Reactions at Α-Position in Preceding Chapters on Carbonyl Chemistry, A

Total Page:16

File Type:pdf, Size:1020Kb

Reactions at Α-Position in Preceding Chapters on Carbonyl Chemistry, A Reactions at α-Position In preceding chapters on carbonyl chemistry, a common reaction mechanism observed was a nucleophile reacting at the electrophilic carbonyl carbon site O NUC O H C CH H C CH3 3 3 3 NUC Another reaction that can occur with carbonyl compounds, however, is to react an electrophile with the carbonyl O E O H3C CH3 H3C CH2 E The electrophile adds to the α-position and allows the synthesis of a variety of substituted carbonyl compounds by reacting different electrophiles Reactions at α-Position In order to react with electrophiles at the α-position, the carbonyl compound needs to be nucleophilic at the α-position There are two general methods to become nucleophilic at α-position: 1) React through the enol form O OH O K Br Br -9 5 x 10 H3C CH3 H3C CH2 H3C CH2 Br keto enol A carbonyl compound is in equilibrium with an enol Typically the equilibrium for a ketone though lies heavily in the keto form The enol form, however, is more reactive than an alkene and can undergo similar reactions as observed with reactions with π bonds Reactions at α-Position 2) To make a carbonyl compound even more nucleophilic at the α-position, a base can be added to form an enolate O base O O H3C CH3 H3C CH2 H3C CH2 E O H3C CH2 E The α-position of a ketone is relatively acidic (pKa ~19) because the anion is stabilized by resonance with the carbonyl oxygen The negatively charged enolate anion can react with an electrophile to form a new bond between the α-carbon and the electrophilic atom Reactions at α-Position Since the enolate anion resonates between two atoms, it is important to recognize which atom will react preferentially with an electrophile E O E O O E O H3C CH2 H3C CH2 H3C CH2 H3C CH2 E Reaction at carbon Reaction at oxygen In order to make this prediction, it is important to recognize which orbital is reacting As in all nucleophilic reactions, the HOMO of the nucleophile is reacting with the LUMO of the electrophile Consider the HOMO for the enolate nucleophile: The charge in the HOMO for the unsymmetrical enolate is far greater on the carbon than the oxygen (this is offset by a greater electron density in the lowest occupied orbital) Therefore the enolate reacts Enolate structure HOMO of enolate preferentially at the carbon site Reactions at α-Position To form an enolate therefore a base can be reacted with a carbonyl compound to deprotonate the hydrogen on the α-carbon Realize, however, that most strong bases are also strong nucleophiles (remember factors in SN2 versus E2 reactions) A base/nucleophile used could react either by reaction at carbonyl carbon or by abstracting the hydrogen on the α-carbon O base/nucleophile O O H C CH H C CH H C CH3 3 3 3 2 3 NUC Formation Reaction of enolate at carbonyl Which pathway is preferred depends on the choice of base/nucleophile used Reactions at α-Position To generate enolate need to use a base that will not act as a nucleophile Common choice is to use lithium diisopropylamide (LDA) Li H N BuLi N LDA LDA is a strong base (pKa of conjugate is in high 30’s), while it is very bulky so it will not react as nucleophile on carbonyl LDA will therefore quantitatively deprotonate α-carbon without reacting at carbonyl carbon O LDA O H3C CH3 H3C CH2 Reactions at α-Position The type of carbonyl compound will also affect the enolate formation Due to the resonance stabilization of some of the carboxylic acid derivatives, the pKa values vary amongst different carbonyl compounds pKa of conjugate 16.7 19.3 24 25 18 24 O O O O O H CH2 H3C CH2 H3CO CH2 (H3C)2N CH2 HN CH3 RHC C N Aldehydes are typically Esters and amides are Amidate is more acidic lower pKa than ketones less acidic than α-carbon Therefore while LDA will quantitatively deprotonate the α-carbon, hydroxide or alkoxide bases (pKa ~ 16) will only deprotonate a small fraction of molecules O O O NaOH LDA H3C CH2 H3C CH3 H3C CH2 Reactions at α-Position The keto/enol equilibrium is also affected by the structure of the carbonyl compound K O OH 10-9 H3C CH3 H3C CH2 Both ketones and aldehydes highly favor keto form, but aldehyde have relatively O OH more enol form present 10-7 H CH3 H CH2 H β-dicarbonyl compounds have a much O O O O 3 higher concentration of enol form due to H3C CH3 H3C CH3 intramolecular hydrogen bond O OH Enol form is highly favored with phenol 1013 due to aromatic stabilization Reactions at α-Position The amount of enol present is increased in either acidic or basic conditions H O H+ O H2O OH H3C CH3 H3C CH3 H3C CH2 O O OH NaOH H2O H3C CH3 H3C CH2 H3C CH2 Formation of enol allows hydrogens on α-carbon to be exchanged O NaOD, D2O O D+, D2O O D3C CD3 H3C CH3 D3C CD3 Racemization of Enols and Enolates A consequence of the formation of enols or enolates is the α-carbon goes from sp3 (and potentially chiral) to sp2 (and therefore planar and achiral) hybridization O H3C CH3 O OH CH3 H+ H+ or H3C CH3 H3C CH3 CH3 CH3 O α-carbon is chiral α-carbon is planar H3C CH3 CH3 racemic When the keto form is regenerated, the chirality at the α-carbon is lost The α-position therefore becomes racemic if there is an α-hydrogen present Halogenation When enols are generated in the presence of dihalogen compounds, an electrophilic reaction occurs which places a halogen on the α-carbon H O H+ O H2O OH Br Br O Br H3C CH3 H3C CH3 H3C CH2 H3C C H2 In acidic conditions the halogenation is stopped at one addition because the protonated carbonyl compound is less stable after a halogen has been added H H H H O O O O Br Br H3C CH3 H3C CH3 H3C C H3C C H2 H2 Positive charge is less stable with adjacent C-Br bond Halogenation In basic conditions, however, an enolate is generated instead of an enol O O O NaOH Br Br Br H3C CH3 H3C CH2 H3C C H2 The enolate is more stable with an attached halogen and therefore under basic conditions the α-position is polyhalogenated O O O NaOH Br Br Br Br H3C C H3C C H3C CHBr2 H2 H More stable anion Reaction will continue until all α-hydrogens are replaced with halogen O Br2 O NaOH R CH3 R CBr3 Haloform Reaction When the α-carbon is a methyl group, the basic halogenation places three halogens on carbon O Br2 O NaOH R CH3 R CBr3 Under the basic conditions of the reaction, however, the three halogens convert the methyl group into a good leaving group and thus the hydroxide can react at carbonyl carbon O O NaOH O CHBr3 R CBr R CBr3 R O 3 OH bromoform The reaction thus will convert a methyl ketone into a carboxylic acid Called a “haloform” reaction because the common name for a trihalogen substituted carbon is a haloform (chloroform, bromoform or iodoform) Halogenation of Carboxylic Acids Carboxylic acids can also be halogenated in the α-position, but the acid halide needs to be formed first O O OH O PBr3 Br H C H C H C 2 H C 3 OH 3 Br 3 Br 3 Br Br2 H H H H H H Br The acid halide can easily be converted back into the acid with water work-up O O O H2O NH3 H3C H3C H3C Br OH ! OH H Br H Br H NH2 alanine These α-bromo acids are very convenient compounds to prepare α-amino acids with reaction with ammonia Alkylation of Enolates Enolates are very useful to form new C-C bonds by reacting the enolate with alkyl halides O LDA O CH3Br O H3C CH3 H3C CH2 H3C CH2CH3 Allows formation of new C-C bond at the α-position, works best with methyl or 1˚ halides as more sterically hindered alkyl halides react through E2 mechanism When using symmetrical ketones, alkylation at either α-position generates the same product, but when using unsymmetrical ketones two different products can be obtained O LDA O O or H3C CH2CH3 H2C CH2CH3 H3C CHCH3 CH3Br CH3Br The conditions used to form O O the enolate determines which is favored H3CH2C CH2CH3 H3C CHCH3 CH3 Alkylation of Enolates Differences in enolate formation control preferential pathway O LDA O O O O H3C CH2CH3 H2C CH2CH3 H2C CH2CH3 H3C CHCH3 H3C CHCH3 Hydrogen is easier to abstract, Double bond of enolate is therefore this is the more stable, therefore this is kinetic enolate the thermodynamic enolate When trying to control kinetic versus thermodynamic, typically the temperature can be used as the lower temperature favors kinetic and the higher temperature favors thermodynamic 1) LDA, -78˚C O O 2) CH3Br H3C CH2CH3 H3CH2C CH2CH3 1) LDA, 40˚C O O 2) CH3Br H3C CH2CH3 H3C CHCH3 CH3 Alkylation of Enolates Alkylation of ketones is therefore relatively straightforward, add one equivalent of LDA at either low temperature for kinetic enolate and high temperature for thermodynamic enolate and then add the required alkyl halide Other types of carbonyl compounds can also be alkylated using these conditions Esters: 1) LDA O 2) CH3Br O H3CO CH2CH3 H3CO CHCH3 CH3 With esters there is only one α-position and therefore alkylation occurs at this site Acids: O NaH O LDA O CH3Br O HO CH2CH3 O CH2CH3 O CHCH3 O CHCH3 CH3 With carboxylic acids, first need to deprotonate the acidic hydrogen before deprotonating at α-position, alkylation will then occur at the α-position Alkylation of Enolates Aldehydes: O O O LDA H CH2CH3 H CH2CH3 H CHCH3 Alkylation of aldehydes can sometimes be problematic because the aldehyde carbonyl is more reactive than a ketone, therefore the enolate formed can react with the carbonyl (called an aldol reaction to be seen shortly) A way to circumvent this potential problem, the aldehyde can be converted to an imine R R 1) CH3Br O RNH2 N LDA N 2) H2O O H CH2CH3 H CH2CH3 H CHCH3 H CHCH3 CH3 The imine anion can react with the alkyl halide and then the α-alkylated imine can be hydrolyzed back to the aldehyde with water Alkylation of Enolates β-dicarbonyl: O O CH3ONa O O CH3Br O O H3CO H3CO H3CO CH3 A distinct advantage
Recommended publications
  • Chemistry (55)
    156 Chemistry (55) Introduction 3) To expose the students to various emerging According to NCF 2005, the new and new areas of chemistry and apprise them updated curriculum is introduced at +2 stage. with their relevance in their future studies There is a need to provide the sufficient and their applications in various spheres conceptual background of chemistry which will of chemical sciences and technology. help the students to appear for different common 4) To equip students to face various changes entrance test at the state level and the national related to health, nutrition, environment, level. This new syllabus will make them population, weather, industries and competent to meet the challenges of academic agriculture. and professional courses like medicine, 5) To develop problem solving skills in engineering, technology, etc, after the +2 stage. students. The syllabus is comparable to the international 6) To expose the students to different level. processes used in industries and their The syllabus contains areas like physical, technological applications. organic, inorganic, industrial, analytical and 7) To apprise students with interface of polymer chemistry. The upgraded syllabus has chemistry with other disciplines of science taken care of new formulations and such as physics, biology, geology, nomenclature of elements, compounds and engineering, etc. IUPAC units of physical quantities. New nomenclature, symbols and formulations, Std. XI (Theory) fundamental concepts, modern techniques are given importance. Unit 1: Some Basic Concepts of Chemistry Objectives : General Introduction: Importance and The broad objectives of teaching scope of chemistry. Historical approach to Chemistry at Higher Secondary stage are to particulate nature of matter, laws of help the learners : chemical combination, Dalton’s atomic 1) To promote understanding of basic facts theory : concept of elements, atoms and and concepts in chemistry while retaining molecules.
    [Show full text]
  • Broda 1 Potential Synthesis Pathway for Redox-Active DNA Nucleoside
    Broda 1 Potential Synthesis Pathway for Redox-Active DNA Nucleoside Nicole M. Broda Thesis Advisor: Robert Kuchta, Ph.D.: Department of Chemistry and Biochemistry Committee Members: Liu Xuedong, Ph.D.: Department of Chemistry and Biochemistry Levente Szentkirályi, Ph.D.: Program For Writing and Rhetoric Undergraduate Thesis March 23rd, 2018 University of Colorado at Boulder Department of Chemistry and Biochemistry Broda 2 Acknowledgements I am incredibly thankful for the mentorship and experience I have received from Robert Kuchta, who gave me the opportunity to be an undergraduate research assistant and supported me during numerous independent projects. Likewise, I want to extend my thanks to the other members of the Kuchta lab that have been crucial in my development as a researcher and in the intricacies of this thesis: Sarah Dickerson, for her guidance through the research process and creation of a friendly working environment; Ayman Alawneh, for his mentorship in the art of organic synthesis from the bottom-up and for answering my numerous questions about the theory behind it all; and Michelle Ledru, for sharing the long synthesis days and learning the process with me. Additionally, thank you to my honors committee members Liu Xuedong and Levente Szentkirályi for volunteering their time to participate in this undergraduate thesis defense. A special thanks to Levente Szentkirályi, for helping me through the thesis writing process from the draft to the final and for instilling in me the responsibility we as a scienctific community have to make science accessible to interdisciplinary readers and the general public. I extend my appreciation to Michael J.
    [Show full text]
  • Catalyst in Basic Oleochemicals
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Diponegoro University Institutional Repository Bulletin of Chemical Reaction Engineering & Catalysis, 2(2-3), 2007, 22-31 Catalyst in Basic Oleochemicals Eva Suyenty, Herlina Sentosa, Mariani Agustine, Sandy Anwar, Abun Lie, and Erwin Sutanto * Research and Development Department, PT. Ecogreen Oleochemicals Jln. Pelabuhan Kav 1, Kabil, Batam 29435, Telp/Fax: (0778)711374 Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia Abstract Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty ac- ids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydro- genation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methy- late is derived from direct reaction of sodium metal and methanol under inert gas.
    [Show full text]
  • Alkylation by Enamines for Synthesis of Some Heterocyclic Compounds ﻴﺩ
    ------J. Raf. Sci., Vol. 20, No.2, pp 92- 101, 2009 ------ Alkylation by Enamines for Synthesis of some Heterocyclic Compounds Jasim A. Abdullah Department of Chemistry College of Education Mosul University (Received 25/ 9/ 2008 ; Accepted 13 / 4 / 2009) ABSTRACT Compounds of 4-phenyl-3-butene-2-one (1) and 4-(4-chlorophenyl)-3-butene-2-one (2) were prepared by reaction of benzaldehyde or 4-chlorobenzaldehyde with acetone. Also 1,3-diphenyl-2-chloropropene-1-one (3) was synthesized from the reaction of benzaldehyde with 2-chloroacetophenone through Claisen-Shmidt condensation. The substituted ∆1(9)- octalone-2 (4,5) was prepared by reaction of the compounds (1and2) with cyclohexanone through Michael addition followed by aldol condensation. Compounds (4,5) were reacted with alkyl halide, as 2-chloroacetophenone or 1,3-diphenyl-2-chloropropene-1-one (3), via enamines formation which then hydrolyzed to give compounds (6-9). Compounds (6,7) were reacted with hydrazine , urea and thiourea to afford compounds (10-15) . The structures of all synthesized compounds were confirmed by available physical and spectral means . Keywords : Enamines , Heterocyclic compounds. ــــــــــــــــــــــــــــــــــــــــــــــــــ ﺍﻻﻟﻜﻠﺔ ﺒﻭﺍﺴﻁﺔ ﺍﻷﻴﻨﺎﻤﻴﻨﺎﺕ ﻟﺘﺸﻴﻴﺩ ﺒﻌﺽ ﺍﻟﻤﺭﻜﺒﺎﺕ ﺍﻟﺤﻠﻘﻴﺔ ﻏﻴﺭ ﺍﻟﻤﺘﺠﺎﻨﺴﺔ ﺍﻟﻤﻠﺨﺹ ﺘﻡ ﺘﺤﻀﻴﺭ ﺍﻟﻤﺭﻜﺒﺎﺕ 4-ﻓﻨﻴل-3-ﺒﻴﻭﺘﻴﻥ-2-ﺍﻭﻥ (1) ﻭ4-(4-ﻜﻠﻭﺭﻭﻓﻨﻴل)-3-ﺒﻴﻭﺘﻴﻥ-2-ﺍﻭﻥ (2) ﻤﻥ ﺘﻔﺎﻋل ﺍﻟﺒﻨﺯﺍﻟﺩﻴﻬﻴﺩ ﺃﻭ 4-ﻜﻠﻭﺭﻭﺍﻟﺒﻨﺯﺍﻟﺩﻴﻬﻴﺩ ﻤﻊ ﺍﻻﺴﻴﺘﻭﻥ . ﺤﻀﺭ ﺍﻟﻤﺭﻜﺏ 3,1-ﺜﻨﺎﺌﻲ ﻓﻨﻴل -2-ﻜﻠـﻭﺭﻭﺒﺭﻭﺒﻴﻥ -1-ﺍﻭﻥ (3) ﻤـﻥ ﺘﻔﺎﻋـل ﺍﻟﺒﻨﺯﺍﻟﺩﻴﻬﻴـﺩ ﻤـﻊ -2 9 1 ﻜﻠﻭﺭﻭﺍﺴﻴﺘﻭﻓﻴﻨﻭﻥ ﺒﻭﺴﺎﻁﺔ ﺘﻜﺎﺜﻑ (ﻜﻠﻴﺯﻥ-ﺸﻤﺩﺕ).ﺤﻀﺭﺕ ﻤﻌﻭﻀﺎﺕ ∆ ( ) –ﺍﻭﻜﺘﺎﻟﻭﻥ-2 ﻤﻥ ﺨﻼل ﺘﻔﺎﻋل ﺍﻟﻤﺭﻜﺒﻴﻥ (2,1) ﻤﻊ ﺍﻟﻬﻜﺴﺎﻨﻭﻥ ﺍﻟﺤﻠﻘﻲ ﺒﻭﺴﺎﻁﺔ ﺍﻀﺎﻓﺔ ﻤﺎﻴﻜل ﺍﻟﺘﻲ ﻴﺘﺒﻌﻬﺎ ﺘﻜﺎﺜﻑ ﺍﻻﻟﺩﻭل .
    [Show full text]
  • Step-Growth Polymerisation of Alkyl Acrylates Via Concomitant Oxa-Michael and Transesterification Reactions
    Step-growth polymerisation of alkyl acrylates via concomitant oxa-Michael and transesterification reactions Karin Ratzenböck,a David Pahovnikb and Christian Slugovc *a,c a Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, A 8010 Graz, Austria b National Institute of Chemistry, Department of Polymer Chemistry and Technology, Hajdrihova 19, 1000 Ljubljana, Slovenia c Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, A 8010 Graz, Austria Herein we propose an auto-tandem catalytic approach towards the preparation of poly(ester- ether)s from simple alkyl acrylates and diols. By combining oxa-Michael addition with transesterification the preparation of hydroxy functionalized acrylate monomers can be avoided. Introduction. Polymerisation of acrylates is typically performed by free radical polymerisation. Formed poly(acrylates) based on C-C main chains are widely used as paintings, surface coatings, adhesives, or fibres.1 However, the oxa-Michael addition reaction2 presents an alternative method for the polymerisation of acrylates leading to potentially more easily degradable poly(ester-ether)s in which functional groups are incorporated in the polymer main chain. Oxa-Michael addition polymerisation of hydroxyalkyl acrylates, also referred to as hydrogen-transfer polymerisation, was first reported in 1975.3 The polymerisation of 2- hydroxyethyl acrylate (HEA) could be initiated with LiH or PPh3. Since then few studies on the polymerisation of hydroxy functionalized
    [Show full text]
  • Catalytic Direct Asymmetric Michael Reactions
    ORGANIC LETTERS 2001 Catalytic Direct Asymmetric Michael Vol. 3, No. 23 Reactions: Taming Naked Aldehyde 3737-3740 Donors Juan M. Betancort and Carlos F. Barbas III* The Skaggs Institute for Chemical Biology and the Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 [email protected] Received September 5, 2001 ABSTRACT Direct catalytic enantio- and diastereoselective Michael addition reactions of unmodified aldehydes to nitro olefins using (S)-2-(morpholinomethyl)- pyrrolidine as a catalyst are described. The reactions proceed in good yield (up to 96%) in a highly syn-selective manner (up to 98:2) with enantioselectivities approaching 80%. The resulting γ-formyl nitro compounds are readily converted to chiral, nonracemic 3,4-disubstituted pyrrolidines. The Michael reaction is generally regarded as one of the Typically, carbon nucleophiles that contain an active most efficient carbon-carbon bond forming reactions, and methylene center such as malonic acid esters, â-keto esters, studies concerning this reaction have played an important nitroalkanes, etc. have been studied in the Michael reaction. role in the development of modern synthetic organic Carbonyl compounds, and ketones in particular, have gener- chemistry.1 As the demand for optically active compounds ally only been used as donors following their preactivation has soared in recent years, much progress has been made in by conversion into a more reactive species such as enol or the development of asymmetric variants of this reaction, enamine equivalents.5,6 In these cases, additional synthetic providing for the preparation of Michael adducts with high enantiomeric purity.2 Though remarkable advances have been (3) (a) Chataigner, I.; Gennari, C.; Ongeri, S.; Piarulli, U.; Ceccarelli, S.
    [Show full text]
  • Download Download
    Test for Acetone in Urine 189 AN IMPROVED TEST FOR ACETONE IN URINE. R. E. Lyons and J. T. Brundage, Indiana University. Lieben's test for acetone 1 depends upon the formation of iodoform when potassium iodide, iodine solution, and a few drops of sodium hydroxide solution are added to an acetone containing mixture. The iodoform is recognized by its distinctive odor and, microscopically, by the 1 star, or hexagonal crystals. The test is not specific since both ethyl alcohol and acetic aldehyde also react with these reagents to yield iodo- form. This sometimes leads to erroneous results because of alcohol formed through sugar fermentation in diabetic urine. The difficulty is obviated" by substituting ammonium hydroxide for the caustic alkali as proposed by Gunning'5 in a modification of the Lieben Test. In either test the reaction is much more sensitive if a urine dis- tillate is used. The distillation not only frees the acetone from non- volatile interfering substances, but converts some acetonacetic (di-acetic) 4 acid, if present, into acetone. Protein interferes and, if present, the separation of acetone by distillation or aeration is necessary. M. KohlthofF' states that 100 mg. each of potassium iodide and chlor- amine T, 10-20 drops of 4N ammonium hydroxide and 10 cc. of a solu- tion of one part acetone in 10,000 parts of 2 per cent ethyl alcohol when warmed to 60 °C. gave an iodoform precipitate in two hours. The object of our investigation has been to determine (a) whether this reaction could be applied as a specific test for acetone in urine, (b) what urinary constituents or preservatives interfere, (c) if the necessity of distillation, or aeration, of the urine could be dispensed with, and (d) the conditions for attaining the maximum sensitiveness of the reaction.
    [Show full text]
  • S41467-018-07534-X.Pdf
    ARTICLE DOI: 10.1038/s41467-018-07534-x OPEN Differentiation between enamines and tautomerizable imines in the oxidation reaction with TEMPO Xiaoming Jie1, Yaping Shang1, Zhe-Ning Chen 1, Xiaofeng Zhang1, Wei Zhuang1 & Weiping Su1 Enamine and imine represent two of the most common reaction intermediates in syntheses, and the imine intermediates containing α-hydrogen often exhibit the similar reactivity to 1234567890():,; enamines due to their rapid tautomerization to enamine tautomers. Herein, we report that the minor structural difference between the enamine and the enamine tautomer derived from imine tautomerization results in the different chemo- and regioselectivity in the reaction of cyclohexanones, amines and TEMPO: the reaction of primary amines furnishes the formal oxygen 1,2-migration product, α-amino-enones, while the reaction of secondary amines under similar conditions generates exclusively arylamines via consecutive dehydrogenation on the cyclohexyl rings. The 18O-labeling experiment for α-amino-enone formation revealed that TEMPO served as oxygen transfer reagent. Experimental and computational studies of reaction mechanisms revealed that the difference in chemo- and regioselectivity could be ascribed to the flexible imine-enamine tautomerization of the imine intermediate con- taining an α-hydrogen. 1 State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China.
    [Show full text]
  • Application of Simultaneous Oil Extraction and Transesterification in Biodiesel Fuel Synthesis: a Review
    energies Review Application of Simultaneous Oil Extraction and Transesterification in Biodiesel Fuel Synthesis: A Review Violeta Makareviciene * , Egle Sendzikiene and Milda Gumbyte Faculty of Forest Sciences and Ecology, Agriculture Academy, Vytautas Magnus University, LT-44248 Kaunas, Lithuania; [email protected] (E.S.); [email protected] (M.G.) * Correspondence: [email protected] Received: 7 April 2020; Accepted: 28 April 2020; Published: 2 May 2020 Abstract: Increasing concentrations of greenhouse gases in the atmosphere are leading to increased production and use of biofuels. The industrial development of biodiesel production and the use of biodiesel in the EU transport sector have been ongoing for almost two decades. Compared to mineral diesel production, the process of producing biodiesel is quite complex and expensive, and the search for new raw materials and advanced technologies is needed to maintain production value and expand the industrial production of biodiesel. The purpose of this article is to review the application possibilities of one of the new technologies—simultaneous extraction of oil from oily feedstock and transesterification (in situ)—and to evaluate the effectiveness of the abovementioned process under various conditions. Keywords: biodiesel; in situ; simultaneous oil extraction and transesterification 1. Introduction With the increase in atmospheric pollution in the form of greenhouse gases, the development of the use of biofuels in the transport sector is receiving increasing attention. Biodiesel is a well-known type of biofuel that has been used for a relatively long time. It is produced from various oily raw materials. Recently, the possibilities of utilizing non-food raw materials and residual waste in the synthesis of biodiesel have been intensively studied.
    [Show full text]
  • Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters
    Energies 2009, 2, 362-376; doi:10.3390/en20200362 OPEN ACCESS energies ISSN 1996-1073 www.mdpi.com/journal/energies Article Transesterification of Vegetable Oils with Ethanol and Characterization of the Key Fuel Properties of Ethyl Esters George Anastopoulos 1, Ypatia Zannikou 1, Stamoulis Stournas 1 and Stamatis Kalligeros 2,* 1 National Technical University of Athens, School of Chemical Engineering, Laboratory of Fuels Technology and Lubricants, Iroon Polytechniou 9, Athens 15780, Greece E-Mails: [email protected] (G.A.); [email protected] (Y.Z.); [email protected] (S.S.) 2 Hellenic Organization for Standardization, Technical Committee 66, 67 Prevezis Street, Athens, 10444, Greece * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +30-210- 5154695; Fax: +30-210-5154695 Received: 28 April 2009; in revised form: 24 May 2009 / Accepted: 3 June 2009/ Published: 5 June 2009 Abstract: The transesterification reactions of four different vegetable oils (sunflower, rapeseed, olive oil and used frying oil) with ethanol, using sodium hydroxide as catalyst, were studied. The ester preparation involved a two-step transesterification reaction, followed by purification. The effects of the mass ratio of catalyst to oil (0.25 – 1.5%), the molar ratio of ethanol to oil (6:1 – 12:1), and the reaction temperature (35 – 90 °C ) were studied for the conversion of sunflower oil to optimize the reaction conditions in both stages. The rest of the vegetable oils were converted to ethyl esters under optimum reaction parameters. The optimal conditions for first stage transesterification were an ethanol/oil molar ratio of 12:1, NaOH amount (1% wt/wt), and 80 °C temperature, whereas the maximum yield of ethyl esters reached 81.4% wt/wt.
    [Show full text]
  • Laboratory 23: Properties of Aldehydes and Ketones
    Laboratory 23: Properties of Aldehydes and Ketones Introduction Aldehydes and Ketones represent an important class of organic molecules containing a carbonyl carbon. In this experiment you will study the chemical properties of aldehydes and ketones. Solubility in water, and organic solvents, combustibility, and reactivity with various chemical reagents will be examined. Discussion Structure of Aldehydes and Ketones Aldehydes and Ketones are organic compounds containing a carbonyl carbon (R−C−O−R') (Figure 1 below) functional group. Carboxylic Acids and Esters also contain a carbonyl carbon, and will be explored in a future experiment. The carbonyl carbon is a polar group with the carbon having a slight excess of positive charge and the oxygen atom having a slight excess of negative charge. Chemical Properties Aldehydes and ketones are created by the mild oxidation of primary and secondary alcohols. One such method to oxidize alcohols is with copper (II) oxide. Upon heading, copper wire (Cu0) in an open flame leads to the formation of copper (II) oxide. The copper (II) oxide is then reacted with an alcohol to form an aldehyde or ketone, copper (I) oxide and water. [O] Primary Alcohol −−! Aldehyde [O] Secondary Alcohol −−! Ketone Chemically aldehydes and ketones both contain a carbonyl carbon and thus have similar chemical reactivities. However, aldehydes are more susceptible to oxidation because of the hydrogen atom attached to the carbonyl group. This is the basis for distinguishing between these two classes of compounds. Several tests are useful for differentiating between aldehydes and ketones. The first test is referred to as the Tollens' or Silver Mirror test.
    [Show full text]
  • Pharmaceutical Services Division and the Clinical Research Centre Ministry of Health Malaysia
    A publication of the PHARMACEUTICAL SERVICES DIVISION AND THE CLINICAL RESEARCH CENTRE MINISTRY OF HEALTH MALAYSIA MALAYSIAN STATISTICS ON MEDICINES 2008 Edited by: Lian L.M., Kamarudin A., Siti Fauziah A., Nik Nor Aklima N.O., Norazida A.R. With contributions from: Hafizh A.A., Lim J.Y., Hoo L.P., Faridah Aryani M.Y., Sheamini S., Rosliza L., Fatimah A.R., Nour Hanah O., Rosaida M.S., Muhammad Radzi A.H., Raman M., Tee H.P., Ooi B.P., Shamsiah S., Tan H.P.M., Jayaram M., Masni M., Sri Wahyu T., Muhammad Yazid J., Norafidah I., Nurkhodrulnada M.L., Letchumanan G.R.R., Mastura I., Yong S.L., Mohamed Noor R., Daphne G., Kamarudin A., Chang K.M., Goh A.S., Sinari S., Bee P.C., Lim Y.S., Wong S.P., Chang K.M., Goh A.S., Sinari S., Bee P.C., Lim Y.S., Wong S.P., Omar I., Zoriah A., Fong Y.Y.A., Nusaibah A.R., Feisul Idzwan M., Ghazali A.K., Hooi L.S., Khoo E.M., Sunita B., Nurul Suhaida B.,Wan Azman W.A., Liew H.B., Kong S.H., Haarathi C., Nirmala J., Sim K.H., Azura M.A., Asmah J., Chan L.C., Choon S.E., Chang S.Y., Roshidah B., Ravindran J., Nik Mohd Nasri N.I., Ghazali I., Wan Abu Bakar Y., Wan Hamilton W.H., Ravichandran J., Zaridah S., Wan Zahanim W.Y., Kannappan P., Intan Shafina S., Tan A.L., Rohan Malek J., Selvalingam S., Lei C.M.C., Ching S.L., Zanariah H., Lim P.C., Hong Y.H.J., Tan T.B.A., Sim L.H.B, Long K.N., Sameerah S.A.R., Lai M.L.J., Rahela A.K., Azura D., Ibtisam M.N., Voon F.K., Nor Saleha I.T., Tajunisah M.E., Wan Nazuha W.R., Wong H.S., Rosnawati Y., Ong S.G., Syazzana D., Puteri Juanita Z., Mohd.
    [Show full text]