Groundwater Resources of Somerset County, Pennsylvania In

Total Page:16

File Type:pdf, Size:1020Kb

Groundwater Resources of Somerset County, Pennsylvania In Open-File Report 2000-02 GROUNDWATER RESOURCES OF SOMERSET COUNTY, PENNSYLVANIA by Thomas A. McElroy Pennsylvania Geological Survey PENNSYLVANIA GEOLOGICAL SURVEY FOURTH SERIES HARRISBURG 2000 Material from this report may be published if credit is given to the Pennsylvania Geological Survey THIS REPORT HAS NOT BEEN REVIEWED FOR CONFORMITY WITH THE PUBLICATION STANDARDS OF THE PENNSYLVANIA GEOLOGICAL SURVEY ADDITIONAL COPIES OF THIS REPORT MAY BE OBTAINED FROM PENNSYLVANIA GEOLOGICAL SURVEY P.O. BOX 8452 HARRISBURG, PA 17105-8453 CONTENTS Abstract . .1 Introduction. .4 Purpose and scope . .5 Methods of investigation . .5 Previous investigations . 6 Location and description of study area . 7 Water use. .. 9 Acknowledgments . 9 Hydrologic budgets . .11 Stonycreek River. 15 Blue Hole Creek. 17 Orographic effects. .. 29 Influence of alluvium/colluvium.. .. .29 Groundwater resources. 33 Geologic setting. .. 33 Factors that influence the yields of wells. .34 Lithology. 34 Topography. 35 Geologic Structure. 38 Groundwater occurrence and flow. .39 Stratigraphy and water-bearing properties of the rocks. .45 Alluvium/colluvium. .46 Monongahela Group .. 46 Casselman Formation. 55 Description. 55 Water-bearing properties . 55 Water quality. 58 Wells. 58 Springs. 65 Evaluation as an aquifer . 66 Glenshaw Formation. 66 Description. 66 Water-bearing properties. 68 Water quality. 70 Wells. 70 Springs. 73 Evaluation as an aquifer . 73 iii Allegheny Group. .74 Description. 74 Water-bearing properties. 76 Water quality. 78 Wells. 78 Springs. 81 Evaluation as an aquifer . 81 Pottsville Group. 82 Description. 82 Water-bearing properties. 83 Water quality. 85 Wells. .. .85 Springs. 87 Evaluation as an aquifer . 88 Mauch Chunk Formation. .88 Description. 88 Water-bearing properties. 90 Water quality. 94 Wells. 94 Springs. 98 Evaluation as an aquifer . 98 Loyalhanna Formation. .98 Burgoon Sandstone. .99 Description. 99 Water-bearing properties . 100 Water quality. 102 Wells. 102 Springs. 106 Evaluation as an aquifer. .106 Rockwell Formation. 106 Catskill Formation. .107 Description. 107 Water-bearing properties. 108 Water quality. ..
Recommended publications
  • Knickzones in Southwest Pennsylvania Streams Indicate Accelerated Pleistocene Landscape Evolution
    Graduate Theses, Dissertations, and Problem Reports 2020 Knickzones in Southwest Pennsylvania Streams Indicate Accelerated Pleistocene Landscape Evolution Mark D. Swift West Virginia University, [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Geomorphology Commons Recommended Citation Swift, Mark D., "Knickzones in Southwest Pennsylvania Streams Indicate Accelerated Pleistocene Landscape Evolution" (2020). Graduate Theses, Dissertations, and Problem Reports. 7542. https://researchrepository.wvu.edu/etd/7542 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Knickzones in Southwest Pennsylvania Streams Indicate Accelerated Pleistocene Landscape Evolution Mark D. Swift Thesis Submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of Master of Arts in Geography Jamison Conley, Ph.D., Co-Chair J. Steven Kite, Ph.D., Co-Chair Nicolas Zegre, Ph.D. Department of Geology and Geography Morgantown, West Virginia 2020 Keywords: landscape evolution, knickzone, southwest Pennsylvania Copyright 2020 Mark D.
    [Show full text]
  • The La Coulee Formation, a New Post-Acadian Continental Clastic Unit Bearing Groundwater Calcretes, Gaspe Peninsula, Quebec
    Document generated on 09/23/2021 3:19 p.m. Atlantic Geology The La Coulee Formation, a new post-Acadian continental clastic unit bearing groundwater calcretes, Gaspe Peninsula, Quebec Pierre Jutras, Gilbert Prichonnet and Peter H. von Bitter Volume 35, Number 2, 1999 Article abstract A I km2 erosional remnant of the La Coulee Formation, a previously URI: https://id.erudit.org/iderudit/ageo35_2art03 unrecognized stratigraphic unit, has been studied in the Perce area of the Gaspd Peninsula. It unconformably overlies folded Cambrian to Devonian See table of contents rocks and is unconformably overlain by the mid-Carboniferous Bonaventure Fonnation. The erosional remnant includes the lowest 60 m of this newly identified formation of unknown thickness. Original sedimentary fades are Publisher(s) limited to 50 m of breccia debris flows passing stratigraphically upward into 10m of conglomeratic debris flows. Groundwater calcrete formation has Atlantic Geoscience Society partially or completely transformed the lowest 30 m of the sequence. The depositional environment is interpreted as being related to a proximal ISSN continental alluvial fan. The nearby presence of a saline body of water is inferred to account for thick and massive groundwater calcrete formation and 0843-5561 (print) water-saturated debris flows in a relatively arid climatic context Most of the 1718-7885 (digital) formation was eroded prior to deposition of the Bonaventure Formation. However, the basal groundwater calcretes were more widely preserved. They Explore this journal underlie the Bonaventure Formation in most of the Perce1 area and in the Saint-Elzear area, close to a hundred kilometres to the southwest. Post-sedimentary faulting has affected both the La Coulee and Bonaventure Cite this article formations.
    [Show full text]
  • Loudoun County African-American Historic Architectural Resources Survey
    Loudoun County African-American Historic Architectural Resources Survey Lincoln "Colored" School, 1938. From the Library of Virginia: School Building Services Photograph Collection. Prepared by: History Matters, LLC Washington, DC September 2004 Sponsored by the Loudoun County Board of Supervisors & The Black History Committee of the Friends of the Thomas Balch Library Leesburg, VA Loudoun County African-American Historic Architectural Resources Survey Prepared by: Kathryn Gettings Smith Edna Johnston Megan Glynn History Matters, LLC Washington, DC September 2004 Sponsored by the Loudoun County Board of Supervisors & The Black History Committee of the Friends of the Thomas Balch Library Leesburg, VA Loudoun County Department of Planning 1 Harrison Street, S.E., 3rd Floor Leesburg, VA 20175 703-777-0246 Table of Contents I. Abstract 4 II. Acknowledgements 5 III. List of Figures 6 IV. Project Description and Research Design 8 V. Historic Context A. Historic Overview 10 B. Discussion of Surveyed Resources 19 VI. Survey Findings 56 VII. Recommendations 58 VIII. Bibliography 62 IX. Appendices A. Indices of Surveyed Resources 72 B. Brief Histories of Surveyed Towns, Villages, Hamlets, 108 & Neighborhoods C. African-American Cemeteries in Loudoun County 126 D. Explanations of Historic Themes 127 E. Possible Sites For Future Survey 130 F. Previously Documented Resources with Significance to 136 Loudoun County’s African-American History 1 Figure 1: Map of Loudoun County, Virginia with principal roads, towns, and waterways. Map courtesy of the Loudoun County Office of Mapping. 2 Figure 2. Historically African-American Communities of Loudoun County, Virginia. Prepared by Loudoun County Office of Mapping, May 15, 2001 (Map #2001-015) from data collected by the Black History Committee of the Friends of Thomas Balch Library, Leesburg, Va.
    [Show full text]
  • Thenorthforkofbenscre
    TTHHEE NNOORRTTHH FFOORRKK OOFF BBEENNSS CCRREEEEKK COLDWATER CONSERVATIION PLAN February 2014 PREPARED BY THE SOMERSET CONSERVATIION DIISTRIICT 1 Acknowledgements This plan was funded and developed by a grant awarded to the Somerset Conservation District by the Cold Water Heritage Partnership, which is a multifaceted joint venture between the Pennsylvania State Council of Trout Unlimited, The Foundation for Pennsylvania Watersheds, The Pennsylvania Department of Conservation and Natural Resources and The Pennsylvania Fish and Boat Commission. Author: Greg Shustrick, Somerset County Watershed Specialist GIS mapping: Amanda Deal Kind regards to the following contributors for their assistance with the plan development: o Mr. Richard Lorson, PFBC SW Region 8 Area Fisheries Manager o Mr. Michael Depew, PFBC Fisheries Biologist o Mr. Scott Alexander, PADEP Biologist o Mr. Len Lichvar, Somerset Conservation District Manager o Mr. Drew Walker, Somerset Conservation District Intern o Ms. Amanda Deal, Environmental Consultant o Ms. Samantha Kutskel, Coldwater Resource Specialist, PATU / CWP o Mr. James Shustrick, Public Volunteer o Mr. Chris Mahla, Public Volunteer o Mr. Travis Rudge, Public Volunteer o Mr. Andy Fresch, Public Volunteer o The Mountain Laurel Chapter of Trout Unlimited o The Greater Johnstown Water Authority o The Bens Creek Canoe Club SOMERSET CONSERVATION DISTRICT, 6024 GLADES PIKE, SOMERSET, PA 15501 www.somersetcd.com , 814.445.4652 X 5 [email protected] *Digital copies of this plan can be downloaded on the District’s website
    [Show full text]
  • Chapter 1: Sequence Stratigraphy of the Glenshaw Formation
    Martino, R. L., 2004, Sequence stratigraphy of the Glenshaw Formation (middle–late Pennsylvanian) in the central Appalachian basin, in J. C. Pashin and R. A. Gastaldo, eds., Sequence stratigraphy, paleoclimate, and tectonics of coal-bearing strata: AAPG Studies 1 in Geology 51, p. 1–28. Sequence Stratigraphy of the Glenshaw Formation (Middle–Late Pennsylvanian) in the Central Appalachian Basin Ronald L. Martino Department of Geology, Marshall University, Huntington, West Virginia, U.S.A. ABSTRACT he Glenshaw Formation consists predominantly of sandstones and mud- rocks with thin limestones and coals, which are thought to have accumu- T lated in alluvial, deltaic, and shallow-marine environments. Analysis of 87 Glenshaw outcrops from southern Ohio, eastern Kentucky, and southern West Vir- ginia has revealed widespread, well-developed paleosols. These paleosols are used, along with marine units and erosional disconformities, to develop a high-resolution sequence-statigraphic framework. The tops of the paleosols constitute boundaries for nine allocycles, which are interpreted as fifth-order depositional sequences. Allocycles in this framework correlate with similar allocycles described from the northern Appalachian basin. A sequence-stratigraphic model is proposed that provides a framework for in- terpreting facies architecture in terms of base-level dynamics linked to relative sea level changes. Lowered base level caused valley incision along drainage lines and sediment bypassing of interfluves, which led to development of well-drained paleo- sols. Rising base level produced valley filling by fluvioestuarine systems (lowstand systems tract/transgressive systems tract), whereas pedogenesis continued on inter- fluves. As drainage systems aggraded, the coastal plain water table rose, and in- terfluvial paleosols were onlapped by paludal and lacustrine deposits.
    [Show full text]
  • Geologic Cross Section C–C' Through the Appalachian Basin from Erie
    Geologic Cross Section C–C’ Through the Appalachian Basin From Erie County, North-Central Ohio, to the Valley and Ridge Province, Bedford County, South-Central Pennsylvania By Robert T. Ryder, Michael H. Trippi, Christopher S. Swezey, Robert D. Crangle, Jr., Rebecca S. Hope, Elisabeth L. Rowan, and Erika E. Lentz Scientific Investigations Map 3172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ryder, R.T., Trippi, M.H., Swezey, C.S. Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, E.E., 2012, Geologic cross section C–C’ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 sheets, 70-p.
    [Show full text]
  • A2 and B2: Upper Devonian Kellwasser Extinction Events in New York and Pennsylvania: Offshore to Onshore Transect Across the F
    A2 AND B2: UPPER DEVONIAN KELLWASSER EXTINCTION EVENTS IN NEW YORK AND PENNSYLVANIA: OFFSHORE TO ONSHORE TRANSECT ACROSS THE FRASNIAN-FAMENNIAN BOUNDARY ON THE EASTERN MARGIN OF THE APPALACHIAN BASIN ANDREW M. BUSH AND J. ANDREW BEARD Geosciences & Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269 GORDON BAIRD Department of Geosciences, SUNY Fredonia, Fredonia, NY 14063 D. JEFFREY OVER Department of Geological Sciences, SUNY Geneseo, Geneseo, NY 14454 with contributions by KATHERINE TUSKES Department of Geological Sciences, Atmospheric, Ocean, and Earth Science, George Mason University, Manassas, VA 20110 SARAH K. BRISSON AND JALEIGH Q. PIER Geosciences & Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269 INTRODUCTION Earth-system perturbations caused a series of mass extinction events during the Devonian Period, including the Taghanic event in the Givetian, the Lower and Upper Kellwasser events in the Frasnian, and the Hangenberg event in the Famennian (House, 2002; Bambach, 2006). These extinctions occurred against the backdrop of orbitally forced sea-level fluctuations, the Acadian Orogeny (Averbuch et al., 2005), the expansion of plants and animals on land (Algeo et al., 1995), and ecological changes in the marine biosphere (Signor and Brett, 1984; Bambach, 1999). The Frasnian-Famennian boundary in particular represents a significant global crisis, considered one of the “big five” mass extinctions (Raup and Sepkoski, 1982) that led to the demise of the widespread and diverse Devonian
    [Show full text]
  • Somerset Geology-A Good Rock Guide
    SOMERSET GEOLOGY-A GOOD ROCK GUIDE Hugh Prudden The great unconformity figured by De la Beche WELCOME TO SOMERSET Welcome to green fields, wild flower meadows, farm cider, Cheddar cheese, picturesque villages, wild moorland, peat moors, a spectacular coastline, quiet country lanes…… To which we can add a wealth of geological features. The gorge and caves at Cheddar are well-known. Further east near Frome there are Silurian volcanics, Carboniferous Limestone outcrops, Variscan thrust tectonics, Permo-Triassic conglomerates, sediment-filled fissures, a classic unconformity, Jurassic clays and limestones, Cretaceous Greensand and Chalk topped with Tertiary remnants including sarsen stones-a veritable geological park! Elsewhere in Mendip are reminders of coal and lead mining both in the field and museums. Today the Mendips are a major source of aggregates. The Mesozoic formations curve in an arc through southwest and southeast Somerset creating vales and escarpments that define the landscape and clearly have influenced the patterns of soils, land use and settlement as at Porlock. The church building stones mark the outcrops. Wilder country can be found in the Quantocks, Brendon Hills and Exmoor which are underlain by rocks of Devonian age and within which lie sunken blocks (half-grabens) containing Permo-Triassic sediments. The coastline contains exposures of Devonian sediments and tectonics west of Minehead adjoining the classic exposures of Mesozoic sediments and structural features which extend eastward to the Parrett estuary. The predominance of wave energy from the west and the large tidal range of the Bristol Channel has resulted in rapid cliff erosion and longshore drift to the east where there is a full suite of accretionary landforms: sandy beaches, storm ridges, salt marsh, and sand dunes popular with summer visitors.
    [Show full text]
  • (Late Devonian) Boundary Within the Foreknobs Formation, Maryland and West Virginia
    The Frasnian-Famennian (Late Devonian) boundary within the Foreknobs Formation, Maryland and West Virginia GEORGE R. McGHEE, JR. Department of Geological Sciences, University of Rochester, Rochester, New York 14627 ABSTRACT The approximate position of the Frasnian-Famennian (Late De- vonian) boundary is determined within the Foreknobs Formation along the Allegheny Front in Maryland and West Virginia by utiliz- ing the time ranges of the articulate brachiopods Athryis angelica Hall, Cyrtospirifer sulcifer (Hall), and members of the Atrypidae. INTRODUCTION The age of strata previously called the "Chemung Formation" along the Allegheny Front in Maryland and West Virginia (Fig. 1) has been of interest to Devonian wokers for some time. Recent at- tempts to resolve this problem include the works of Dennison (1970, 1971) and Curry (1975). New paleontological contribu- tions to the resolution of time relations within the Greenland Gap Group ("Chemung Formation") are the object of this paper, which is an outgrowth of a much larger ecological analysis of Late Devo- nian benthic marine fauna as preserved in the central Appalachians (McGhee, 1975, 1976). STRATIGRAPHIC SETTING The following is a condensation and summary of the evolution of Upper Devonian stratigraphic nomenclatural usage in the study Figure 1. Location map of study area, showing positions of the mea- area; for a more complete and thorough discussion, the reader is sured sections used in this study (after Dennison, 1970). referred to Dennison (1970) and Kirchgessner (1973). The Chemung Formation was originally designated by James lower Cohocton Stage." Elsewhere, concerning the upper limit of Hall (1839) from Chemung Narrows in south-central New York.
    [Show full text]
  • Structural Geology of the Transylvania Fault Zone in Bedford County, Pennsylvania
    University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2009 STRUCTURAL GEOLOGY OF THE TRANSYLVANIA FAULT ZONE IN BEDFORD COUNTY, PENNSYLVANIA Elizabeth Lauren Dodson University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Dodson, Elizabeth Lauren, "STRUCTURAL GEOLOGY OF THE TRANSYLVANIA FAULT ZONE IN BEDFORD COUNTY, PENNSYLVANIA" (2009). University of Kentucky Master's Theses. 621. https://uknowledge.uky.edu/gradschool_theses/621 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS STRUCTURAL GEOLOGY OF THE TRANSYLVANIA FAULT ZONE IN BEDFORD COUNTY, PENNSYLVANIA Transverse zones cross strike of thrust-belt structures as large-scale alignments of cross-strike structures. The Transylvania fault zone is a set of discontinuous right-lateral transverse faults striking at about 270º across Appalachian thrust-belt structures along 40º N latitude in Pennsylvania. Near Everett, Pennsylvania, the Breezewood fault terminates with the Ashcom thrust fault. The Everett Gap fault terminates westward with the Hartley thrust fault. Farther west, the Bedford fault extends westward to terminate against the Wills Mountain thrust fault. The rocks, deformed during the Alleghanian orogeny, are semi-independently deformed on opposite sides of the transverse fault, indicating fault movement during folding and thrusting. Palinspastic restorations of cross sections on either side of the fault zone are used to compare transverse fault displacement.
    [Show full text]
  • Where Is (And Was) Pennsylvania?”
    Essay: “Where Is (and Was) Pennsylvania?” W.E. Hamilton D.Y. Sillman Penn State University This work is licensed under a Creative Commons Attribution‐Noncommercial‐No Derivative Works 3.0 license. It may be distributed and shared, with attribution, but not altered or used commercially in any way. “Where Is (and Was) Pennsylvania?” Pennsylvania is a pretty obvious place to us. It’s a rectangular, politically defined piece of the eastern United States with a wiggly eastern border that follows the Delaware River and three, very straight other borders on the north, west, and south that were laboriously marked off after a great deal of social and legal travail and even some violence. It’s a hilly to mountainous, river‐rich place with forests and fields and cities. Its statistics are simple: it is about three hundred miles from east to west and a little less than one hundred and seventy miles from south to north. It comprises 46,058 square miles (although the number “45,308” shows up in some references). Its latitude range is thirty‐nine degrees forty‐three minutes N to forty‐two degrees N, and its longitude range is seventy‐four degrees and forty‐three minutes W to eighty degrees thirty‐one minutes W (Netstate 2008). This Pennsylvania, though, hasn’t always been all of that. The great rectangle of Pennsylvania has been, through the geological history of the Earth, in the southern hemisphere, on the equator, and in a great many places in between. It has been oriented with its long, three hundred mile axis east to west and also with this long axis running south to north.
    [Show full text]
  • Assessment of Hyporheic Exchange at In-Stream Restoration Structures on Savage River, Garrett County, Maryland
    Graduate Theses, Dissertations, and Problem Reports 2013 Assessment of Hyporheic Exchange at In-stream Restoration Structures on Savage River, Garrett County, Maryland Anna L. Berlinghieri West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Berlinghieri, Anna L., "Assessment of Hyporheic Exchange at In-stream Restoration Structures on Savage River, Garrett County, Maryland" (2013). Graduate Theses, Dissertations, and Problem Reports. 206. https://researchrepository.wvu.edu/etd/206 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Assessment of Hyporheic Exchange at In-stream Restoration Structures on Savage River, Garrett County, Maryland Anna L. Berlinghieri Thesis submitted to the Eberly College at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Geology J. Steven Kite, Ph.D., Chair Joe Donovan, Ph.D. Danny Welsch, Ph.D. Nicolas Zegre, Ph.D. Department of Geology and Geography Morgantown, West Virginia 2013 Keywords: Hyporheic exchange, Stream restoration Copyright 2013 Anna L.
    [Show full text]