Maine Pegmatite Mines and Prospects and Associated Minerals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Summer 2015 Newsletter
Maine Appalachian Trail Land Trust Summer 2015 Newsletter Summer highlights inside • REPI Challenge Grant • Great Maine Outdoor Weekend Hike • Board Member Profile • Project Update • Community Events • And more! Baxter Peak, Katahdin REPI Challenge Grant Awarded The Maine Appalachian Trail Land Trust is currently a partnership that will help ensure necessary training conditions partnering with The Trust for Public Land (TPL) on a for the Navy while also protecting wildlife habitat and working number of conservation projects in the High Peaks area forests that support local jobs.” of the Appalachian Trail in Western Maine. We are pleased to announce that TPL has secured an additional Maine Appalachian Trail Land Trust Awarded $2 million in funding by winning a REPI Challenge grant Davis Conservation Foundation Grant from the Department of Defense’s Readiness and Environmental Protection Integration program. Portland, ME (August 7, 2015) – The Davis Conservation Foundation has awarded a grant of $12,000 to the Maine The funds will be used to restrict development of nearly Appalachian Trail Land Trust to support our work on the 10,000 acres around the military Survival, Evasion, Redington Forest project. The funds will allow the land trust to protect land along Maine’s Appalachian Trail via the Resistance and Escape school in western Maine, by the acquisition of a conservation easement over the project purchase of conservation easements over lands around the base. Maine A.T. Land Trust will be holding a area. These much-needed funds will help defray the costs involved in the easement acquisition process – legal work, conservation easement over Redington Forest and will GIS needs, personnel, stewardship and other associated be working closely with TPL on additional projects. -
38Th RMS Program Notes
E.fu\wsoil 'og PROGRAM Thursday Evening, April 14, 2011 PM 4:00-6:00 Cocktails and Snacks – Hospitality Suite 400 (4th Floor) 6:00-7:45 Dinner – Baxter’s 8:00-9:15 THE GUALTERONI COLLECTION: A TIME CAPSULE FROM A CENTURY AGO – Dr. Renato Pagano In 1950, the honorary curator of the Museum of Natural History in Genoa first introduced Dr. Renato Pagano to mineral collecting as a Boy Scout. He has never looked back. He holds a doctorate in electrical engineering and had a distinguished career as an Italian industrialist. His passion for minerals has produced a collection of more than 13,000 specimens, with both systematic and aesthetic subcollections. His wife Adriana shares his passion for minerals and is his partner in collecting and curating. An excellent profile of Renato, Adriana, and their many collections appeared earlier this year in Mineralogical Record (42:41-52). Tonight Dr. Pagano will talk about an historic mineral collection assembled between 1861 and 1908 and recently acquired intact by the Museum of Natural History of Milan. We most warmly welcome Dr. Renato Pagano back to the speakers’ podium. 9:15 Cocktails and snacks in the Hospitality Suite on the 4th floor will be available throughout the rest of the evening. Dealers’ rooms will be open at this time. All of the dealers are located on the 4th floor. Friday Morning, April 15, 2011 AM 9:00 Announcements 9:15-10:15 CRACKING THE CODE OF PHLOGOPITE DEPOSITS IN QUÉBEC (PARKER MINE), MADAGASCAR (AMPANDANDRAVA) AND RUSSIA (KOVDOR) – Dr. Robert F. Martin Robert François Martin is an emeritus professor of geology at McGill University in Montreal. -
Paragenesis of Thb Newry Pegmatite, Maine H
PARAGENESIS OF THB NEWRY PEGMATITE, MAINE H. J. Fnnsnn, Haroard. Uniaersity. The Dunton tourmaline deposit, which occurs in the town of eral assemblagepresent. The deposit has been briefly described by Bastinl and certain rare phosphatesfound there have been discussedby palache.? The deposit was first opened during the summers of 1903 and 1904in a for commercial quantities of pollucite. satisiactory quantities were obtained but mining has now ceased. Due to the care with which Mr. Nevel collected all unusual minerals, it was possible to secure a very complete suite for the Harvard Mineralogical Museum. This suite formed the basis for the mineralogical data in this paper. Acxnowr,roGMENTs Thc writer wishes to acknowledge his great indebtedness to Professor Palache whoseconstant assistanceand constructive criti- cism were of the utmost value during the collection of the data and the preparation of this paper. professor palache made a crys- tallographic study of the tourmalines and constructed the figuies given in this paper. To Mr. H. Berman the writer is obligated for much assistance during the laboratory study of the minerals and the mineral se- quence, Mr. H. Butterfield visited and studied the Newry deposit in 1927 and the writer has drawn freely on his unpublished data. 34e 350 TH E AM ERIC A N M I N ERA LOGIST LocarroN lies at an elevation of about 1525 feet above sea level and 4600 feet west of the main highway. Mining operations were confined to two outcrops, about 250 feet apart, which occur on the western side of the crest of the hill. DBscnrPtroN or PBGuarrrB The wall rock surrounding the outcrops is a light green mica- schist composed essentially of muscovite, actinolite and quartz' This rock has been much disturbed so that near the outcrops, at least, the direction of schistosity is very variable. -
Raman and Infrared Spectroscopic Characterization of Beryllonite, a Sodium and Beryllium Phosphate Mineral – Implications for Mineral Collectors ⇑ Ray L
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 97 (2012) 1058–1062 Contents lists available at SciVerse ScienceDirect Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy journal homepage: www.elsevier.com/locate/saa Raman and infrared spectroscopic characterization of beryllonite, a sodium and beryllium phosphate mineral – implications for mineral collectors ⇑ Ray L. Frost a, , Yunfei Xi a, Ricardo Scholz b, Fernanda M. Belotti c, Luiz Alberto Dias Menezes Filho d a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia b Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-00, Brazil c Federal University of Itajubá, Campus Itabira, Itabira, MG, Brazil d Geology Department, Institute of Geosciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil highlights graphical abstract " We have studied the mineral beryllonite. " Be isotopes play an important role in the dating of sediments and in the study of relief evolution. " We have characterized beryllonite using vibrational spectroscopic techniques. " The pegmatitic phosphates are more readily studied by Raman spectroscopy. article info abstract Article history: The mineral beryllonite has been characterized by the combination of Raman spectroscopy and infrared Received 30 May 2012 spectroscopy. SEM–EDX was used for the chemical analysis of the mineral. The intense sharp Raman band Received in revised form 16 July 2012 at 1011 cmÀ1, was assigned to the phosphate symmetric stretching mode. Raman bands at 1046, 1053, Accepted 17 July 2012 1068 and the low intensity bands at 1147, 1160 and 1175 cmÀ1 are attributed to the phosphate antisym- Available online 4 August 2012 metric stretching vibrations. -
Mineralogy of Pegmatites
University of New Hampshire University of New Hampshire Scholars' Repository New England Intercollegiate Geological NEIGC Trips Excursion Conference Collection 1-1-1960 Mineralogy of Pegmatites Peacor, D.R. Follow this and additional works at: https://scholars.unh.edu/neigc_trips Recommended Citation Peacor, D.R., "Mineralogy of Pegmatites" (1960). NEIGC Trips. 40. https://scholars.unh.edu/neigc_trips/40 This Text is brought to you for free and open access by the New England Intercollegiate Geological Excursion Conference Collection at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NEIGC Trips by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. TRIP E MINERALOGY OP PEGMATITES OP THE NEWRY HILL AREA, NEWRY, MAINE Leader: D. R. Peacor Meet at 8:15 A.M., Sunday, October 9, at the base of Plumbago Mountain, on Route 5. The meeting place is easily recognized through the Abbott farmhouse on the east side of the road, and the ore hopper and pas ture on the west side. The one mile long dirt road up to the mines was passable by car on July l6. If it has been washed out by October we will arrange for jeeps to ferry those few who are unable to walk to the top of the hill. INTRODUCTION There are five major quarries in the area (Pig. 1) and many smaller prospect pits. The mineral suites from three of these quarries are different and a unique opportunity to study a wide range of pegmatite minerals is available. -
Geology of the Pegmatites and Associated Rocks of Maine
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR BULLETIN 445 GEOLOGY OF THE PEGMATITES AND ASSOCIATED ROCKS OF MAINE INCLUDING FELDSPAR, QUARTZ, MICA, AND GEM DEPOSITS BY EDSON S. BASTIN WASHINGTON GOVERNMENT PRINTING OFFICE 1911 CONTENTS. Introduction.............................................................. 9 Definition of pegmatite...................................................... 10 Geographic distribution.................................................... 10 Geology.................................................................. 10 Bordering rocks....................................................... 10 Pegmatites in foliated rocks........................................ 11 General statement............................................ 11 Sedimentary foliates........................................... 11 Igneous foliates.....".......................................... 12 Pegmatites in massive granites.................................... 13 'Age.................................................................. 15 General character..................................................... 15 Mineral and chemical composition................................. 15 Mineral constituents.......................................... 15 Relative proportions of minerals............................... 18 Quartzose phases. ..............................^............. 18 Fluidal cavities............................................... 19 Sodium and lithium phases................................... 20 Muscovite -
Roscherite-Group Minerals from Brazil
■ ■ Roscherite-Group Minerals yÜÉÅ UÜté|Ä Daniel Atencio* and José M.V. Coutinho Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 – São Paulo, SP, Brazil. *e-mail: [email protected] Luiz A.D. Menezes Filho Rua Esmeralda, 534 – Prado, 30410-080 - Belo Horizonte, MG, Brazil. INTRODUCTION The three currently recognized members of the roscherite group are roscherite (Mn2+ analog), zanazziite (Mg analog), and greifensteinite (Fe2+ analog). These three species are monoclinic but triclinic variations have also been described (Fanfani et al. 1977, Leavens et al. 1990). Previously reported Brazilian occurrences of roscherite-group minerals include the Sapucaia mine, Lavra do Ênio, Alto Serra Branca, the Córrego Frio pegmatite, the Lavra da Ilha pegmatite, and the Pirineus mine. We report here the following three additional occurrences: the Pomarolli farm, Lavra do Telírio, and São Geraldo do Baixio. We also note the existence of a fourth member of the group, an as-yet undescribed monoclinic Fe3+-dominant species with higher refractive indices. The formulas are as follows, including a possible formula for the new species: Roscherite Ca2Mn5Be4(PO4)6(OH)4 • 6H2O Zanazziite Ca2Mg5Be4(PO4)6(OH)4 • 6H2O 2+ Greifensteinite Ca2Fe 5Be4(PO4)6(OH)4 • 6H2O 3+ 3+ Fe -dominant Ca2Fe 3.33Be4(PO4)6(OH)4 • 6H2O ■ 1 ■ Axis, Volume 1, Number 6 (2005) www.MineralogicalRecord.com ■ ■ THE OCCURRENCES Alto Serra Branca, Pedra Lavrada, Paraíba Unanalyzed “roscherite” was reported by Farias and Silva (1986) from the Alto Serra Branca granite pegmatite, 11 km southwest of Pedra Lavrada, Paraíba state, associated with several other phosphates including triphylite, lithiophilite, amblygonite, tavorite, zwieselite, rockbridgeite, huréaulite, phosphosiderite, variscite, cyrilovite and mitridatite. -
Andradite in Andradite Unusual Growth Zoning in Beryl
Editor Nathan Renfro Contributing Editors Elise A. Skalwold and John I. Koivula Andradite in Andradite ity, but size was not what made it special. As shown in fig- Recently we had the opportunity to examine a dramatic ure 1, close examination of one of the polished crystal faces iridescent andradite fashioned by Falk Burger (Hard Works, revealed a bright reddish orange “hot spot” in the center, Tucson, Arizona) from a crystal originating from the caused by an iridescent inclusion of andradite with a dif- Tenkawa area of Nara Prefecture in Japan. Known as “rain- ferent crystallographic orientation than its host. As seen bow” andradite, this material was previously reported in in figure 2, the inclusion’s different orientation caused the iridescence of the rhomb-shaped “hot spot” to appear and Gems & Gemology (T. Hainschwang and F. Notari, “The cause of iridescence in rainbow andradite from Nara, disappear as the light source was passed over the crystal’s Japan,” Winter 2006, pp. 248–258). The specimen was surface. To see the iridescence from both the host and in- unique for its genesis and optical phenomenon. clusion at the same time, two light sources from opposite Weighing 16.79 ct and measuring 15.41 × 13.86 × 10.49 directions must be used due to the different crystallo- mm, the andradite was very large for its species and local- graphic orientation of the host and inclusion. This elusive optical phenomenon made this Japanese andradite crystal extremely interesting for any aspiring inclusionist. John I. Koivula Figure 1. This 16.79 ct Japanese andradite garnet GIA, Carlsbad exhibits a very unusual rhomb-shaped “hot spot” below the surface of one crystal face. -
Geology of the Buckfield and Dixfield Quadrangles in Northwestern Maine
University of New Hampshire University of New Hampshire Scholars' Repository New England Intercollegiate Geological NEIGC Trips Excursion Collection 1-1-1965 Geology of the Buckfield and Dixfield Quadrangles in Northwestern Maine Warner, Jeffrey Pankiwskyj, Kost A. Follow this and additional works at: https://scholars.unh.edu/neigc_trips Recommended Citation Warner, Jeffrey and Pankiwskyj, Kost A., "Geology of the Buckfield and Dixfield Quadrangles in Northwestern Maine" (1965). NEIGC Trips. 78. https://scholars.unh.edu/neigc_trips/78 This Text is brought to you for free and open access by the New England Intercollegiate Geological Excursion Collection at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NEIGC Trips by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. TRIP K Geology of the Buckfield and Dixfield Quadrangles in Northwestern Maine Leaders: Jeffrey Warner, Harvard University and Maine Geological Survey Kost A. Pankiwskyj, University of Hawaii and Maine Geological Survey INTRODUCTION This trip will study the Silurian and Devonian rocks on the south east limb of a major northeast plunging syncline. All the rocks seen are in the sillimanite and staurolite zones of metamorphism. The stratigraphic nomenclature developed by Billings and his co-workers in New Hampshire was originally used in this area. However after detailed mapping by Fisher (1962), Guidotti (1965), Pankiwskyj (1964), and Warner (in preparation) in respectively the Bethel, Bryant Fond, Dixfield, and Buckfield Quadrangles, a new set of stratigraphic names was developed. Although these names are not yet official, we use them here as a matter of convenience. -
Spring 1991 Gems & Gemology Gem News
This past February the Gem News editors, along with countless others with an interest in gems and minerals, traveled to Tucson, Arizona, to attend the many concur- rent trade shows talting place there. Following are some highlights of this year's event, based on the editors' observations and those provided by other GIA staff members. Show exhibits of note. Although a number of associa- tions hold annual shows in Tucson during February, the original stimulus for the event is the meson Gem & Mineral Show. Each year, TGMS highlights a featured mineral; for 1991 it was azurite. Special exhibits fea- tured outstanding specimens from such institutions as Figure 1. These three yellow gem-quality syn- the University of Arizona, Harvard University, and the thetic diamonds (a 0.29-ct octahedral crystal American Museum of Natural History. The azurites and two slices, 0.09 ct and 0.15 ct) were grown displayed originated from such noted localities as Bis- in Novosibirsk, Siberia, USSR. These samples bee, Arizona; Chessy, France; Alice Springs, Australia; do not exhibit the color zoning seen in the gem- and Tsumeb, Namibia. The Sorbonne case also included qil~lityyellow syntheiic diamonds grown by other, rarer copper minerals such as lavendulan, tetra- Sumitomo and De Beers. Photo by Robert Weldon. hedrite, and bornite. Other noteworthy exhibits were the FabergC jeweled eggs from the Fersman Museum, Moscow, which had not been displayed previously out- thetic diamonds that had been manufactured in the side the USSR, and the 75-ct Hoolter Emerald, from the Soviet Union (figure 1).All were yellow and small (4mm Smithsonian Institution. -
Geology of the Lower Ellis River Valley and Rumford Whitecap Mountain, Andover and Rumford, Maine Lindsay J
Bates College SCARAB New England Intercollegiate Geological Conference NEIGC 2017 Day Two: September 30 2017 Sep 30th, 2017 B5: Geology of the Lower Ellis River Valley and Rumford Whitecap Mountain, Andover and Rumford, Maine Lindsay J. Spigel Maine Geological Survey, [email protected] Amber T.H. Whittaker Maine Geological Survey, [email protected] Ryan P. Gordon Maine Geological Survey, [email protected] Follow this and additional works at: http://scarab.bates.edu/neigc2017 Part of the Geology Commons Recommended Citation Spigel, L.J., Whittaker, A.T.H., and Gordon, R.P., 2017, Geology of the Lower Ellis River Valley and Rumford Whitecap Mountain, Andover and Rumford, Maine in Johnson, B. and Eusden, J.D., ed., Guidebook for Field Trips in Western Maine and Northern New Hampshire: New England Intercollegiate Geological Conference, Bates College, p. 197-216. https://doi.org/10.26780/ 2017.001.0012 This Event is brought to you for free and open access by the Conferences and Events at SCARAB. It has been accepted for inclusion in New England Intercollegiate Geological Conference 2017 by an authorized administrator of SCARAB. For more information, please contact [email protected]. B5-1 GEOLOGY OF THE LOWER ELLIS RIVER VALLEY AND RUMFORD WHITECAP MOUNTAIN, ANDOVER AND RUMFORD, MAINE By Lindsay J. Spigel, Maine Geological Survey, 93 State House Station, Augusta, Maine, 04333, [email protected] Amber T. H. Whittaker, Maine Geological Survey, 93 State House Station, Augusta, Maine, 04333, [email protected] Ryan P. Gordon, Maine Geological Survey, 93 State House Station, Augusta, Maine, 04333, [email protected] INTRODUCTION Purpose The East Andover quadrangle was selected for surficial mapping during the 2016 field season as part of the Maine Geological Survey’s STATEMAP program. -
Geologic Site of the Month: Glacial and Postglacial
Geology of Grafton Notch State Park Maine Geological Survey Maine Geologic Facts and Localities November, 2001 Glacial and Postglacial Geology of Grafton Notch State Park 44o 35‘ 36.21“ N, 70o 56‘ 52.27“ W Text by Woodrow B. Thompson Maine Geological Survey, Department of Agriculture, Conservation & Forestry 1 Geology of Grafton Notch State Park Maine Geological Survey Introduction Grafton Notch State Park (Figure 1) has a spectacular combination of scenery and geology, with landforms illustrating the power of glacial ice and running water in shaping Maine's landscape. Deeply eroded glacial valleys, high cliffs, narrow stream gorges, and potholes are among the striking features that can be seen within the park. These sites are easily accessible along Route 26, with parking and trails conveniently located for group field trips. Maine Geological Survey Map USGS Map by Figure 1. Map of Grafton Notch State Park. Maine Geological Survey, Department of Agriculture, Conservation & Forestry 2 Geology of Grafton Notch State Park Maine Geological Survey Logistics The geology of the park also raises some challenging questions concerning the age and origin of Screw Auger Falls and the other waterfalls and gorges seen on this trip. These features are not well understood (even by geologists working in Maine!), so they lend themselves to thought-provoking discussions among teachers and students. Permission: The park is maintained by the Bureau of Parks and Lands, Maine Department of Agriculture, Conservation and Forestry. No permission is required to visit. Further information is available from the park headquarters (207-824-2912, May 15 - October 15) or the regional office (207-624-6080, year- round).