Application Note Ph in Brine Treatment & Dechlorination

Total Page:16

File Type:pdf, Size:1020Kb

Application Note Ph in Brine Treatment & Dechlorination Application Note pH in Brine Treatment & Dechlorination Chemical Industry: Chlor-Alkali The chlor-alkali process involves the electrolysis of NaCl fouled thus reducing their lifespan and driving up electrical brine. The reaction is shown below: costs. Chemical addition at the clarifi er is used to precip- itate out these impurities. The need for pH measurement 2NaCl + 2H2O ► Cl2 + H2 + 2NaOH here will be dictated by the quality of the NaCl available. The resulting chlorine gas, hydrogen, and caustic from this After the initial treatment any further precipitated impurities process form the building blocks for many well known end as well as excess brine crystals are removed through a products. series of fi lters. The primary fi lter is typically a sand fi lter. After fi ltration the brine receives fi nal purifi cation by ion • Plastics (Nylons, PVC, Polycarbonates) exchange. The pH going into the ion exchange is typically • Pesticides measured to avoid damaging the resins. • Paint additives • Disinfectants (Sodium Hypochlorite) Depending on the design of the chlor-alkali facility it is • Surfactants (Soaps and shampoos) common to perform a fi nal acidifi cation of the brine before entering the electrolytic cell. Hydrochloric acid is used for Since the chlor-alkali plant provides feedstock to the this purpose and the reading is maintained between 4 to 6 fi nished chemical plant it will often be on-site or close-by. pH. Lowering the pH helps to remove any excess Cl- ions Accurate, reliable pH measurement is critical to ensuring which could damage the cell. effi cient operation of the chlor-alkali facility. This paper will explore this application and make recommendations on Dechlorination proper pH sensor selection. After electrolysis has occurred the spent brine still has value to the facility. It is put into a recirculation loop to go Brine Treatment back through the brine treatment process. Hydrochloric The creation of purifi ed brine to feed into the electrolytic Acid is again used to remove any free chlorine from the cell is a multi-step process. NaCl and water are mixed to brine. Control is typically at 2 to 4 pH prior to entering the create a saturated brine solution. The NaCl will contain dechlorination vacuum tower. A fi nal addition of NaOH 2+ 2+ 2- 2+ 2+ trace amounts of Mg , Ca , SO4 , Sr , and Ba . If these may be required downstream from dechlorination thus contaminants were to make it to the electrolytic cell then necessitating a fi nal pH measurement before return to the the membrane and related anode / cathode could be brine saturation tank. Chlor-Alkali Brine Generation Circuit HCl Acid Addition Cl2 H2 4pH 60°C (Cathode) (Anode) Clarifier Membrane (Chemical Addition) Brine Electrolytic Cell Saturation 9.5 to 11pH 60°C Ion Primary Secondary Exchange Filtration Filtration - + SO4 Ca Mg+ Dechlorination Brine NaOH Heater Depleted Brine Recirculation NaOH 2 to 4 pH Addition 80°C HCl Acid Addition Figure 1 Application Note pH in Brine Treatment & Dechlorination Measurement Challenges Most measurements found in brine purifi cation stages are pH measurement of the brine is diffi cult for multiple rea- accomplished using 3/4” or 1” sample line off the main sons. During the purifi cation phases, impurities can plug process. The Barben 546 sensor with 3/4” NPT threads the porous reference junction of the pH sensor. Precipitat- work well for these installations. If a 1” sample line is used ed heavy metals such a barium and strontium attack the the Barben 551 Quick Change sensor is also an option. Ag/AgCl reference element within the sensor thus causing These sensors are illustrated below. high offsets in the reading. The presence of chlorine, a strong oxidizing agent can also damage the reference. 546 & 551 Sample Line Sensors 3/4" NPT 3/4" PIPE TEE Throughout the process the elevated temperature and high P/N: B4951-0057 ionic strength of the brine can etch the glass electrode. All 546 SENSOR these factors combine to increase calibration intervals and KYNAR BODY shorten the pH sensor lifespan. SPECIFY INSERTION 1" WITH PLASTIC TEE SPECIFY FLUSH JUNCTION Barben Analyzer Technology’s Performance Series pH NUTLOCK FITTING P/N: B4953-0002 (HAND TIGHT) P/N: B4953-0015(HEX NUT) sensors are specifi cally designed to deal with the harsh 1” PIPE TEE ® 1" MNPT THREAD P/N: B4951-0046 chlor-alkali process. The patented Axial Ion Path solid 3.5 INCH INSERTION state reference cell acts as a fi lter to prevent precipitat- LENGTH 551 SENSOR ed brine impurities from clogging the porous reference. KYNAR BODY Calibration / cleaning intervals can be extended as fouling of the Barben probe is much more diffi cult than traditional FITTING NUT Figure 3 multi-junction pH designs. The same Axial Ion Path® refer- The dechlorination stages after the electrolytic cell may ence design also effectively blocks strong chemicals and use similar sample line measurements. In some heavy metals from penetrating into the sensor. This en- chlor-alkali facilities, retractable “hot tap” sensors are sures that the Ag/AgCl reference element is not poisoned selected. These sensors are mounted directly into the and the sensor output remains stable. process. This type of installation provides quick response Figure 2 when compared with sample line pH measurements. The Barben 547 hot tap cartridge style sensor with titanium Multiple Axial Ion Paths sheath and Kynar isolation valve provide the corrosion re- Plug free communication Seal individual fi ltering chambers sistance needed to survive in these applications. Barben can provide the sensor and all related hardware to make Annual Filtering Junction this installation successful. Maintains measurement signal Wood slows process ingress Highly resistant to strong chemicals 547 Hot Tap Retractable Sensor 1-1/4” OR 1-1/2“ FULL PORT KYNAR BALL VALVE Tefl on Junction Interface Initial protection against process PIPE NIPPLE KYNAR COMPRESSION FITTING + Large surface area + H H+ H H+ 547 SENSOR H+ H+ TITANIUM SHEATH H+ H+ Figure 4 ION PATH® pH Sensor Selection For all chlor-alkali applications “R” or “CR” high tempera- ture glass electrodes should be specifi ed. Both electrodes are well suited for both low & high pH applications found in the brine loop. The CR glass provides a secondary Barben Analytical reserves the right to make technical changes or modify the contents of this coating resistant layer thus is well suited for measurement document without prior notice. We reserve all rights in this document and in the subject matter at the clarifi er as well as caustic addition downstream and illustrations contained within. Hastelloy® is a registered trademark of Haynes Intl Inc. from the dechlorination tower. Kynar (PVDF) should be Kalrez® and Viton are registered trademarks of DuPont Dow Elastomers L.L.C. specifi ed as the sensor body material due to it’s chemical Kynar® is a registered trademark of Elf Atochem North America Inc. ® compatibility and integrity at elevated temperatures. Tefl on is a registered trademark of E.I. DuPont de Nemours Company Inc. © 2013, by AMETEK, Inc. All rights reserved • Chloralkali_AN_RevA• July 2013 USA • BELGIUM • CHINA • SINGAPORE Toll Free +1(800)993-9309 • Phone +1(775)883-2500 • Fax +1(775)297-4740 [email protected] • www.BarbenAnalytical.com ISO 9001:2008 Cert. No. 43271.
Recommended publications
  • Ion Exchange and Disposal Issues Associated with the Brine Waste Stream
    FWRJ Ion Exchange and Disposal Issues Associated With the Brine Waste Stream Julie Karleskint, Daniel Schmidt, Robert Anderson, Jayson Page, and A.J. Berndt he City of Arcadia recently completed from the local water supply authority, it was Julie Karleskint, P.E., is a senior construction of a new 1.5-mil-gal-per- determined that ion exchange would be the associate with Hazen and Sawyer in Tday (mgd) water treatment plant most cost-effective option for construction. A Sarasota. Daniel Schmidt, P.E., is a (WTP) using ion exchange technology to re- reduction in capacity was also provided since senior associate with Hazen and Sawyer place its 3-mgd lime softening WTP. The lime the City’s water supply source, groundwater in Tampa. Robert Anderson, P.E., is a plant had reached the end of its serviceable life from the intermediate aquifer, was limited senior associate with Hazen and Sawyer and the treatment of groundwater for the re- based on current pumping limitations and in Orlando. Jayson Page, P.E., is a moval of radionuclides, hardness, sulfides, or- permitted capacity. senior associate with Hazen and Sawyer ganic carbon, and fluoride was desired in The groundwater is supplied from six order to provide safe drinking water to the wells, approximately 350 ft deep and located in Coral Gables. A.J. Berndt is the utility community. After evaluating several treatment within a 1-mi radius of the plant. A summary director for the City of Arcadia. technologies, including lime treatment, of the water quality from the wellfield is shown nanofiltration, ion exchange, and purchases in Table 1.
    [Show full text]
  • Troubleshooting Activated Sludge Processes Introduction
    Troubleshooting Activated Sludge Processes Introduction Excess Foam High Effluent Suspended Solids High Effluent Soluble BOD or Ammonia Low effluent pH Introduction Review of the literature shows that the activated sludge process has experienced operational problems since its inception. Although they did not experience settling problems with their activated sludge, Ardern and Lockett (Ardern and Lockett, 1914a) did note increased turbidity and reduced nitrification with reduced temperatures. By the early 1920s continuous-flow systems were having to deal with the scourge of activated sludge, bulking (Ardem and Lockett, 1914b, Martin 1927) and effluent suspended solids problems. Martin (1927) also describes effluent quality problems due to toxic and/or high-organic- strength industrial wastes. Oxygen demanding materials would bleedthrough the process. More recently, Jenkins, Richard and Daigger (1993) discussed severe foaming problems in activated sludge systems. Experience shows that controlling the activated sludge process is still difficult for many plants in the United States. However, improved process control can be obtained by systematically looking at the problems and their potential causes. Once the cause is defined, control actions can be initiated to eliminate the problem. Problems associated with the activated sludge process can usually be related to four conditions (Schuyler, 1995). Any of these can occur by themselves or with any of the other conditions. The first is foam. So much foam can accumulate that it becomes a safety problem by spilling out onto walkways. It becomes a regulatory problem as it spills from clarifier surfaces into the effluent. The second, high effluent suspended solids, can be caused by many things. It is the most common problem found in activated sludge systems.
    [Show full text]
  • Chemical Industry Wastewater Treatment
    CHEMICAL INDUSTRY WASTEWATER TREATMENT Fayza A. Nasr\ Hala S. Doma\ Hisham S Abdel-Halim", Saber A. El-Shafai* * Water Pollution Research department, National Research Centre, Cairo, Egypt "Faculty of Engineering, Cairo University, Cairo, Egypt Abstract Treatment of chemical industrial wastewater from building and construction chemicals factory and plastic shoes manufacturing factory was investigated. The two factories discharge their wastewater into the public sewerage network. The results showed the wastewater discharged from the building and construction chemicals factory was highly contaminated with organic compounds. The average values of COD and BOD were 2912 and 150 mg02/l. Phenol concentration up to 0.3 mg/l was detected. Chemical treatment using lime aided with ferric chloride proved to be effective and produced an effluent characteristics in compliance with Egyptian permissible limits. With respect to the other factory, industrial wastewater was mixed with domestic wastewater in order to lower the organic load. The COD, BOD values after mixing reached 5239 and 2615 mg02/l. The average concentration of phenol was 0.5 mg/l. Biological treatment using activated sludge or rotating biological contactor (RBC) proved to be an effective treatment system in terms of producing an effluent characteristic within the permissible limits set by the law. Therefore, the characteristics of chemical industrial wastewater determine which treatment system to utilize. Based on laboratory results TESCE, Vol. 30, No.2 <@> December 2004 engineering design of each treatment system was developed and cost estimate prepared. Key words: chemical industry, wastewater, treatment, chemical, biological Introduction The chemical industry is of importance in terms of its impact on the environment.
    [Show full text]
  • Industrial Wastewater Treatment Technologies Fitxategia
    INDUSTRIAL WASTEWATER TREATMENT TECHNOLOGIES Image by Frauke Feind from Pixabay licensed under CC0 Estibaliz Saez de Camara Oleaga & Eduardo de la Torre Pascual Faculty of Engineering Bilbao (UPV/EHU) Department of Chemical and Environmental Engineering Industrial Wastewaters (IWW) means the water or liquid that carries waste from industrial or processes, if it is distinct from domestic wastewater. Desalination plant “Rambla Morales desalination plant (Almería - Spain)” by David Martínez Vicente from Flickr licensed under CC BY 2.0 IWW may result from any process or activity of industry which uses water as a reactant or for transportation of heat or materials. 2 Characteristics of wastewater from industrial sources vary with the type and the size of the facility and the on-site treatment methods, if any. Because of this variation, it is often difficult to define typical operating conditions for industrial activities. Options available for the treatment of IWW are summarized briefly in next figure. To introduce in a logical order in the description of treatment techniques, the relationship between pollutants and respective typical treatment technology is taken as reference. 1. Removal of suspended solids and insoluble liquids 2. Removal of inorganic, non-biodegradable or poorly degradable soluble content 3. Removal of biodegradable soluble content 3 Range of wastewater treatments in relation to type of contaminants. Source: BREF http://eippcb.jrc.ec.europa.eu/reference/ 4 3.1. CLASSIFICATION OF INDUSTRIAL EFFLUENTS CLASSIFICATION OF EFFLUENTS
    [Show full text]
  • Reverse Osmosis Treatment, Rejection of Carbon Dioxide, And
    Evaluating the Impact of Reverse Osmosis Treatment on Finished Water Carbon Dioxide Concentration and pH WATERCON2012 March 21, 2012 Presented By: Jerry Phipps, P.E. Outline • Purpose • Background • Reverse Osmosis (RO) Fundamentals • Post-Treatment Processes • Pertinent Aquatic Chemistry • Case Studies • Conclusions and Recommendations • Questions Purpose • Review RO and carbonate chemistry fundamentals • Review data from full scale projects to determine change in carbon dioxide and pH from feed to permeate stream Background • The Reverse Osmosis (RO) process uses a semipermeable membrane to separate an influent stream into two streams, a purified permeate stream and a concentrated reject stream • Many references indicate that dissolved gases such as carbon dioxide (CO2) may pass through the membrane with no rejection • The combination of low alkalinity and high carbon dioxide results in an aggressive permeate stream with a lower pH than the influent stream Reverse Osmosis Membranes The most common RO membrane material today is aromatic polyamide, typically in the form of thin-film composites. They consist of a thin film of membrane, bonded to layers of other porous materials that are tightly wound to support and strengthen the membrane. Flow Recovery • Percent recovery is a key design parameter • Defined as permeate flow / influent flow • Recovery is limited by solubility products, Ksp • Typical value for groundwater is ~75%-85%, but varies with application • Example: Influent stream = 100 gpm, 75% recovery. Permeate stream = 75 gpm,
    [Show full text]
  • Leachate Generated by an Oil - and - Gas
    ISSN: 0078-1576 ~ ~ o ~ ~ o ::r: f­ a:: o z z Leachate Generated by an Oil - and - Gas UJ ~ Brine Pond Site in North Dakota (/) 0..­ zl"­ 0.0o· by LLJz ~~ Edwa rd C. Mu rphy a:: "1: Alan E. Kehew !Xl Cll (/) Gerald H. Groenewold (/)111 William A. Beal ~:J <':>0 I CIl QC: z~ «CIl I 0 -Jill O::e z>­ «~ >-; !Xl(/) Q­ UJ~ ~"­ «~ a::­w2 Zt:) LLJ <.:>~ UJ~ ~/11 «0 ::r: U L.... f«L. LLJO -Jz III L. ell ..c MISCELLANEOUS SERIES 71 +'"o NORTH DAKOTAGEOLOGICALSURVEY 1J Sidney B. Anderson, c Acting State Geologist /11 1988 Reprinted from the January-February 1988, Volume 26, Number 1 issue of Ground Water Leachate Generated by an Oil-and-Gas Brine Pond Site in North Dakota by Edward C. Murphya, Alan E. Kehewb, Gerald H. Groenewoldc , and William A. Beal d ABSTRACT INTRODUCTION Two unlined ponds were used for holding and Brines typically are produced along with evaporation of brines produced with oil and gas at a well crude oil at oil-well sites. These brines are recog­ site in north-centra! North Dakota. The brine-evaporation nized as the major source of potential environ­ ponds were in use from 1959 up to the late 1970s when mental contamination associated with oil produc­ they were backfilled and leveled. Continued salt-water migration at this site since closure has decreased crop yields tion (Knox and Canter, 1980). The issue of how to in surrounding fields and has killed trees in a shelterbel t properly dispose of oil-field brines has been con­ within an area of approximately 10 acres.
    [Show full text]
  • The Ph of Drinking Water
    The pH of drinking water The pH is a measure of the acidity or alkalinity. The water quality regulations specify that the pH of tap water should be between 6.5 and 9.5. What is pH and why do we test our Why has the pH of my water changed? water for it? If the problem only affects your property, the The pH is a numerical value used to indicate source is most likely your internal pipework and the degree to which water is acidic. pH plumbing. Possible sources include plumbed-in measurements range between 0 (strong acid) water filters or softeners, incorrectly installed and 14 (strong alkali), with 7 being neutral. The washing machines or dishwashers, incorrect water quality regulations specify that the pH fittings and taps supplied from storage tanks. of water at your tap should be between 6.5 If you have had plumbing work done recently and 9.5. Water leaving our treatment works then excessive use of solder or flux could be typically has a pH between 7 and 8, but this the cause. In this case the problem may lessen can change as it passes through the network of as water is used. Alternatively you may wish to reservoirs and water mains. consider changing the pipework or joints. We consume many different foods and beverages with a large range of pH. Your water quality For example, citrus fruits like oranges, lemons If you’re interested in finding out more about and limes are quite acidic (pH = 2.0 - 4.0). the quality of your drinking water, please visit Carbonated drinks such as cola have a pH unitedutilities.com/waterquality and enter your 4.0 to 4.5.
    [Show full text]
  • Appendix A: Distillation and Reverse Osmosis Brine NOD, Phase I
    This document is part of Appendix A and includes Distillation and Reverse Osmosis Brine: Nature of Discharge for the “Phase I Final Rule and Technical Development Document of Uniform National Discharge Standards (UNDS),” published in April 1999. The reference number is EPA-842-R-99-001. Phase I Final Rule and Technical Development Document of Uniform National Discharge Standards (UNDS) Distillation and Reverse Osmosis Brine: Nature of Discharge April 1999 NATURE OF DISCHARGE REPORT Distillation and Reverse Osmosis Brine 1.0 INTRODUCTION The National Defense Authorization Act of 1996 amended Section 312 of the Federal Water Pollution Control Act (also known as the Clean Water Act (CWA)) to require that the Secretary of Defense and the Administrator of the Environmental Protection Agency (EPA) develop uniform national discharge standards (UNDS) for vessels of the Armed Forces for “...discharges, other than sewage, incidental to normal operation of a vessel of the Armed Forces, ...” [Section 312(n)(1)]. UNDS is being developed in three phases. The first phase (which this report supports), will determine which discharges will be required to be controlled by marine pollution control devices (MPCDs)—either equipment or management practices. The second phase will develop MPCD performance standards. The final phase will determine the design, construction, installation, and use of MPCDs. A nature of discharge (NOD) report has been prepared for each of the discharges that has been identified as a candidate for regulation under UNDS. The NOD reports were developed based on information obtained from the technical community within the Navy and other branches of the Armed Forces with vessels potentially subject to UNDS, from information available in existing technical reports and documentation, and, when required, from data obtained from discharge samples that were collected under the UNDS program.
    [Show full text]
  • Understanding Your Watershed- What Is
    Understanding Your Watershed pH NR/WQ/2005-19 Nancy Mesner and John Geiger June 2005 (pr) What is pH? pH is a measurement of how acidic or how basic (alkaline) a solution is. When substances dissolve in water they produce charged molecules called ions. Acidic water contains extra hydrogen ions (H+) and basic water contains extra hydroxyl (OH-) ions. pH is measured on a scale of 0 to 14. Water that is neutral has a pH of 7. Acidic water has pH values less than 7, with 0 being the most acidic. Likewise, basic water has values greater than 7, with 14 being the most basic. A change of 1 unit on a pH scale represents a 10 fold change in the pH, so that water with pH of 6 is 10 times more acidic than water with a pH of 7, and water with a pH of 5 is 100 times more acidic than water with a pH of 7. You might expect rainwater to be neutral, but it is actually somewhat acidic. As rain drops fall through the atmosphere, they dissolve gaseous carbon dioxide, creating a weak acid. Pure rainfall has a pH of about 5.6. The figure below shows the pH of some common solutions. The pH of lakes and rivers in Utah typically falls between 6.5 and 9.0. Why is the pH of water important? Effects on animals and plants Most aquatic animals and plants have adapted to life in water with a specific pH and may suffer from even a slight change.
    [Show full text]
  • Ph in Drinking-Water
    WHO/SDE/WSH/07.01/1 pH in Drinking-water Revised background document for development of WHO Guidelines for Drinking-water Quality © World Health Organization 2007 This document may be freely reviewed, abstracted, reproduced and translated in part or in whole but not for sale or for use in conjunction with commercial purposes. Inquiries should be addressed to: [email protected]. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The World Health Organization does not warrant that the information contained in this publication is complete and correct and shall not be liable for any damages incurred as a result of its use. Preface One of the primary goals of WHO and its member states is that “all people, whatever their stage of development and their social and economic conditions, have the right to have access to an adequate supply of safe drinking water.” A major WHO function to achieve such goals is the responsibility “to propose regulations, and to make recommendations with respect to international health matters ....” The first WHO document dealing specifically with public drinking-water quality was published in 1958 as International Standards for Drinking-water.
    [Show full text]
  • Aeration, Ph Adjustment, and UF/MF Filtration for TSS Reduction of Produced Waters from Hayneville
    Aeration, pH Adjustment, and UF/MF Filtration for TSS Reduction of Produced Waters from Hayneville Research & Engineering - Environmental Solutions, Applied Research Tor H. Palmgren - Exploratory & Special Projects Manager James R. Fajt - Senior Scientist Alexander G. Danilov - ProACT Engineer Texas A&M University David Burnett, Director of Technology, GPRI 1 11/30/2013 Haynesville Shale Shale straddles Arkansas, Louisiana and Texas Copyright © 2013 PennWell Corporation. All rights reserved. 2 11/30/2013 Haynesville - General Characteristics • Depth: 10,500 to 13,600 ft. • Lateral reach about the same • Fracturing Pressure > 10,000 psi • Bottom Hole Temperature: 100 to 350 F • Fracturing fluids used: slick water, linear gel and cross linked • Water sources: rivers, bayous, ponds, lakes, wells, flow back and produced water Source: Chesapeake Energy 3 11/30/2013 Haynesville - Produced Waters Characteristics • Recycled water utilized per well fractured : 0-35% • Common water contaminants: TSS, Calcium Magnesium, Iron, Bacteria • Key treatment targets: TSS, Scale Forming Ions, Bacteria • This discussion will focus on TSS removal and fluid clarification via membrane filtration Source: Chesapeake Energy 4 11/30/2013 Four Common Membrane Processes Process Name Approximate Useful Particle Permeate Size Removed Microfiltration 0.5 - 50 µm Clarified water Ultrafiltration 0.2 µm Clarified water Nanofiltration 0.5 - 0.7 nm Softened water Reverse Osmosis 0.1 -1 nm Low salinity water 5 11/30/2013 Filters Used in this Study Filter Manufacturer Micron
    [Show full text]
  • Ph Neutralization English , PDF, 0.51MB
    FS-PRE-004 TECHNOLOGY FACT SHEETS FOR EFFLUENT TREATMENT PLANTS ON TEXTILE INDUSTRY pH NEUTRALIZATION SERIES: PRE-TREATMENTS TITLE pH NEUTRALIZATION (FS-PRE-004) Last update December 2014 Last review pH NEUTRALIZATION FS-PRE-004 pH NEUTRALIZATION (FS-PRE-004) Date December 2014 Authors Pablo Ures Rodríguez Alfredo Jácome Burgos Joaquín Suárez López Revised by Last update Date Done by: Update main topics INDEX 1.INTRODUCTION 2.FUNDAMENTALS OF CHEMICAL NEUTRALIZATION 2.1. pH 2.2. Acidity and alkalinity 2.3. Buffer capacity 2.4. Commonly used chemicals 3.DESIGN AND OPERATION 3.1. Neutralizing system selection criteria 3.2. System design: batch or continuous 3.3. Design parameters 4.CONTROL OF PROCESS 5.SPECIFICATIONS FOR TEXTILE INDUSTRY EFFLUENT TREATMENT 5.1. Process water pre-treatment 5.2. Mill effluent pre-treatment 5.3. On the ETP treatment line 6.CONTROL PARAMETERS AND STRATEGIES 7.OPERATION AND MAINTENANCE TROUBLESHOOTING REFERENCES ANNEX 1.- COMMON REACTIVES ON NEUTRALIZATION PROCESS CHARACTERISTICS ANNEX 2.- GRAPHICAL DESCRIPTION OF PROCESS UNITS pH NEUTRALIZATION FS-PRE-004 Page 2 of 10 1. INTRODUCTION Many industrial wastes contain acidic or alkaline materials that require neutralization prior to discharge to receiving waters or prior to chemical or biological treatment. (Eckenfelder, 2000) Neutralization is the process of adjusting the pH of water through the addition of an acid or a base, depending on the target pH and process requirements. Most part of the effluents can be neutralized at a pH of 6 to 9 prior to discharge. In chemical industrial treatment, neutralization of excess alkalinity or acidity is often required.
    [Show full text]