach has sufcient taxonomic resolution and reliability to infer phylogeny, from phylum to strain, of a wide range of organisms. Te reconstruction of phylogenetic trees is a powerful tool for understanding organismal evolutionary processes. Molecular phylogenetic analysis using ribosomal RNA (rRNA) clarifed the phylogenetic relationship of the three domains, bacterial, archaeal, and eukaryotic1.
    [Show full text]
  • Type of the Paper (Article
    Supplementary Materials S1 Clinical details recorded, Sampling, DNA Extraction of Microbial DNA, 16S rRNA gene sequencing, Bioinformatic pipeline, Quantitative Polymerase Chain Reaction Clinical details recorded In addition to the microbial specimen, the following clinical features were also recorded for each patient: age, gender, infection type (primary or secondary, meaning initial or revision treatment), pain, tenderness to percussion, sinus tract and size of the periapical radiolucency, to determine the correlation between these features and microbial findings (Table 1). Prevalence of all clinical signs and symptoms (except periapical lesion size) were recorded on a binary scale [0 = absent, 1 = present], while the size of the radiolucency was measured in millimetres by two endodontic specialists on two- dimensional periapical radiographs (Planmeca Romexis, Coventry, UK). Sampling After anaesthesia, the tooth to be treated was isolated with a rubber dam (UnoDent, Essex, UK), and field decontamination was carried out before and after access opening, according to an established protocol, and shown to eliminate contaminating DNA (Data not shown). An access cavity was cut with a sterile bur under sterile saline irrigation (0.9% NaCl, Mölnlycke Health Care, Göteborg, Sweden), with contamination control samples taken. Root canal patency was assessed with a sterile K-file (Dentsply-Sirona, Ballaigues, Switzerland). For non-culture-based analysis, clinical samples were collected by inserting two paper points size 15 (Dentsply Sirona, USA) into the root canal. Each paper point was retained in the canal for 1 min with careful agitation, then was transferred to −80ºC storage immediately before further analysis. Cases of secondary endodontic treatment were sampled using the same protocol, with the exception that specimens were collected after removal of the coronal gutta-percha with Gates Glidden drills (Dentsply-Sirona, Switzerland).
    [Show full text]
  • Workshop on Mycobacterium Avium Subsp
    Workshop on Mycobacterium avium subsp. paratuberculosis in North American Bison (Bison bison) PROCEEDINGS AND WORKSHOP REPORT Alberta Cooperative Conservation Research Unit National (Canadian) Wood Bison (ACCRU) Recovery Team Editors: Murray Woodbury, Elena Garde, Helen Schwantje, John Nishi, and Brett Elkin with contributions from Michelle Oakley, Jenny Powers, Jennifer Sibley and workshop participants. Department of Resources, Wildlife and Economic Development Government of the Northwest Territories Yellowknife, NT 2006 Manuscript Report No. 170 The contents of this paper are the sole responsibility of the author ii iii ABSTRACT Many of the emerging diseases worldwide are shared between domestic livestock, free ranging wildlife, and humans. Infection by mycobacterial organisms is not a recent or newly emerging issue, but the increasing frequency of disease caused by Mycobacterium species, where wildlife, domestic livestock, and humans are epidemiologically linked is cause for concern for wildlife management, agricultural and public health agencies alike. Human tuberculosis, including that caused by Mycobacterium bovis, once thought to be a well understood disease of lifestyle and socioeconomic consequences is once again a global concern. Johne’s disease (Mycobacterium avium subspecies paratuberculosis infection), previously considered a production limiting disease important only in domestic ruminants, has recently been implicated in the pathogenesis of Crohn’s disease in humans. Furthermore, wildlife and livestock reservoirs of infection
    [Show full text]
  • Microbial Diversity of Thermophiles with Biomass Deconstruction Potential in a Foliage-­Rich Hot Spring
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universiti Teknologi Malaysia Institutional Repository Received: 9 December 2017 | Revised: 29 January 2018 | Accepted: 12 February 2018 DOI: 10.1002/mbo3.615 ORIGINAL RESEARCH Microbial diversity of thermophiles with biomass deconstruction potential in a foliage- rich hot spring Li Sin Lee1 | Kian Mau Goh2 | Chia Sing Chan2 | Geok Yuan Annie Tan1 | Wai-Fong Yin1 | Chun Shiong Chong2 | Kok-Gan Chan1,3 1ISB (Genetics), Faculty of Science, University of Malaysia, Kuala Abstract Lumpur, Malaysia The ability of thermophilic microorganisms and their enzymes to decompose biomass 2 Faculty of Biosciences and Medical have attracted attention due to their quick reaction time, thermostability, and de- Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia creased risk of contamination. Exploitation of efficient thermostable glycoside hy- 3Jiangsu University, Zhenjiang, China drolases (GHs) could accelerate the industrialization of biofuels and biochemicals. However, the full spectrum of thermophiles and their enzymes that are important for Correspondence Kok-Gan Chan, International Genome biomass degradation at high temperatures have not yet been thoroughly studied. We Centre, Jiangsu University, Zhenjiang, China. examined a Malaysian Y- shaped Sungai Klah hot spring located within a wooded area. Email: [email protected] The fallen foliage that formed a thick layer of biomass bed under the heated water of Funding information the Y- shaped Sungai Klah hot spring was an ideal environment for the discovery and Postgraduate Research Fund grant, Grant/ Award Number: PG124-2016A; University analysis of microbial biomass decay communities. We sequenced the hypervariable of Malaya, Grant/Award Number: GA001- regions of bacterial and archaeal 16S rRNA genes using total community DNA ex- 2016 and GA002-2016; Universiti Teknologi Malaysia GUP, Grant/Award Number: tracted from the hot spring.
    [Show full text]
  • Diversity of the Human Gastrointestinal Microbiota Novel Perspectives from High Throughput Analyses
    Diversity of the Human Gastrointestinal Microbiota Novel Perspectives from High Throughput Analyses Mirjana Rajilić-Stojanović Promotor Prof. Dr W. M. de Vos Hoogleraar Microbiologie Wageningen Universiteit Samenstelling Promotiecommissie Prof. Dr T. Abee Wageningen Universiteit Dr J. Doré INRA, France Prof. Dr G. R. Gibson University of Reading, UK Prof. Dr S. Salminen University of Turku, Finland Dr K. Venema TNO Quality for life, Zeist Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG. Diversity of the Human Gastrointestinal Microbiota Novel Perspectives from High Throughput Analyses Mirjana Rajilić-Stojanović Proefschrift Ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M. J. Kropff, in het openbaar te verdedigen op maandag 11 juni 2007 des namiddags te vier uur in de Aula Mirjana Rajilić-Stojanović, Diversity of the Human Gastrointestinal Microbiota – Novel Perspectives from High Throughput Analyses (2007) PhD Thesis, Wageningen University and Research Centre, Wageningen, The Netherlands – with Summary in Dutch – 214 p. ISBN: 978-90-8504-663-9 Abstract The human gastrointestinal tract is densely populated by hundreds of microbial (primarily bacterial, but also archaeal and fungal) species that are collectively named the microbiota. This microbiota performs various functions and contributes significantly to the digestion and the health of the host. It has previously been noted that the diversity of the gastrointestinal microbiota is disturbed in relation to several intestinal and not intestine related diseases. However, accurate and detailed defining of such disturbances is hampered by the fact that the diversity of this ecosystem is still not fully described, primarily because of its extreme complexity, and high inter-individual variability.
    [Show full text]
  • Mycobacteriosis in Australian Birds Dec 2013
    Mycobacteriosis in Australian birds Fact sheet Introductory statement Multiple species of mycobacteria can cause disease in birds. The most common species, however, are Mycobacterium avium subspecies avium and M. genavense. Mycobacteria cause a slowly progressive and, in the end, fatal disease in the birds they infect. Infection in wild birds occurs sporadically. However, in certain species of captive birds and in certain collections of captive birds, infection prevalence is high. A lack of genetic diversity, insufficient hygiene, and an increased persistence of these bacteria in the environment are likely to be predisposing conditions to infection in captive birds. Although essentially eradicated with the onset of intensive raising processes in the chicken industry, the return to free-range farming of chickens may result in a re-emergence of mycobacterial infections. The role of captive birds in spill over to native Australian wild birds is not known. Aetiology Order (Actinomycetales), family (Mycobacteriaceae), genus (Mycobacterium). Mycobacteria are small rod-shaped bacteria that grow inside of the host’s cells. They do not stain with the Gram’s stain or do so faintly. They are difficult to see in haematoxyln and eosin stained tissue sections and only stain with the acid fast or Ziehl-Neelsen stain. They stain red with this stain and are referred to as acid- fast organisms (reviewed in Saggese et al. 2010). The two most common species of mycobacteria detected in diseased birds are Mycobacterium avium subspecies avium (MAA) and M. genavense (MG) and they are the focus of this fact sheet (Hoop et al. 1993; Feizabad et al. 1996; Saggese et al.
    [Show full text]