Risk Analysis of Possums and Opossums in the Netherlands

Total Page:16

File Type:pdf, Size:1020Kb

Risk Analysis of Possums and Opossums in the Netherlands Risk analysis of Possums and Opossums in The Netherlands F. van Vliet R. Lensink Risk analysis of Possums and Opossums in The Netherlands F. van Vliet R. Lensink commissioned by: Invasive Alien Species Team (Netherlands Food and Consumer Product Safety Authority) 19 June 2012 report nr 12-001 Status: Final draft Report nr.: 12-001 Date of publication: 19 June 2012 Title: Risk analysis of Possums and Opossums in The Netherlands Authors: drs. F. van Vliet drs. ing. R. Lensink Pictures front cover Open source; see species depscription Number of pages incl. appendices: 110 Project nr: 11-708 Project manager: drs. ing. R. Lensink Name & address client: Netherlands Food and Consumer Product Safety Authority Invasive Alien Species Team Postbus 9102, 6700 HC Wageningen Reference client: Letter, dd 12 December 2011 TRC/nVWA/2011/13848 Signed for publication: drs. T.J. Boudewijn teammanager bird ecology Initials: Bureau Waardenburg bv is not liable for any resulting damage, nor for damage which results from applying results of work or other data obtained from Bureau Waardenburg bv; client indemnifies Bureau Waardenburg bv against third- party liability in relation to these applications. © Bureau Waardenburg bv / Ministry of Agriculture, Nature and Food Quality, Invasive Alien Species Team This report is produced at the request of the client mentioned above and is his property. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, transmitted and/or publicized in any form or by any means, electronic, electrical, chemical, mechanical, optical, photocopying, recording or otherwise, without prior written permission of the client mentioned above and Bureau Waardenburg bv, nor may it without such a permission be used for any other purpose than for which it has been produced. The Quality Management System of Bureau Waardenburg bv has been certified by CERTIKED according to ISO 9001:2008. 2 Preface Some possum and opossum species are known to be kept captive and traded in The Netherlands. The Invasive Alien Species Team of The Netherlands Food and Consumer Product Safety Authority has commissioned Bureau Waardenburg to assess the occurrence of opossums and possums in The Netherlands and the probability of these exotic species establishing free ranging populations in The Netherlands and the subsequent impacts. This risk analysis was carried out by: drs. F. van Vliet report; drs. ing. R. Lensink project management and report; Dr. T.M. van der Have and ir. J.W. Lammers, Invasive Alien Species Team (NVWA), supervised this study. The authors thank all who contributed. Most of the written information was found as open source on the internet; we have noted all our sources; it is our mistake if some or someone has been forgotten. 3 4 Table of contents Preface...............................................................................................................................................3 Summary ...........................................................................................................................................7 Nederlandse samenvatting............................................................................................................11 1 Introduction...............................................................................................................................15 1.1 Aim of this project ........................................................................................................15 1.2 Methods........................................................................................................................16 1.3 Species of interest .......................................................................................................17 2 Common Brushtail Possum....................................................................................................19 2.1 Biology and ecology ....................................................................................................19 2.2 Risk Analysis................................................................................................................27 2.3 Bomford and ISEIA method for Risk assessment ...................................................34 3 Striped Possum .......................................................................................................................37 3.1 Biology and ecology ....................................................................................................37 3.2 Risk Analysis................................................................................................................41 3.3 Bomford and ISEIA method for Risk assessment ...................................................44 4 Virginia Opossum ....................................................................................................................47 4.1 Biology and ecology ....................................................................................................47 4.2 Risk Analysis................................................................................................................53 4.3 Bomford and ISEIA method for Risk assessment...................................................57 5 White-eared Opossum............................................................................................................61 5.1 Biology and ecology ....................................................................................................61 5.2 Risk Analysis................................................................................................................67 5.3 Bomford and ISEIA method for Risk assessment ...................................................70 6 Gray Four-eyed Opossum......................................................................................................73 6.1 Biology and ecology ....................................................................................................73 6.2 Risk Analysis................................................................................................................78 6.3 Bomford and ISEIA method for Risk assessment ...................................................81 7 Gray Short-tailed Opossum....................................................................................................83 7.1 Biology and ecology ....................................................................................................83 7.2 Risk Analysis................................................................................................................86 7.3 Bomford and ISEIA method for Risk assessment ...................................................89 8 Small Fat-tailed Opossum ......................................................................................................91 5 8.1 Biology and ecology....................................................................................................91 8.2 Risk Analysis................................................................................................................94 8.3 Bomford and ISEIA method for Risk assessment...................................................97 9 Risk management ...................................................................................................................99 10 Conclusions and recommendations................................................................................. 101 11 Literature.............................................................................................................................. 103 6 Summary Framework This risk analysis has been carried out for possums and opossums. For at least seven species it has been proven that they occur in Western Europe (as a pet). Those species are: Possums - Common Brushtail Possum Trichosurus vulpecula - Striped Possum Dactylopsila trivirgata Opossums - Virginia Opossum Didelphis virginiana - White-eared Opossum Didelphis albiventris - Gray Four-eyed Opossum Philander opossum - Gray Short-tailed Opossum Monodelphis domestica - Small Fat-tailed Opossum Thylamys pusilla In this risk analysis the ecology of species is described as well as the probability that they could be successful in settling en spreading, as derived from their ecology and climate match. Furthermore, we give insight into the expected risk (and damage) from ecological and socio-economic viewpoints. Finally, for all species two methods of formal and transparent risk analysis are filled in. Information about occurrence in Western Europe was gathered from people and sources dealing with the trade and the keeping of possums and opossums. Information on the ecology of species was mainly found in the formal scientific literature as this is found as open source on the internet. Probability of settlement and spread The Common Brushtail Possum is an invasive exotic species in New Zealand and has proven to have negative effects on native flora and fauna. The main reason is that ground predators are lacking on these islands. The costs for control of this species are very high. It is unknown how this possum will behave in an environment were ground predators are present, as in Western Europe. There is a good climate match between its native range and Western Europe. Therefore, a settlement here could easily develop into a successful invasion, as long as management (eradication) is not conducted. The opportunistic lifestyle of this species could be an advantage in its possible success. The Virginia Opossum is
Recommended publications
  • Redalyc.Ecology of Lutzomyia Longipalpis and Lutzomyia Migonei
    Revista Brasileira de Parasitologia Veterinária ISSN: 0103-846X [email protected] Colégio Brasileiro de Parasitologia Veterinária Brasil Albuquerque Silva, Rafaella; Kassio Moura Santos, Fabricio; Caranha de Sousa, Lindemberg; Ferreira Rangel, Elizabeth; Leal Bevilaqua, Claudia Maria Ecology of Lutzomyia longipalpis and Lutzomyia migonei in an endemic area for visceral leishmaniasis Revista Brasileira de Parasitologia Veterinária, vol. 23, núm. 3, julio-septiembre, 2014, pp. 320-327 Colégio Brasileiro de Parasitologia Veterinária Jaboticabal, Brasil Disponible en: http://www.redalyc.org/articulo.oa?id=397841493005 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Original Article Braz. J. Vet. Parasitol., Jaboticabal, v. 23, n. 3, p. 320-327, jul.-set. 2014 ISSN 0103-846X (Print) / ISSN 1984-2961 (Electronic) Doi: http://dx.doi.org/10.1590/S1984-29612014068 Ecology of Lutzomyia longipalpis and Lutzomyia migonei in an endemic area for visceral leishmaniasis Ecologia de Lutzomyia longipalpis e Lutzomyia migonei em uma área endêmica para Leishmaniose Visceral Rafaella Albuquerque Silva1,2; Fabricio Kassio Moura Santos1; Lindemberg Caranha de Sousa1; Elizabeth Ferreira Rangel3; Claudia Maria Leal Bevilaqua2* 1Núcleo de Controle de Vetores, Secretaria da Saúde do Estado do Ceará, Fortaleza, CE, Brasil 2Laboratório de Doenças Parasitárias, Programa de Pós-graduação em Ciências Veterinárias, Universidade Estadual do Ceará – UECE, Fortaleza, CE, Brasil 3Laboratório de Transmissores das Leishmanioses, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil Received March 26, 2014 Accepted May 22, 2014 Abstract The main vector for visceral leishmaniasis (VL) in Brazil is Lutzomyia longipalpis.
    [Show full text]
  • Of Lutzomyia Longipalpis (Diptera
    bioRxiv preprint doi: https://doi.org/10.1101/261297; this version posted February 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Prediction of the secundary structure at the tRNASer (UCN) of Lutzomyia longipalpis (Diptera: Psychodidae) Richard Hoyos-Lopez _____________________ Grupo de Investigación en Resistencia Bacteriana y Enfermedades Tropicales, Universidad del Sinú, Montería, Colombia. Abstract. Lutzomyia longipalpis is the main vector of Leishmania infantum, the etiological agent of visceral leishmaniasis in America and Colombia. Taxonomically belongs to the subgenus Lutzomyia, which includes other vector species that exhibit high morphological similarity to the female species difficult to identify vectors in leishmaniasis foci and suggesting the search for molecular markers that facilitate this task, further researchs with mitochondrial genes, chromosome banding, reproductive isolation and pheromones evidence the existence of species complex. The aim of this study was to predict the secondary structure of mitochondrial transfer RNA serine (tRNASer) for UCN codon of Lutzomyia longipalpis as molecular marker for identify of this species. Sequences recorded in Genbank of L. longipalpis sequences were aligned with tRNA's from previously described species and then tRNASer secondary structure was inferred by software tRNAscan-SE 1.21. The length of tRNASer was 67 base pairs (bp). Two haplotypes were detected in the five sequences analyzed. The L. longipalpis tRNASer showed 7 intrachain pairing in the acceptor arm, 3 in the DHU arm, 4 in the anticodon arm and 5 in the TψC.
    [Show full text]
  • West Papua 2019
    WEST PAPUA 2019 New Guinea is one of the most exciting places on earth, in terms of Biodiversity. The Indonesian part of the island, West Papua, with an incrediBle number of wildlife hotspots, hosts some of the most Bizarre mammals of the planet, such as Dingiso or Western Long-Beaked Equidna. This trip covered the main Birding localities with two exceptions, Biak and Numfor, But since we recorded an interesting number of mammals, I decided to write-up a short trip report to post in Mammalwatching.com. Though our trip was Bird-focussed, we tried to include as many mammals as possiBle. This report gives you an idea of what can Be seen with a little Bit of effort. OBviously, a mammal-orientated trip here would yield far more Bats, and rodents and more precious jewels, like Tree Kangaroos. West Papua is home to 250 mammals, 123 of which are endemic. Aside of this, few taxons are awaiting to Be descriBed and there is a chance to find undescriBed species for science. The status of many is not well-known, though over the past five years, I’ve made numerous visits this part of Indonesia and gained more knowledge on what is possiBle to see. On the three week visit in June 2019, we recorded 28 mammals, of which 3 are endemic of West Papua and 9 more are endemic of New Guinea. Many of the species are threatened due to high hunting pressure, for food. The Bird report, availaBle Below, includes the mammal list recorded By the group (Although not all my personal sights), and photos of several of these.
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • A Species-Level Phylogenetic Supertree of Marsupials
    J. Zool., Lond. (2004) 264, 11–31 C 2004 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904005539 A species-level phylogenetic supertree of marsupials Marcel Cardillo1,2*, Olaf R. P. Bininda-Emonds3, Elizabeth Boakes1,2 and Andy Purvis1 1 Department of Biological Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, U.K. 2 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, U.K. 3 Lehrstuhl fur¨ Tierzucht, Technical University of Munich, Alte Akademie 12, 85354 Freising-Weihenstephan, Germany (Accepted 26 January 2004) Abstract Comparative studies require information on phylogenetic relationships, but complete species-level phylogenetic trees of large clades are difficult to produce. One solution is to combine algorithmically many small trees into a single, larger supertree. Here we present a virtually complete, species-level phylogeny of the marsupials (Mammalia: Metatheria), built by combining 158 phylogenetic estimates published since 1980, using matrix representation with parsimony. The supertree is well resolved overall (73.7%), although resolution varies across the tree, indicating variation both in the amount of phylogenetic information available for different taxa, and the degree of conflict among phylogenetic estimates. In particular, the supertree shows poor resolution within the American marsupial taxa, reflecting a relative lack of systematic effort compared to the Australasian taxa. There are also important differences in supertrees based on source phylogenies published before 1995 and those published more recently. The supertree can be viewed as a meta-analysis of marsupial phylogenetic studies, and should be useful as a framework for phylogenetically explicit comparative studies of marsupial evolution and ecology.
    [Show full text]
  • (Didelphis Albiventris) and the Thick-Tailed Opossum (Lutreolina Crassicaudata) in Central Argentina
    ©2014 Institute of Parasitology, SAS, Košice DOI 10.2478/s11687-014-0229-4 HELMINTHOLOGIA, 51, 3: 198 – 202, 2014 First report of Trichinella spiralis from the white-eared (Didelphis albiventris) and the thick-tailed opossum (Lutreolina crassicaudata) in central Argentina R. CASTAÑO ZUBIETA1, M. RUIZ1, G. MORICI1, R. LOVERA2, M. S. FERNÁNDEZ3, J. CARACOSTANTOGOLO1, R. CAVIA2* 1Instituto Nacional de Tecnología Agropecuaria (INTA Castelar). Instituto de Patobiología, CICVyA, Area de Parasitología; 2Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, *E-mail: [email protected]; 3Centro Nacional de Diagnóstico e Investigación en Endemo-Epidemias ANLIS, Ministerio de Salud de la Nación and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Summary Trichinellosis is a zoonotic disease caused by nematodes of infection has been documented in both domestic (mainly the genus Trichinella. Humans, who are the final hosts, pigs) and wild animals (Pozio, 2007). T. spiralis, widely acquire the infection by eating raw or undercooked meat of distributed in different continents (Pozio, 2005), is the different animal origin. Trichinella spiralis is an encapsu- species involved in the domestic cycle that includes pigs lated species that infects mammals and is widely distri- and synanthropic hosts (like rats, marsupials and some buted in different continents. In Argentina, this parasite has carnivores). Humans accidentally acquire the infection by been reported in the domestic cycle that includes pigs and eating raw meat of infected pigs. synanthropic hosts (mainly rats and some carnivores). This In Argentina, according to the current legislation, all is the first report of T.
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • Tropical Insect Chemical Ecology - Edi A
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol.VII - Tropical Insect Chemical Ecology - Edi A. Malo TROPICAL INSECT CHEMICAL ECOLOGY Edi A. Malo Departamento de Entomología Tropical, El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, C.P. 30700. México. Keywords: Insects, Semiochemicals, Pheromones, Kairomones, Monitoring, Mass Trapping, Mating Disrupting. Contents 1. Introduction 2. Semiochemicals 2.1. Use of Semiochemicals 3. Pheromones 3.1. Lepidoptera Pheromones 3.2. Coleoptera Pheromones 3.3. Diptera Pheromones 3.4. Pheromones of Insects of Medical Importance 4. Kairomones 4.1. Coleoptera Kairomones 4.2. Diptera Kairomones 5. Synthesis 6. Concluding Remarks Acknowledgments Glossary Bibliography Biographical Sketch Summary In this chapter we describe the current state of tropical insect chemical ecology in Latin America with the aim of stimulating the use of this important tool for future generations of technicians and professionals workers in insect pest management. Sex pheromones of tropical insectsUNESCO that have been identified to– date EOLSS are mainly used for detection and population monitoring. Another strategy termed mating disruption, has been used in the control of the tomato pinworm, Keiferia lycopersicella, and the Guatemalan potato moth, Tecia solanivora. Research into other semiochemicals such as kairomones in tropical insects SAMPLErevealed evidence of their presence CHAPTERS in coleopterans. However, additional studies are necessary in order to confirm these laboratory results. In fruit flies, the isolation of potential attractants (kairomone) from Spondias mombin for Anastrepha obliqua was reported recently. The use of semiochemicals to control insect pests is advantageous in that it is safe for humans and the environment. The extensive use of these kinds of technologies could be very important in reducing the use of pesticides with the consequent reduction in the level of contamination caused by these products around the world.
    [Show full text]
  • AGILE GRACILE OPOSSUM Gracilinanus Agilis (Burmeister, 1854 )
    Smith P - Gracilinanus agilis - FAUNA Paraguay Handbook of the Mammals of Paraguay Number 35 2009 AGILE GRACILE OPOSSUM Gracilinanus agilis (Burmeister, 1854 ) FIGURE 1 - Adult, Brazil (Nilton Caceres undated). TAXONOMY: Class Mammalia; Subclass Theria; Infraclass Metatheria; Magnorder Ameridelphia; Order Didelphimorphia; Family Didelphidae; Subfamily Thylamyinae; Tribe Marmosopsini (Myers et al 2006, Gardner 2007). The genus Gracilinanus was defined by Gardner & Creighton 1989. There are six known species according to the latest revision (Gardner 2007) one of which is present in Paraguay. The generic name Gracilinanus is taken from Latin (gracilis) and Greek (nanos) meaning "slender dwarf", in reference to the slight build of this species. The species name agilis is Latin meaning "agile" referring to the nimble climbing technique of this species. (Braun & Mares 1995). The species is monotypic, but Gardner (2007) considers it to be composite and in need of revision. Furthermore its relationship to the cerrado species Gracilinanus agilis needs to be examined, with some authorities suggesting that the two may be at least in part conspecific - there appear to be no consistent cranial differences (Gardner 2007). Costa et al (2003) found the two species to be morphologically and genetically distinct and the two species have been found in sympatry in at least one locality in Minas Gerais, Brazil (Geise & Astúa 2009) where the authors found that they could be distinguished on external characters alone. Smith P 2009 - AGILE GRACILE OPOSSUM Gracilinanus agilis - Mammals of Paraguay Nº 35 Page 1 Smith P - Gracilinanus agilis - FAUNA Paraguay Handbook of the Mammals of Paraguay Number 35 2009 Patton & Costa (2003) commented that the presence of the similar Gracilinanus microtarsus at Lagoa Santa, Minas Gerais, the type locality for G.agilis , raises the possibility that the type specimen may in fact prove to be what is currently known as G.microtarsus .
    [Show full text]
  • Review Article New Insights on the Inflammatory Role of Lutzomyia
    Hindawi Publishing Corporation Journal of Parasitology Research Volume 2012, Article ID 643029, 11 pages doi:10.1155/2012/643029 Review Article New Insights on the Inflammatory Role of Lutzomyia longipalpis Saliva in Leishmaniasis Deboraci Brito Prates,1, 2 Theo´ Araujo-Santos,´ 2, 3 Claudia´ Brodskyn,2, 3, 4 Manoel Barral-Netto,2, 3, 4 Aldina Barral,2, 3, 4 and Valeria´ Matos Borges2, 3, 4 1 Departamento de Biomorfologia, Instituto de Ciˆencias da Saude,´ Universidade Federal da Bahia, Avenida Reitor Miguel Calmon S/N, 40110-100 Salvador, BA, Brazil 2 Centro de Pesquisa Gonc¸alo Moniz (CPqGM), Fundac¸ao˜ Oswaldo Cruz (FIOCRUZ), Rua Waldemar Falcao˜ 121, 40296-710 Salvador, BA, Brazil 3 Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Avenida Reitor Miguel Calmon S/N, 40110-100 Salvador, BA, Brazil 4 Instituto Nacional de Ciˆencia e Tecnologia de Investigac¸ao˜ em Imunologia (iii-INCT), Avenida Dr.En´eas de Carvalho Aguiar 44, 05403-900, Sao˜ Paulo, SP, Brazil Correspondence should be addressed to Valeria´ Matos Borges, vborges@bahia.fiocruz.br Received 15 August 2011; Revised 24 October 2011; Accepted 27 October 2011 Academic Editor: Marcela F. Lopes Copyright © 2012 Deboraci Brito Prates et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. When an haematophagous sand fly vector insect bites a vertebrate host, it introduces its mouthparts into the skin and lacerates blood vessels, forming a hemorrhagic pool which constitutes an intricate environment of cell interactions.
    [Show full text]
  • Thylamys, Didelphidae) and Their Biogeographic Implications
    Revista Chilena de Historia Natural 68:515-522, 1995 Range expansion of two South American mouse opossums (Thylamys, Didelphidae) and their biogeographic implications Ampliaci6n de la distribuci6n geográfica de dos comadrejas enanas de Sudamerica (Thylamys, Didelphidae) y sus implicancias biogeognificas R. EDUARDO PALMA Departamento de Biologia Celular y Genetica, Facultad de Medicina Universidad de Chile, Casilla 70061, Santiago 7, Chile ABSTRACT The range expansion of two South American mouse opossums (Thy/amys, Didelphidae) is reported. On the basis of morphological characters it is concluded that forms identified as Marmosa karimii from the Cerrado of Brazil (State of Mato Grosso), correspond to Thylamys velutinus, a taxon currently recognized for the Atlantic Rainforests of Brazil. Additionally, thylamyines collected in northern Chile (Province of Tarapaca) and previously reported as Marmosa e/egans, represent Thylamys pallidior, a form previously thought to be restricted to the Andean Prepuna of Argentina and Bolivia. The occurrence of this Andean mouse opossum in areas of northern Chile represents a new didelphimorph marsupial for that country. The range expansions of both thylamyines are based on series of specimens collected in northern Chile and central Brazil deposited in the National Museum of Natural History, Smithsonian Institution USA. The range expansion is discussed in light of the historical biogeographic events that affected the southern part of South America during the Plio-Pleistocene, as well as the floristic relatedness of the semi-desertic biomes of the continent. Key words: Marmosa, Andean altiplano, coastal desert, Cerrado, Atlantic rainforests. RESUMEN Se presenta la ampliacion de la distribucion geográfica de dos comadrejas enanas de Sudamérica (Thylamys.
    [Show full text]
  • Didelphimorphia, Didelphidae) in North- Eastern and Central Argentina
    Gayana 73(2): 180 - 199, 2009 ISSN 0717-652X DIVERSITY AND DISTRIBUTION OF THE MOUSE OPOSSUMS OF THE GENUS THYLAMYS (DIDELPHIMORPHIA, DIDELPHIDAE) IN NORTH- EASTERN AND CENTRAL ARGENTINA DIVERSIDAD Y DISTRIBUCION DE LAS MARMOSAS DEL GENERO THYLAMYS (DIDELPHIMORPHIA, DIDELPHIDAE) EN EL NORESTE Y CENTRO DE ARGENTINA Pablo Teta1**XLOOHUPR'¶(OtD2, David Flores1 1RpGH/D6DQFKD3 1 Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Avenida Angel Gallardo 470 (C1405DJR) Buenos $LUHV$UJHQWLQD 2 'HSDUWDPHQWRGH=RRORJtD8QLYHUVLGDGGH&RQFHSFLyQFDVLOOD&&RQFHSFLyQ&KLOH 3 'HSDUWPHQWRI%LRORJLFDO6FLHQFHV7H[DV7HFK8QLYHUVLW\32%R[/XEERFN7H[DV86$ E-mail: DQWKHFD#\DKRRFRPDr ABSTRACT Phylogenetic analysis of a fragment of the mitochondrial genome and qualitative and quantitative assessments of morphological variation suggest that, in its current conception, Thylamys pusillus 'HVPDUHVW LVDFRPSOH[RIDW OHDVWWKUHHVSHFLHV,QWKHWD[RQRPLFDUUDQJHPHQWSURSRVHGLQWKLVZRUNWKHSRSXODWLRQVLQWKH$UJHQWLQHDQSURYLQFHV of Entre Ríos and Corrientes are here referred to T citellus (Thomas, 1912), while the small Thylamys that lives in the Argentinean Dry Chaco are provisionally referred to Tpulchellus &DEUHUD ,QRXUVFKHPHThylamys pusillus is UHVWULFWHGWRWKH%ROLYLDQDQG3DUDJXD\DQ&KDFRDQGWKHYLFLQLWLHVRIQRUWKHUQ)RUPRVDSURYLQFHLQ$UJHQWLQD:HSURYLGH emended diagnosis for T citellus and Tpulchellus, together with detailed morphological descriptions and discuss their distinctiveness from other species of Thylamys,QDGGLWLRQZHLQFOXGHGQHZGLVWULEXWLRQDOGDWD KEYWORDS$UJHQWLQDPRXVHRSRVVXPVSHFLHVOLPLWVWD[RQRP\
    [Show full text]