Volume 57 Eiszeitalter und Gegenwart Eiszeitalter und Gegenwart No. 3/4 2008 Quaternary Science Journal E & G Published for the Deutsche Quartärvereinigung e. V.

Contents Vol. 57 No. 3/4 (2008) Quaternary Science Journal

Preface: The Heidelberg Basin Drilling Project ...... 253 Volume 57 Number 3/4 Volume Vorwort: Das Bohrprojekt „Heidelberger Becken“ Gerald Gabriel, Dietrich Ellwanger, Christian Hoselmann & Michael Weidenfeller

Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area, western Heidelberg Basin...... 270 Korrelation pleistozäner Sedimente aus Bohrungen im Raum Ludwigshafen, westliches Heidelberger Becken Michael Weidenfeller & Maria Knipping

The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben based on results of the research borehole at Viernheim (Hessen, Germany)...... 286 Die pliozäne und pleistozäne fl uviatile Entwicklung im nördlichen Oberrheingraben unter besonderer Berücksichtigung der Forschungsbohrung Viernheim (Hessen, Deutschland) Christian Hoselmann

Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre...... 316 Mächtige Abfolge quartärer Sedimente im Depozentrum des Heidelberger Beckens Dietrich Ellwanger, Gerald Gabriel, Theo Simon, Ulrike Wielandt-Schuster, Reinhard O. Greiling, Eva-Marie Hagedorn, Jürgen Hahne & Jürgen Heinz

The Heidelberg Basin drilling project: Geophysical pre-site surveys ...... 338 Das Bohrprojekt Heidelberger Becken: Geophysikalische Voruntersuchungen

Hermann Buness, Gerald Gabriel & Dietrich Ellwanger · Eiszeitalter und Gegenwart 2008

Sediment Input into the Heidelberg Basin as determined from Downhole Logs ...... 367 Interpretation des Sedimentationsgeschehens im Heidelberger Becken anhand von Bohrlochmessungen Sabine Hunze & Thomas Wonik

Pleistocene molluscs from research boreholes in the Heidelberg Basin...... 382 Pleistozäne Mollusken aus Forschungsbohrungen im Heidelberger Becken Joachim Wedel

Evidence for a Waalian thermomer pollen record from the research borehole Heidelberg UniNord, Upper Rhine Graben, Baden-Württemberg ...... 403 Nachweis der Waal-Warmzeit anhand pollenanalytischer Untersuchungen an der Forschungsbohrung Heidelberg UniNord, Oberrheingraben, Baden-Württemberg Special issue: Jürgen Hahne, Dietrich Ellwanger & Rüdiger Stritzke The Heidelberg Basin Drilling Project Timing of Medieval Fluvial Aggradation at Bremgarten in the Southern Upper Guest editors: Gerald Gabriel, Dietrich Ellwanger, Rhine Graben – a Test for Luminescence Dating ...... 411 Christian Hoselmann and Michael Weidenfeller Die zeitliche Stellung einer mittelalterlichen fl uvialen Sedimentakkumulation im südlichen Oberrheingraben am Beispiel Bremgarten - ein Test für Lumineszenz-Datierungen Manfred Frechen, Dietrich Ellwanger, Daniel Rimkus & Astrid Techmer

E. Schweizerbart´sche Verlagsbuchhandlung (Nägele u. Obermiller) – Stuttgart ISSN 0424 -7116 Deutsche Quartärvereinigung e.V. German Quaternary Association Available volumes of Founded 1948 Eiszeitalter und Gegenwart (status quo 4/2009) Office: www.deuqua.de D-30655 Hannover, Stilleweg 2, P.O. 510153 E-Mail: [email protected] Web: www.deuqua.de

Bank accounts: Volume Year Price Volume Year Price Postbank Hannover: Konto 45303 308, BLZ 250 100 30, BIC: PBNKDEFF, IBAN: DE84 2501 0030 0045 3033 08 Sparkasse Hannover: Konto 2000 806 311, BLZ 250 501 80, BIC: HANSDE2HXXX, IBAN: DE10 2505 0180 2000 8063 11 6 1955 38,00 € 36 1986 42,00 € 7 1956 38,00 € 37 1987 44,00 € 11 1960 38,00 € 38 1988 44,00 € Executive board 12 1962 38,00 € 39 1989 44,00 € 13 1962 38,00 € 40 1990 48,00 € (2006-2010) 14 1963 38,00 € 41 1991 48,00 € 15 1964 38,00 € President: MARGOT BÖSE, Berlin 42 1992 49,90 € 16 1965 38,00 € 43 1993 49,90 € Vice-President: MARKUS FIEBIG, Wien 17 1966 38,00 € 44 1994 49,90 € REINHARD LAMPE, Greifswald 18 1967 vergriffen/sold out 45 1995 49,90 € 19 1968 38,00 € Editor E&G: HOLGER FREUND, Wilhelmshaven 46 1996 49,90 € 20 1969 38,00 € 47 1997 49,90 € Assistant Editor E&G: DANIELA SAUER, Stuttgart 21 1970 38,00 € 48 1998 49,90 € Editor GMit Newsletter: CHRISTIAN HOSELMANN, Wiesbaden 22 1971 38,00 € 49 1999 49,90 € BIRGIT TERHORST, Würzburg 23/24 1973 Doppelband/double feature 57,00 € 50 2000 49,90 € 25 1974 38,00 € Treasurer: JÖRG ELBRACHT, Hannover 51 2002 49,90 € 26 1975 38,00 € 52 2003 54,00 € Academic library: STEFAN WANSA, Halle 27 1976 38,00 € 53 2003 54,00 € Homepage: JÜRGEN REITNER, Wien 28 1978 38,00 € 54 2004 54,00 € 29 1979 38,00 € Public relation FRANK PREUSSER, Bern 55 2005 54,00 € 30 1980 38,00 € 56/1-2 2007 54,00 € 31 1981 38,00 € Editorial Board E&G – Quaternary Science Journal: HOLGER FREUND, Wilhelmshaven, Editor 56/3 2007 27,00 € 32 1982 38,00 € 56/4 2007 27,00 € KARL-ERNST BEHRE, Wilhelmshaven ELSE KOLSTRUP, Uppsala (Sweden) 33 1983 38,00 € 57/1-2 2008 54,00 € 34 1984 40,00 € 57/3-4 2008 54,00 € HANS-RUDOLF BORK, Kiel JAN PIOTROWSKI, Aarhus (Denmark) 35 1985 40,00 € ARNT BRONGER, Kiel LUDWIG REISCH, Erlangen JÜRGEN EHLERS, Hamburg JEF VANDENBERGHE, Amsterdam (The Netherlands) ETIENNE JUVIGNÉ, Liège (Belgium) BERND ZOLITSCHKA, Bremen WIGHART VON KOENIGSWALD, Bonn A list of all published volumes is also shown under http://www.schweizerbart.de/j/eiszeitalter-und-gegenwart. The subscription rates for DEUQUA mempership are as follows: Ordinary Members 45,- € For members of the DEUQUA volumes 11-50 (exclusive of Vol. 17-18, 29) are available for 10,- € per volume. The price for other volumes is 25,- € for DEUQUA-members. Student, retired and unwaged members 20,- € Institutions 55,- € Volume 6-7, 17, and 29 are exclusively offered by E. Schweizerbart’sche Verlagsbuchandlung (Nägele u. Obermiller), Johannesstr. 3A, D-70176 Stuttgart.

In Germany subscription rates are paid by standing order. For all other members, subscription rates should be paid by bank transfer Also available: st into one of the two accounts listed above prior to 1 March each year. If you would like to join DEUQUA or have questions regard- EISSMANN L. & LITT, T. (Hrsg.) (1994): Das Quartär Mitteldeutschlands. – Altenburger Naturwiss. Forsch., 7; Altenburg. ing missing or past volumes of Eiszeitalter und Gegenwart – Quaternary Science Journal, please contact the DEUQUA office. The price is 43,- € Manuscript Submission: Manuscripts for E&G – Quaternary Science Journal must be submitted to the editor: PD Dr. Holger Freund, ICBM – Geoecology, Schleusenstr. 1, D-26382 Wilhelmshaven; E-Mail: [email protected] If you are interested please contact: E. Schweizerbart’sche Verlagsbuchandlung, Johannesstr. 3A, D-70176 Stuttgart (www.schweizerbart.de) Titelbild: Collage „Bohrprojekt Heidelberger Becken” (Gestaltung: Juliane Herrmann, Leibniz-Institut für Angewandte Geo- physik) Bohranlage an der Lokation Viernheim (Foto: Christian Hoselmann, Hessisches Landesamt für Umwelt und Geologie) – Mächtigkeitskarte der quartären Sedimente im Oberrheingraben (Hessisches Landesamt für Umwelt und Geologie) – reflexi- Volumes 1-5, 8 and 10 are available as reprints: onsseismisches Profil in der Umgebung der Forschungsbohrungen Heidelberg UniNord (Hermann Buness, Leibniz-Institut für Firma Zwerts und Zeltinger, Heereweg 347, P.O. Box 80, NL-2160 SZ Lisse (price for DEUQUA-members is 28,- €). Angewandte Geophysik) – Bohrkerndetails (Fotos: Christian Hoselmann, Hessisches Landesamt für Umwelt und Geologie) Front cover: collage „Heidelberg Basin Drilling Project“ (design: Juliane Herrmann, Leibniz Institute for Applied Geophysics) drill- ing rig at the Viernheim location (photo: Christian Hoselmann, Geological Survey of Hessen) – thickness map of Quaternary sedi- ments in the Upper Rhine Graben (Geological Survey of Hessen) – reflection seismic profile in the vicinity of the research boreholes Heidelberg UniNord (Hermann Buness, Leibniz Institute for Applied Geophysics) – core details (photos: Christian Hoselmann, Geological Survey of Hessen)

Authors are responsible for the content of their manuscripts.

E&G – Quaternary Science Journal is printed by Papierflieger Offsetdruck GmbH, 38678 Clausthal-Zellerfeld – E-Mail: [email protected] Eiszeitalter und Gegenwart E & G Quaternary Science Journal

Volume 57 Number 3/4

179 pages, 74 figures and 13 tables

Editor and publishing: Deutsche Quartärvereinigung e. V. Hannover

Editor: HOLGER FREUND

Distribution: E. Schweizerbart´sche Verlagsbuchhandlung (Nägele u. Obermiller) – Stuttgart

2008 Eiszeitalter und Gegenwart Volume 57 Number 3/4 April 2009 E&G Quaternary Science Journal

Published for Deutsche Quartärvereinigung e. V. Editor: Holger Freund Contents

Preface: The Heidelberg Basin Drilling Project ...... 253 Vorwort: Das Bohrprojekt „Heidelberger Becken“ Gerald Gabriel, Dietrich Ellwanger, Christian Hoselmann & Michael Weidenfeller

Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area, western Heidelberg Basin...... 270 Korrelation pleistozäner Sedimente aus Bohrungen im Raum Ludwigshafen, westliches Heidelberger Becken Michael Weidenfeller & Maria Knipping

The Pliocene and Pleistocene fluvial evolution in the northern Upper Rhine Graben based on results of the research borehole at Viernheim (Hessen, Germany)...... 286 Die pliozäne und pleistozäne fluviatile Entwicklung im nördlichen Oberrheingraben unter besonderer Berücksichtigung der Forschungsbohrung Viernheim (Hessen, Deutschland) Christian Hoselmann

Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre...... 316 Mächtige Abfolge quartärer Sedimente im Depozentrum des Heidelberger Beckens Dietrich Ellwanger, Gerald Gabriel, Theo Simon, Ulrike Wielandt-Schuster, Reinhard O. Greiling, Eva-Marie Hagedorn, Jürgen Hahne & Jürgen Heinz

The Heidelberg Basin drilling project: Geophysical pre-site surveys ...... 338 Das Bohrprojekt Heidelberger Becken: Geophysikalische Voruntersuchungen Hermann Buness, Gerald Gabriel & Dietrich Ellwanger

Sediment Input into the Heidelberg Basin as determined from Downhole Logs ...... 367 Interpretation des Sedimentationsgeschehens im Heidelberger Becken anhand von Bohrlochmessungen Sabine Hunze & Thomas Wonik

Pleistocene molluscs from research boreholes in the Heidelberg Basin...... 382 Pleistozäne Mollusken aus Forschungsbohrungen im Heidelberger Becken Joachim Wedel

Evidence for a Waalian thermomer pollen record from the research borehole Heidelberg UniNord, Upper Rhine Graben, Baden-Württemberg ...... 403 Nachweis der Waal-Warmzeit anhand pollenanalytischer Untersuchungen an der Forschungsbohrung Heidelberg UniNord, Oberrheingraben, Baden-Württemberg Jürgen Hahne, Dietrich Ellwanger & Rüdiger Stritzke

Timing of Medieval Fluvial Aggradation at Bremgarten in the Southern Upper Rhine Graben – a Test for Luminescence Dating ...... 411 Die zeitliche Stellung einer mittelalterlichen fluvialen Sedimentakkumulation im südlichen Oberrheingraben am Beispiel Bremgarten - ein Test für Lumineszenz-Datierungen Manfred Frechen, Dietrich Ellwanger, Daniel Rimkus & Astrid Techmer

E. Schweizerbart´sche Verlagsbuchhandlung (Nägele u. Obermiller) – Stuttgart Eiszeitalter und Gegenwart 57/3–4 253–260 Hannover 2008 Quaternary Science Journal

Preface: The Heidelberg Basin Drilling Project

GERALD GABRIEL, DIETRICH ELLWANGER, CHRISTIAN HOSELMANN & MICHAEL WEIDENFELLER

Since Late Pliocene / Early Pleistocene, the Riv- (FEZER 1997). Nowadays, from extensive refl ec- er Rhine, as one of the largest European rivers, tion seismics, it is well known that Quaternary has acted as the only drainage system that con- deposits are thicker than 300 m. Nevertheless, nected the Alps with Northern Europe, especially because refl ection seismic surveys were only the North Sea. Along its course from the Alps to conducted in the vicinity of Heidelberg but not the English Channel the river passes several geo- within the city itself, no detailed information morphological and geological units, of which the about Quaternary structures has been available Upper Rhine Graben acts as the major sediment for this specifi c area up to now. trap (Fig. 1). Whereas the potential of sediment Aiming to better understand the geological preservation of the alpine foreland basins is low evolution of the Heidelberg Basin, its control by due to the high dynamics of the system, and the climate changes and tectonics, and the correla- area of deposition close to the North Sea was sig- tion of alpine and north European glacial evolu- nifi cantly affected several times by Pleistocene tion, the Heidelberg Basin Drilling Project was sea level changes, the ongoing subsidence of the promoted by the Leibniz Institute for Applied Upper Rhine Graben offers a unique potential Geophysics (LIAG – formerly Leibniz Institute for a continuous sediment accumulation and for Applied Geosciences, GGA-Institute) and preservation. The two major sediment traps are the three Geological Surveys of Baden-Würt- the Geiswasser Basin to the south and the Hei- temberg, Hessen, and Rheinland-Pfalz. The delberg Basin farther to the north. Generally the project focuses on the evolution of the basin mean grain size of the deposited alpine sediments since Late Pliocene. Investigations are mainly in the Upper Rhine Graben decreases from south based on newly cored boreholes at three dif- to north. In the Upper Rhine Graben, the Heidel- ferent locations within the Heidelberg Basin, berg Basin acts as the distal sediment trap for which represent different types of the basin fa- alpine sediments transported northwards by the cies (Fig. 2). Two 300 m deep, cored boreholes River Rhine. Here, continuous sediment deposi- in the city of Ludwigshafen – fi nished in 2002 tion is less disturbed by signifi cant unconformi- and 2006 – represent the western margin of the ties than in the south. Therefore, the Heidelberg basin. These boreholes were carried out within Basin defi nes a key location to understand the the framework of groundwater exploration and glacial evolution of the Alps since Late Pliocene, then left to the Geological Survey of Rheinland- and moreover to compare it with that of Northern Pfalz. The 350 m deep, cored borehole close to Europe (ELLWANGER et al. 2005). the village of Viernheim should reveal informa- The Heidelberg Basin hosts one of the thick- tion about the central basin facies. This borehole est successions of Plio-/Pleistocene sediments was carried out and sponsored by the Geological in continental Mid-Europe. The Radium Sol Survey of Hessen and fi nished in summer 2006. Therme borecore drilled during 1913-1918, is The last of the cored boreholes, the borehole located in the centre of the city of Heidelberg, Heidelberg UniNord, is located above the dep- close to the River Neckar. It is controversially ocentre of the basin, on the eastern margin of the discussed in literature. „Base Quaternary“ was Rhine Graben. This borehole reached its fi nal interpreted to be at depths of 382 m (BARTZ depth of 500 m in July 2008 and obtained fi nan- 1951), 400 m (SALOMON 1927), or even 650 m cial support from the Leibniz Institute for Ap- 254 GERALD GABRIEL ET AL.

Fig. 1: The Heidelberg Basin (HDB) within the Geosystem „Rhine“ (modifi ed after ELLWANGER et al. 2003, 2005). • Small map: The Upper Rhine Graben as main sediment trap of the Rhine between the Alps and the North Sea. • Large map: Various landsystems along the Rhine from the Alps to the Upper Rhine Graben. I – Inneralpine (overdeepened) valleys and the ice stream net of the last ice advance. II – The landsystem of glacial basins and lakes at the alpine margin, including various ice margins and the ice cover of the last ice advance. III – Hochrhein valley, terraces and buried valleys. IV – Upper Rhine Graben and the Upper Rhine lowlands, in the southern part mainly sediments of alpine provenance, in the northern part (hatched) mainly sediments of local provenance (Black Forest, Vosges). V – The classical pre-alpine meltwater land- system, type region of the classical gla- cial units of the Würmian, the Rißian, the Mindelian and the Günzian. Preface: The Heidelberg Basin Drilling Project 255

Tab. 1: Lithostratigraphic units as introduced by the three Geological Surveys working on the Heidelberg Basin.

Baden-WürttembergLGRB Rheinland-PfalzLGR RP HessenHLUG Bartz 1982 Symbolschlüssel Geologie Weidenfeller & Kärcher 2008 Baden-Württemberg Weidenfeller & Knipping 2008 Aeolian sand (Pleistocene to Holocene)

Sand-gravel layers Oberes Kieslager (OKL) Mannheim-Formation Upper gravel layer (OKL)

Neckar dominated, less alpine contains coarse material (alpine and local)

Interlayer Obere Zwischenschicht (OZ) Ladenburg Horizon Upper interlayer (OZH) predominant fine-clastic sediments only fine material

Mittleres Kieslager (MKL) Middle sand-gravel layer Alternation of contains coarse material

sand-(gravel) layers frequently Untere Zwischenschicht (UZ) Lower interlayer (UZH) in "Rhenish Facies" and only fine material Weinheim Beds Unteres Kieslager (UKL) Kurpfalz-Formation

fine-clastic interlayers contains coarse material Lower sand-silt layer Altquartär 1 and 2 (AQ1 and AQ2)*

Rhine (alpine) material, less Neckar transition unit, contains the lowermost alpine material

major change of provenance

Clay-silt- and sand-layers Pliocene I-III * Iffezheim-Formation Clay-silt-sand-layer

material of local provenance material of local provenance

* rather an indication of a sediment type than a strong geochronological classification plied Geophysics and the Geological Survey of BARTZ (1982) and HGK (1999), which distin- Baden-Württemberg. Combining all new cored guish between hydrogeological units. At this boreholes, 1450 m of core material is available early stage of the Heidelberg Basin project, it now for a detailed investigation program. is impossible to set up a uniform nomenclature. At present, no uniform classifi cation for the Table 1 summarizes the different classifi cations Plio-/Pleistocene deposits is available for the used in this special issue. three federal states, that are working on the To overcome these discrepancies, investiga- Heidelberg Basin, namely Baden-Württem- tions in the Heidelberg Basin project must berg, Hessen, and Rheinland-Pfalz. Within each preliminary focus on the establishment of a ref- Geological Survey some mandatory guidelines erence profi le of the region north of the Alps, exist that match the specifi c requirements de- including petrographic, sequence stratigraphic, rived from the local geology. The geology of biostratigraphic, and magnetostratigraphic ap- the southern Upper Rhine Graben on the ter- proaches, complemented by geochronological ritory of Baden-Württemberg is signifi cantly and geophysical data. Beyond these local to affected by the deposition of coarse-grained regional aspects, these boreholes offer a sedi- sediments eroded in the Alps. Therefore, a clas- ment archive of supra-regional relevance, par- sifi cation was introduced that considers major ticularly regarding the correlation between the unconformities and therefore the dynamic of glacial evolution in the alpine region and that the sedimentary system in the southern Upper of Northern Europe. In this context, proxies Rhine Graben (SYMBOLSCHLÜSSEL GEOLOGIE of past environmental / climate change will be BADEN-WÜRTTEMBERG 2007). In contrast, the also derived. These aims can only be achieved terminology used in Hessen and Rheinland- because the drilled cores reveal a high temporal Pfalz is built on the systems introduced by resolution without signifi cant disconformities 256 GERALD GABRIEL ET AL.

Fig. 2: Geological structural zones with the three borehole locations Ludwigshafen-Parkinsel (cored bore- holes P34 and P35, both 300 m deep), Viernheim (350 m deep), and Heidelberg UniNord (research boreholes Heidelberg UniNord 1, 190 m deep, and Heidelberg UniNord 2, 500 m deep) in the Heidelberg Basin. Preface: The Heidelberg Basin Drilling Project 257

(HOSELMANN et al. 2008). The papers compiled ing pollen data, a detailed correlation with the in this special volume of the Quaternary Sci- Ludwigshafen boreholes has not been possible ence Journal (Eiszeitalter und Gegenwart) so far. However, HOSELMANN (2008) presents prove that the drilled cores can be considered a fi rst correlation with other boreholes of the as nearly ideal with respect to these aspects. Viernheim-Bensheim region, based on reference Due to the availability of the two boreholes markers, e.g. the occurrence of the „Rhenish in Ludwigshafen at an early stage in this joint Facies“. Although a general trend of increasing project, a comprehensive dataset already ex- thickness of the Rhenish Facies towards the ists for this location. WEIDENFELLER & KNIPPING centre of the Heidelberg Basin in the south is (2008) present complementary and consistent depicted, the fundamental problem of hampered datasets as heavy mineral analysis, pollen correlation due to the absence of particular beds assemblages and the core description itself. at some borehole locations is also addressed. Somewhat surprising the results of the two Lud- The last of the boreholes to fi nish was the wigshafen-Parkinsel boreholes differ in some Heidelberg UniNord at the end of July 2008 aspects signifi cantly, although the locations lie (ELLWANGER et al. 2008). Based on the informa- only 500 m apart. Whereas the upper sections tion from the refl ection seismic surveys and the of both boreholes correlate well, thicknesses old Radium Sol Therme borehole, this location of individual layers in the deeper part are quite was expected to represent the depocentre of variable. Even the transition between Pliocene the Heidelberg Basin. With respect to the fi rst and Pleistocene deposits was found at different palynological data, this assumption seems to depths. Consequently this region seems to be be confi rmed. Even at 420 m depth Quaternary affected by tectonics during Upper Pliocene/ pollen assemblages are found. If this can be Lower Pleistocene. These results emphasize confi rmed by more detailed studies in future at that the interpretation of the climatic and fl uvial this location, the thickness of Pleistocene sedi- history of an area on the basis of the analysis of ments would be about three times more than in only a few boreholes becomes very diffi cult, not Ludwigshafen; therefore the temporal resolu- only because the sediments were affected by fl u- tion will be increased by the same amount. vial dynamics, but also by small-scale tectonics. Furthermore, the results of the refl ection seis- The distinct characterisation and stratigraphic mic surveys and the pollen data are promising, identifi cation based on several independent regarding the completeness of the profi le. The methods, and on pollen analysis in particular, interglacials – Cromerian, Bavelian, Waalian, are basic requirements for a reliable interpreta- and Tiglian – could already be identifi ed by a tion of the sedimentation history controlled both fi rst scan of the pollen assemblages. To some by climate and tectonics. extent the cores reveal strong and fast changes Considering the data available so far, a pattern of the accommodation space and sediment sup- similar to that in Ludwigshafen is found in the ply ratio. The mostly-fl uviatile character of the Viernheim borehole (HOSELMANN 2008). Based depositional environment was temporarily inter- on heavy mineral data, carbonate content, and rupted by lacustrine periods. petrography, the transition Plio/Pleistocene is To close the gap of seismic information in the seen at 225 m depth. However, this boundary is centre of the Heidelberg Basin and to ensure not sharp, but imaged as a transition zone con- that the boreholes reveal thick and more or sisting of a reworked horizon. The Pleistocene less complete sediments, geophysical pre-site sediment succession is dominated by alpine surveys were conducted at the Viernheim sediments, local deposits from the Neckar occur and the Heidelberg borehole locations (BU- only occasionally. The main part of the Pleisto- NESS, GABRIEL & ELLWANGER 2008). In close cene section is made up of ten repeated suites relation to this project, the fi rst gravity map that begin with gravely sand layers and end of the Upper Rhine Graben that comprises all with silty clay sediments or peat. Due to miss- available French and German data was com- 258 GERALD GABRIEL ET AL. piled (ROTSTEIN et al. 2006). This map clearly regard to their fossil content, and particularly images the course of the Upper Rhine Graben the remains of molluscs. The potential for the by the occurrence of negative gravity anomalies, preservation of molluscs is highly variable. Fos- of which the strongest is observed in the area sils are often found in the argillaceous layers of around Heidelberg. This could be an indica- the fi ne-grained horizons (Zwischenhorizonte), tor for a sediment succession of unusual large and to a minor amount also in the fi ne and me- thickness. Furthermore, in the vicinity of the dium-grained sand fraction of the coarse-grained borehole Heidelberg UniNord refl ection seismic horizons (Kieslager). The Pliocene beds do not profi les were recorded of which one N-S profi le contain any signifi cant remnants of molluscs. Es- contributed signifi cantly to the decision about pecially from a Mid-Pleistocene horizon, distinct the location for the borehole (BUNESS, GABRIEL information about several interglacials can be re- & ELLWANGER 2008). This profile imaged for the vealed that are suitable for correlation with pol- fi rst time a sub basin within the Heidelberg Ba- len data and a reconstruction of the palaeo-envi- sin. The usefulness of a seismic pre-site survey ronment. As a highlight, two mollusc species and was also well demonstrated by the investigations one rodent species from the Lower Pleistocene around the borehole in Viernheim. Without the (Lower Biharium) were identifi ed in the northern seismic information the borehole would have Upper Rhine Graben for the fi rst time. penetrated a fault at only 200 m depth – some- First pollen spectra from the research borehole thing that should be avoided with regard to the Heidelberg UniNord 1 are discussed by HAHNE, goals of this project. Based on the results of the ELLWANGER & STRITZKE (2008). Although only seismic surveys, the borehole location could be four short sections with well-preserved pollen relocated by several hundred meters. were found, with the evidence for a Waalian One of the challenges of this project is the cor- thermomer, a fi rst biostratigraphic marker of relation between the three locations of the new regional relevance was found. The pollen spec- boreholes, and beyond this, the correlation with trum derived from the peaty sequence between additional, shallower boreholes in the area of 180 and 181.7 m depth is very similar to the the Heidelberg Basin. In addition to lithostrati- fl ora of the type-locality for the Waalian (the graphic or biostratigraphic approaches results Leerdam section in the Netherlands), both in from geophysical downhole logging can also pollen genera and quantities. Especially the oc- reveal additional insight into the sedimentary currence of Tsuga strengthens the interpretation system. Downhole logging data is of particular as Waalian. From these fi rst fi ndings a uniform value, wherever core quality is low or – even forest vegetation in Mid Europe for the early worse – core is not recovered, because it pro- Pleistocene is concluded, representing a cli- vides in-situ information about the sediment mate that was not warmer than today. successions. HUNZE & WONIK (2008) discuss In future, correlation between all the available the physical properties of the different litholo- boreholes must be based on a combination of gies on the basis of logging data and suggest a several independent observations. Beside geo- hole-to-hole correlation between several loca- physical data and palynological data, absolute tions in the Heidelberg Basin. Furthermore, by geochronological data is required especially. statistical analysis of specifi c data sets addi- Unfortunately, no dating method is available tional information about sediment provenance that can be applied to the entire Quaternary could be derived. With sediments deposited by age spectrum. Young sediments (up to ~150 ka) the rivers Rhine and Neckar, two main sedi- can be dated by applying luminescence dating ment provenances could be distinguished. techniques. Although in the meantime some few Facing the challenge of stratigraphic correlation, and unpublished results are available for the but also that of climate reconstruction, WEDEL new cored-boreholes in the Heidelberg Basin (2008) analysed core material from both the (pers. communication Lauer), the method has Viernheim and Ludwigshafen locations with been tested before with fl uviatile sediments of Preface: The Heidelberg Basin Drilling Project 259 the Bremgarten section in the southern part of 2008), and rock and paleomagnetic studies the Upper Rhine Graben (FRECHEN et al. 2008). (ROLF, HAMBACH & WEIDENFELLER 2008). The results prove that OSL dating is a suitable method for fl uviatile sediments from large river Acknowledgement systems. Insuffi cient bleaching of the sediments prior to deposition seems to be not as dramatic Drilling projects are always challenging tasks, as previously thought. The most important requiring support from many persons and insti- fi nding for the Bremgarten section is a short tutions. The Heidelberg Drilling Project profi ted period of major erosion and re-sedimentation of signifi cantly from the support of actual and for- fl uvial sediments from the „Tiefgestade“ at the mer heads of the involved institutions, namely Bremgarten section between 500 and 600 years Prof. Dr. U. Yaramanci, Prof. Dr. H.-J. Kümpel, before present, which correlates with the begin Prof. Dr. R. Watzel, Ltd. Bergdirektor V. Dennert, of the Little Ice Age ca. AD 1450. Likewise in- Prof. Dr. B. Stribrny, Dr. R. Becker, and Prof. Dr. teresting results are expected for the Heidelberg H. Ehses. The cores from the Ludwigshafen-Par- Basin Drilling Project in the future. kinsel boreholes were made available by Tech- This special issue on the Heidelberg Basin nische Werke Ludwigshafen. Logistic support Drilling Project is published at an early stage was given by the University of Heidelberg, who of a just-starting joint research project that provided the piece of land for the Heidelberg comprises aspects from many geoscientifi c UniNord 1 borehole, Helmut Huber and the Amt disciplines. The intention of this issue is to für Vermögen und Bau Baden-Württemberg, make some main results already available to Mannheim, who made the piece of land for the the geoscientifi c community, e.g. the refl ection Heidelberg UniNord 2 borehole available, and seismic data or the lithologs of the new-cored the Springer publishing group. Dr. E. Würzner, boreholes. In fact, detailed analytic inves- Lord Major of the city of Heidelberg, and Dr. tigation of the core material has not begun. R. Franke, Stadtwerke Viernheim, arranged Therefore, a uniform interpretation of the three contacts, whenever necessary. The involved borehole locations cannot be presented, which members of staff of the Amt für Umweltschutz becomes especially obvious with the use of the Heidelberg and the Universitätsbauamt Heidel- terms „Base Quaternary“ or „transition Plio- berg were always interested in the project and Pleistocene“. But the cored boreholes should helped in a friendly way wherever they could. provide unique material to solve these chal- All this support is gratefully acknowledged. lenges during the next years. Some aspects of Prerequisite for this special issue about the this study have been submitted as a proposal to Heidelberg Basin Drilling Project was the of- the German Research Foundation in 2008. fer from Holger Freund as editor of Quaternary These eight contributions to this special issue Science Journal (Eiszeitalter und Gegenwart) of the Quaternary Science Journal (Eiszeitalter to publish a special issue. He organised the re- und Gegenwart) present the most recent fi nd- view process with great patience. But the most ings from ongoing research on the Heidelberg important work was done by the many authors Basin. Thereby, they complement some papers who contributed with their papers to this issue. dealing with „The Rhine – a major fl uvial re- The corresponding comments of many review- cord“, which is the title of a special issue of the ers helped to improve these papers. Many Netherlands Journal of Geosciences published thanks to all colleagues involved! in 2008, edited by Wim Westerhoff. This special issue addresses, for instance, issues like the tec- References tonic infl uence on the preservation of fl uviatile sediments (WEIDENFELLER & KÄRCHER 2008), BARTZ, J. (1951): Revision des Bohr-Profils der Hei- palynological investigations (KNIPPING 2008), delberger Radium-Sol-Therme. – Jahresberichte heavy mineral analysis (HAGEDORN & BOENIGK und Mitteilungen des Oberrheinischen Geolo- 260 GERALD GABRIEL ET AL.

gischen Vereins, 33: 101-125. at Viernheim (Hessen, Germany). – Quaternary BARTZ, J. (1982), mit Beitr. von Brelie, G. von Science Journal (Eiszeitalter und Gegenwart), der und Maus, H.: Quartär und Jungtertiär II 57/3-4: 286-315. im Oberrheingraben im Großraum Karlsruhe. HOSELMANN, C., ELLWANGER, D., GABRIEL, G., WEDEL, – Geologisches Jahrbuch, A 63: 3–237. J. & WEIDENFELLER, M. (2008): Forschungs- BUNESS, H., GABRIEL, G. & ELLWANGER, D. (2008): bohrungen im nördlichen Oberrheingraben The Heidelberg Basin drilling project: Geophysi- (Heidelberger Becken) - Neue Erkenntnisse zur cal pre-site surveys. – Quaternary Science Journal geologischen Entwicklung. – Abhandlungen der (Eiszeitalter und Gegenwart), 57/3-4: 338-366. Geologischen Bundesanstalt, 62: 95-98. ELLWANGER, D. (2003), unter Mitarbeit von Läm- HUNZE, S. & WONIK, T. (2008): Sediment Input mermann-Barthel, J. und Neeb, I.: Eine land- into the Heidelberg Basin as determined from schaftsübergreifende Lockergesteinsgliederung Downhole Logs. – Quaternary Science Journal vom Alpenrand zum Oberrhein. – GeoAr- (Eiszeitalter und Gegenwart), 57/3-4: 367-381. chaeoRhein, 4: 81-124. KNIPPING, M. (2008): Early and Middle Pleistocene ELLWANGER, D., GABRIEL, G., HOSELMANN, C., LÄM- pollen assemblages of deep core drillings in MERMANN-BARTHEL, J. & WEIDENFELLER, M. (2005): the northern Upper Rhine Graben, Germany. The Heidelberg Drilling Project (Upper Rhine – Netherlands Journal of Geosciences – Geolo- Graben, Germany). – Quaternaire, 16/3: 191-199. gie en Mijnbouw, 87/1: 51-66. ELLWANGER, D., GABRIEL, G., SIMON, T., WIELANDT- ROLF, C., HAMBACH, U. & WEIDENFELLER, M. (2008): SCHUSTER, U., GREILING, R.O., HAGEDORN, E.-M., Rock and palaeomagnetic evidence for the Plio- HAHNE, J. & HEINZ, J. (2008): Long sequence of Pleistocene palaeoclimatic change recorded in the Quaternary Rocks in the Heidelberg Basin Dep- Upper Rhine Graben sediments (core Ludwigsha- ocentre. – Quaternary Science Journal (Eiszeit- fen-Parkinsel). – Netherlands Journal of Geosci- alter und Gegenwart), 57/3-4: 316-337. ences – Geologie en Mijnbouw, 87/1: 41-50. FEZER, F. (1997): 220 m Altpleistozän im „Heidelberger ROTSTEIN, Y., EDEL, J.-B., GABRIEL, G., BOULANGER, Loch“. – Eiszeitalter und Gegenwart, 47: 145-153. D., SCHAMING, M. & MUNSCHY, M. (2006): Insight FRECHEN, M., ELLWANGER D., RIMKUS, D. & TECHMER, into the structure of the Upper Rhine Graben and A. (2008): Timing of Medieval Fluvial Aggrada- its basement from a new compilation of Bouguer tion at Bremgarten in the Southern Upper Rhine Gravity. – Tectonophysics, 425/1-4: 55-70. Graben. – Quaternary Science Journal (Eiszeit- SALOMON, W. (1927) : Die Erbohrung der Heidel- alter und Gegenwart), 57/3-4: 411-432. berger Radium-Sol-Therme und ihre geologisch- HAGEDORN, E. & BOENIGK, W. (2008): The Pliocene en Verhältnisse. – Abhandlungen Heidelberger and Quaternary sedimentary and fl uvial history Akademie der Wissenschaften, 14: 1 – 105. of the Upper Rhine Graben based on heavy min- SYMBOLSCHLÜSSEL GEOLOGIE BADEN-WÜRTTEMBERG: eral analysis. – Netherlands Journal of Geosci- Verzeichnis Geologischer Einheiten - Aktualisi- ences – Geologie en Mijnbouw, 87/1: 21-32. erte Ausgabe März 2007. - Internet-Publ.: http:// HAHNE, J., ELLWANGER, D. & STRITZKE, R. (2008): www.lgrb.uni-freiburg.de; Freiburg i. Br. (Reg.- Evidence for a Waalian thermomer pollen record Präs. Freiburg - L.-Amt Geol. Rohst. Bergb.). from the research borehole Heidelberg UniNord, WEDEL, J. (2008): Pleistocene molluscs from re- Upper Rhine Graben, Baden-Württemberg. search boreholes in the Heidelberg Basin. – Quaternary Science Journal (Eiszeitalter und – Quaternary Science Journal (Eiszeitalter und Gegenwart), 57/3-4: 403-410. Gegenwart), 57/3-4: 382-402. HGK (1999): Hydrogeologische Kartierung und WEIDENFELLER, M. & KÄRCHER, T. (2008): Tectonic Grundwasserbewirtschaftung Rhein-Neckar- infl uence on fl uvial preservation: aspects of Raum. Fortschreibung 1983-1999. – Ministe- the architecture of Middle and Late Pleistocene rium für Umwelt und Verkehr Baden-Würt- sediments in the northern Upper Rhine Graben, temberg, Hessisches Ministerium für Umwelt, Germany. – Netherlands Journal of Geosciences Landwirtschaft und Forsten, Ministerium für – Geologie en Mijnbouw, 87(1): 33-40. Umwelt und Forsten Rheinland-Pfalz: 155 p.; WEIDENFELLER, M. & KNIPPING, M. (2008): Correla- Stuttgart, Wiesbaden, Mainz. tion of Pleistocene sediments from boreholes in HOSELMANN, C. (2008): The Pliocene and Pleistocene the Ludwigshafen area, western Heidelberg Ba- fl uvial evolution in the northern Upper Rhine sin. – Quaternary Science Journal (Eiszeitalter Graben based on results of the research borehole und Gegenwart), 57/3-4: 270-285. Eiszeitalter und Gegenwart 57/3–4 261–269 Hannover 2008 Quaternary Science Journal

Vorwort: Das Bohrprojekt „Heidelberger Becken“

GERALD GABRIEL, DIETRICH ELLWANGER, CHRISTIAN HOSELMANN & MICHAEL WEIDENFELLER

Seit dem späten Pliozän / frühen Pleistozän dium Sol Therme Bohrung, welche zwischen stellt der Rhein als einer der größten europäi- 1913 und 1918 im Zentrum von Heidelberg schen Flüsse das einzige Entwässerungssystem abgeteuft wurde, wird in der Literatur bis heute dar, welches die Alpen mit der Nordsee verbin- kontrovers diskutiert. Die „Quartärbasis“ wird det. Auf seinem Verlauf von den Alpen bis hin in Tiefen von 382 m (BARTZ 1951), 400 m (SA- zum Ärmelkanal passiert er unterschiedliche LOMON 1927) oder sogar 650 m (FEZER 1997) geomorphologische und geologische Ein- gesehen. Durch umfassende refl exionsseis- heiten, von denen der Oberrheingraben die mische Messungen ist heute belegt, dass die Hauptsedimentfalle bildet (Abb. 1). Während quartären Ablagerungen Mächtigkeiten größer die alpinen Vorlandbecken aufgrund der hohen 300 m erreichen. Da refl exionsseismische Un- Dynamik des Gesamtsystems nur ein geringes tersuchungen jedoch nur in der Umgebung von Erhaltungspotenzial hinsichtlich der Sediment- Heidelberg durchgeführt wurden, nicht jedoch ablagerung aufweisen, und das Ablagerungsge- im Stadtgebiet selbst, waren bislang keine de- biet unmittelbar an der Nordseeküste mehrfach taillierten Informationen über quartäre Struktu- signifi kant durch pleistozäne Meeresspiegel- ren in diesem Bereich verfügbar. schwankungen beeinfl usst wurde, bietet die Mit dem Ziel, zu einem tieferen Verständnis andauernde Subsidenz des Oberrheingrabens hinsichtlich der geologischen Entwicklung des einmalige Bedingungen für die kontinuierliche Heidelberger Beckens, insbesondere der Steue- Akkumulation von Sedimenten. Die beiden rung durch Klimaveränderungen und Tektonik, größten Sedimentfallen sind dabei das Geis- sowie der Korrelation der alpinen und nordeu- wasser Becken im südlichen Teil sowie das ropäischen Vereisungsgeschichte zu gelangen, Heidelberger Becken im Nordosten. Generell wurde das Bohrprojekt „Heidelberger Becken“ nimmt die mittlere Korngröße der im Ober- durch das Leibniz-Institut für Angewandte Ge- rheingraben abgelagerten alpinen Sedimente ophysik (LIAG – vormals Institut für Geowis- von Süden nach Norden ab. Das Heidelberger senschaftliche Gemeinschaftsaufgaben, GGA- Becken fungiert als distale Falle im Oberrhein- Institut) und die drei geologischen Dienste von graben für alpine Sedimente, die durch den Baden-Württemberg, Hessen und Rheinland- Rhein Richtung Norden transportiert werden. Pfalz initiiert. Das Projekt fokussiert auf die Hier ist die kontinuierliche Ablagerung von Se- Beckenentwicklung seit dem späten Pliozän. dimenten weniger stark durch Diskontinuitäten Die Untersuchungen basieren wesentlich auf gestört als im südlichen Teil des Rheingrabens. neuen Kernbohrungen an drei verschiedenen Daher stellt das Heidelberger Becken eine Lokationen innerhalb des Heidelberger Be- Schlüsselposition für das Verständnis der gla- ckens, welche unterschiedliche Faziesräume zialen Entwicklung der Alpen seit dem späten abbilden (Abb. 2). Zwei 300 m tiefe Kernboh- Pliozän und darüber hinaus für einen Vergleich rungen in Ludwigshafen – abgeteuft 2002 und mit der glazialen Entwicklung Nordeuropas dar 2006 – repräsentieren den westlichen Rand des (ELLWANGER et al. 2005). Beckens. Diese Bohrungen wurden im Rahmen Das Heidelberger Becken enthält eine der der Grundwassererkundung realisiert und dem mächtigsten Abfolgen plio-/pleistozäner Sedi- Geologischen Dienst von Rheinland-Pfalz zur mente im kontinentalen Mitteleuropa. Die Ra- Verfügung gestellt. Die 350 m tiefe Kernboh- 262 GERALD GABRIEL ET AL.

Abb. 1: Das Heidelberger Becken (HDB) im Geosystem „Rhein“ (ver- ändert nach ELLWANGER et al. 2003, 2005). • Kleine Karte: Der Oberrhein- graben als Hauptsedimentfalle des Rheins zwischen Alpen und Nordsee. • Große Karte: Verschiedene Landschaftstypen entlang des Rheins von den Alpen bis zum Oberrheingraben. I – Inneralpine (übertiefe) Täler und die Eisströme beim letzten Vorstoß. II – Randalpine Becken- und Seen- landschaft mit verschiedenen Eisrandlagen und der Eisbede- ckung beim letzten Vorstoß. III – Hochrheintal, Terrassenstufen und verschüttete Täler. IV – Oberrheingraben bzw. ober- rheinische Tiefebene, Lockerse- dimente im Südteil überwiegend alpiner Herkunft, im Nordteil (schräg schraffi ert) überwiegend lokaler Herkunft (Schwarzwald, Vogesen). V – Die klassische oberschwäbi- sche Schmelzwasserterrassen- landschaft (Typregion für Würm, Riss, Mindel und Günz). Vorwort: Das Bohrprojekt „Heidelberger Becken“ 263

Tab. 1: Lithostratigraphische Einheiten, wie sie durch die drei Geologischen Dienste verwendet werden, welche Anteile am Heidelberger Becken haben.

Baden-WürttembergLGRB Rheinland-PfalzLGR RP HessenHLUG Bartz 1982 Symbolschlüssel Geologie Weidenfeller & Kärcher 2008 Baden-Württemberg Weidenfeller & Knipping 2008 Äolische Sande (Pleistozän bis Holozän)

Sand-Kies Lagen Oberes Kieslager (OKL) Mannheim-Formation Oberes Kieslager (OKL)

Neckar-dominiert, wenig alpin Grobsedimente (alpin und lokal)

Zwischenhorizont Obere Zwischenschicht (OZ) Ladenburg Horizont Oberer Zwischenhorizont (OZH) vorwiegend feinklastische Sedimente nur Feinsedimente

Mittleres Kieslager (MKL) Mittlere sandig-kiesige Folge Wechsel von Grobsedimente (alpin und lokal)

Sand-(Kies) Lagen häufig in Untere Zwischenschicht (UZ) Unterer Zwischenhorizont (UZH) "Rheinischer Fazies" und nur Feinsedimente Weinheim Schichten Unteres Kieslager (UKL) Kurpfalz-Formation feinklastischen Grobsedimente (alpin und lokal) Untere sandig-siltige Folge Zwischenhorizonten Altquartär 1 und 2 (AQ1 und AQ2)*

(alpine) Rheinsedimente, wenig Neckar Übergangsbereich mit ersten alpinen Sedimenten

Wechsel des Hauptliefergebietes

Ton-Silt und Sand Lagen Pliozän I-III * Iffezheim-Formation Ton-Sand-Silt Folgen

Sedimente lokalen Ursprungs Sedimente lokalen Ursprungs

* eher die Bezeichnung eines Sedimenttyps, denn eine strenge geochronologische Einordnung rung bei Viernheim soll Informationen über der lokalen Geologie Rechnung tragen. Die die zentrale Beckenfazies liefern. Diese im Geologie des südlichen Oberrheingrabens in Sommer 2006 abgeschlossene Bohrung wurde Baden-Württemberg wird maßgeblich durch durch den Geologischen Dienst von Hessen die Ablagerung grobklastischer Sedimente betreut und fi nanziert. Die letzte Kernbohrung, bestimmt, die in den Alpen abgetragen wur- Heidelberg UniNord, wurde im Subsidenz- den. Daher wird eine Formationsgliederung zentrum des Beckens am östlichen Rand des angewendet, die im südlichen Graben die Oberrheingrabens angesetzt. Diese durch das Hauptdiskontinuitäten und somit die Dynamik Leibniz-Institut für Angewandte Geophysik und des Systems berücksichtigt (SYMBOLSCHLÜSSEL den Geologischen Dienst von Baden-Württem- GEOLOGIE BADEN-WÜRTTEMBERG 2007). Dage- berg fi nanzierte Bohrung hat ihre Endteufe von gen basiert die in Hessen und Rheinland-Pfalz 500 m im Juli 2008 erreicht. Alle neuen Kern- verwendete Terminologie zum Teil auf den von bohrungen zusammen liefern 1450 m Kernmate- BARTZ (1982) und durch die HGK (1999) ein- rial, das nun für ein detailliertes Untersuchungs- geführten Systemen, die zwischen hydrogeo- programm zur Verfügung steht. logischen Einheiten unterscheiden. In diesem Bislang existiert in den Bundesländern mit frühen Stadium des Projekts „Heidelberger Anteilen am Heidelberger Becken (Baden- Becken“ ist die Defi nition einer einheitlichen Württemberg, Hessen und Rheinland-Pfalz) Nomenklatur noch nicht möglich. Tabelle 1 keine einheitliche Gliederung der plio-/ stellt die in diesem Themenheft verwendeten pleistozänen Ablagerungen. In jedem geolo- unterschiedlichen Gliederungen gegenüber. gischen Dienst gibt es verbindliche Vorga- Um diese Diskrepanzen zu überwinden, müssen ben, welche den spezifi schen Gegebenheiten die Untersuchungen im Projekt „Heidelberger 264 GERALD GABRIEL ET AL.

Abb. 2: Geologische Strukturräume mit den drei Bohrlokationen Ludwigshafen-Parkinsel (Kernbohrungen P34 und P35, jeweils 300 m tief), Viernheim (350 m tief) und Heidelberg UniNord (Forschungsbohrungen Heidelberg UniNord 1, 190 m tief und Heidelberg UniNord 2, 500 m tief) im Heidelberger Becken. Vorwort: Das Bohrprojekt „Heidelberger Becken“ 265

Becken“ zunächst auf die Erstellung eines Re- sicher ist, sofern diese nur auf einer Bohrung ferenzprofi ls für das Gebiet nördlich der Alpen beruht. Die Sedimente werden nicht nur durch ausgerichtet sein. Dieses beinhaltet petrogra- die fl uviatile Dynamik beeinfl usst, sondern phische, sequenzstratigraphische, biostratigra- auch durch kleinmaßstäbliche tektonische Er- phische und magnetostratigraphische Ansätze, eignisse. Die auf verschiedenen unabhängigen die durch geochronologische und geophysikali- Untersuchungen, insbesondere auch Pollen- sche Daten ergänzt werden. Über diese lokalen analysen, basierende Charakterisierung und bis regionalen Aspekte hinaus ist mit den neuen stratigraphische Einordnung der Sedimente Bohrungen im Hinblick auf die Korrelation der ist grundlegende Voraussetzung für eine ver- glazialen Entwicklungen im Alpenraum und lässliche Interpretation der durch Klima und Nordeuropa ein Sedimentarchiv von überre- Tektonik gesteuerten Ablagerungsgeschichte. gionaler Bedeutung erschlossen worden. In Unter Berücksichtigung des bislang vorliegen- diesem Zusammenhang sollen auch Proxy für den Datensatzes ergibt sich für die Bohrung Umweltveränderungen/Klimaveränderungen Viernheim ein Bild, das dem in Ludwigshafen in der Vergangenheit abgeleitet werden. Die- sehr ähnlich ist (HOSELMANN 2008). Auf Schwer- se Ziele können nur erreicht werden, weil die mineralanalysen, Karbonatgehalten und der gebohrten Kerne eine hohe zeitliche Aufl ösung Petrographie basierend, wird der Übergang Plio- und nur wenige Schichtlücken aufweisen /Pleistozän bei 225 m gesehen. Allerdings han- (HOSELMANN et al. 2008). Die in diesem The- delt es sich dabei um keinen scharfen Übergang, menheft vom Quaternary Science Journal (Eis- sondern um einen Bereich aufgearbeiteter Ho- zeitalter und Gegenwart) zusammengestellten rizonte. Die pleistozäne Sedimentabfolge wird Artikel zeigen, dass die gebohrten Kerne unter durch alpines Material dominiert, lokale Abla- diesen Aspekten als nahezu ideal angesehen gerungen des Neckars treten nur untergeordnet werden können. auf. Der wesentliche Teil des pleistozänen Aufgrund der Verfügbarkeit der beiden Kern- Abschnitts wird aus zehn sich wiederholenden bohrungen in Ludwigshafen zu einem sehr Abfolgen aufgebaut, welche mit kiesig-sandi- frühen Zeitpunkt in diesem Projekt, liegt für gen Lagen beginnen und mit schluffi g-tonigen diese Lokation aktuell der umfangreichste Sedimenten enden. Aufgrund noch fehlender Datensatz vor. WEIDENFELLER & KNIPPING Pollenanalysen kann bislang keine detaillierte (2008) präsentieren sich ergänzende konsis- Korrelation mit den Bohrungen in Ludwigsha- tente Datensätze von Schwermineralanalysen, fen vorgenommen werden. Jedoch stellt HO- Pollenanalysen und der Kernbeschreibung SELMANN (2008) basierend auf Leithorizonten, selbst. Etwas überraschend unterscheiden wie dem ersten Auftreten der „Rheinischen sich die Ergebnisse der beiden Bohrungen Fazies“, erste Korrelationen mit weiteren Boh- Ludwigshafen-Parkinsel P34 und P35 in rungen aus der Region Viernheim-Bensheim einzelnen Aspekten signifi kant, obwohl bei- vor. Wenngleich der generelle Trend einer Zu- de Lokationen nur etwa 500 m auseinander nahme der Mächtigkeit der rheinischen Fazies liegen. Während die oberen Abschnitte beider zum Zentrum des Heidelberger Beckens hin Bohrungen gut korrelieren, sind die Mächtig- aufgezeigt werden kann, wird auch das funda- keiten einzelner Einheiten des unteren Teils mentale Problem der erschwerten Korrelation lateral sehr variabel. Selbst der Übergang infolge an bestimmten Lokationen fehlender Plio-/Pleistozän wurde in unterschiedlichen einzelner Schichtpakete angesprochen. Teufen angetroffen. Folglich erscheint diese Die Heidelberg UniNord Bohrung wurde erst Region während des späten Pliozäns/frühen Ende Juli 2008 fertig gestellt (ELLWANGER et Pleistozäns maßgeblich durch Tektonik be- al. 2008). Basierend auf den Ergebnissen der ansprucht worden zu sein. Diese Ergebnisse refl exionsseismischen Erkundung und der alten belegen, dass die Ableitung der klimatischen Bohrung Radium Sol Therme wird davon aus- und fl uviatilen Entwicklung einer Region un- gegangen, dass diese Lokation das Depozent- 266 GERALD GABRIEL ET AL. rum des Heidelberger Beckens repräsentiert. wert einer seismischen Vorerkundung wurde Diese Annahme scheint durch die ersten paly- ebenfalls durch die Untersuchungen rund um nologischen Daten bestätigt zu werden. Selbst die Bohrlokation bei Viernheim demonstriert. in 420 m Teufe ist das Pollenspektrum noch Ohne die seismischen Informationen hätte die quartärzeitlich. Sollte sich dieses Ergebnis Bohrung bereits in einer Tiefe von 200 m eine zukünftig durch detaillierte Untersuchungen Störung durchteuft – ein Sachverhalt, der im erhärten, wäre die Mächtigkeit der pleistozänen Hinblick auf die Ziele dieses Projekts unbe- Sedimente an dieser Lokation etwa dreifach so dingt vermieden werden sollte. Die Ergebnisse groß wie in Ludwigshafen und es würde sich der seismischen Messungen berücksichtigend die erwartete hohe zeitliche Aufl ösung bestä- konnte der Bohransatzpunkt somit um einige tigen. Darüber hinaus werden die Ergebnisse hundert Meter verschoben werden. der refl exionsseismischen Messungen und der Eine der Herausforderungen in diesem Projekt Pollendaten als viel versprechend im Hinblick liegt sicherlich in der Korrelation zwischen den auf die Vollständigkeit des Profi ls angesehen. drei Lokationen der neuen Bohrungen sowie Bereits bei der ersten Durchsicht der Pollen- darüber hinaus in der Korrelation mit wei- spektren konnten die Interglaziale Cromer, Ba- teren, weniger tiefen Bohrungen im Bereich vel, Waal und Tiglium identifi ziert werden. Die des Heidelberger Beckens. In Ergänzung zu li- Bohrkerne zeigen teilweise starke und auch thostratigraphischen oder biostratigraphischen schnelle Änderungen im Verhältnis von Ak- Ansätzen können auch bohrlochgeophysikali- kommodationsraum zu Sedimentangebot. Der sche Messungen Einblicke in das sedimentäre meist fl uviatil geprägte Ablagerungsraum wird System liefern. Bohrlochgeophysikalische zeitweise von lakustrinen Perioden abgelöst. Daten sind dort von besonderem Wert, wo die Um die Lücke an seismischen Informationen im Kernqualität schlecht ist, oder – noch ungüns- Zentrum des Heidelberger Beckens zu schlie- tiger – keine Kerne gewonnen werden konnten, ßen und sicher zu stellen, dass die Bohrungen da sie in-situ Informationen über die Sedi- mächtige und vergleichsweise vollständige mentabfolgen zur Verfügung stellen. HUNZE & Sedimente erschließen, wurden an den Bohr- WONIK (2008) diskutieren die physikalischen lokationen Viernheim und Heidelberg UniNord Eigenschaften der verschiedenen Lithologien geophysikalische Vorerkundungen durchge- auf der Basis von Bohrlochmessungen und führt (BUNESS, GABRIEL & ELLWANGER 2008). In schlagen eine Korrelation zwischen verschie- enger Verknüpfung mit diesem Projekt wurde denen Bohrpunkten im Heidelberger Becken die erste Schwerekarte des Oberrheingrabens vor. Darüber hinaus werden durch die An- erstellt, die sämtliche verfügbaren Daten von wendung statistischer Verfahren auf spezifi - französischer und deutscher Seite berücksich- sche Datensätze Informationen bezüglich der tigt (ROTSTEIN et al. 2006). Diese Karte bildet Liefergebiete der Sedimente abgeleitet. Mit durch das Auftreten negativer Schwereanoma- Sedimentablagerungen durch den Rhein bzw. lien deutlich den Verlauf des Oberrheingrabens den Neckar können zwei unterschiedliche Lie- ab, von denen die größte im Bereich um Hei- fergebiete unterschieden werden. delberg zu beobachten ist. Dies kann als Hin- Ebenfalls die stratigraphische Korrelation weis auf Sedimentabfolgen von ungewöhnlich betreffend, aber auch Aspekte der Paläo-Kli- großer Mächtigkeit angesehen werden. Ferner marekonstruktion, analysiert WEDEL (2008) wurden im Umfeld der Bohrung Heidelberg Kernmaterial der Bohrungen Viernheim und UniNord refl exionsseismische Profi le aufge- Ludwigshafen unter paläontologischen Aspek- nommen, von denen ein N-S Profi l maßgeblich ten, insbesondere im Hinblick auf Mollusken- zur Festlegung des Bohrpunktes beigetragen reste. Das Erhaltungspotenzial für Mollusken hat (BUNESS, GABRIEL & ELLWANGER 2008). erscheint hochgradig variabel. Fossilien wer- Dieses Profi l bildet zum ersten Mal ein Sub- den oftmals in den lehmig/tonigen Schichten becken im Heidelberger Becken ab. Der Mehr- der feinkörnigen Lagen (Zwischenhorizonte) Vorwort: Das Bohrprojekt „Heidelberger Becken“ 267 gefunden, untergeordnet auch in den feinen Mitteilung), wurde die Methode zunächst an und mittelfeinen Sanden der grobkörnigen fl uviatilen Sedimenten des Profi ls Bremgarten Ablagerungen (Kieslager). In den pliozänen aus dem südlichen Teil des Oberrheingrabens Ablagerungen fi nden sich keinerlei Mollusken- getestet (FRECHEN et al. 2008). Die Ergebnisse reste. Eindeutige Informationen über mehrere zeigen, dass OSL-Techniken für die Datierung Interglaziale können insbesondere aus einem fl uviatiler Sedimente großer Flusssysteme ge- Horizont entnommen werden, welcher dem eignet sind. Eine ungenügende Bleichung der mittleren Pleistozän zugeordnet wird. Diese Sedimente vor der Ablagerung scheint weniger Daten sind sowohl für die Korrelation mit großen Einfl uss auf die Ergebnisse zu haben, Pollenanalysen als auch für die Rekonstruk- wie bislang angenommen. Das wesentliche Er- tion der Paläo-Umweltbedingungen geeignet. gebnis hinsichtlich des Profi ls Bremgarten be- Ein „Highlight“ stellt der erstmalige Fund von steht in der Ermittlung eines kurzen Abschnitts zwei Molluskenarten sowie einer Nagetierart starker Erosion und Resedimentation fl uviatiler im nördlichen Oberrheingraben aus dem unte- Sedimente des Tiefegestades vor 500 bis 600 ren Pleistozän (Unteres Biharium) dar. Jahren. Dieses Ereignis korreliert mit dem HAHNE, ELLWANGER & STRITZKE (2008) disku- Beginn der kleinen Vereisung etwa 1450 AD. tieren erste Pollenanalysen der Forschungs- Ähnlich interessante Datierungsergebnisse sind bohrung Heidelberg UniNord 1. Wenngleich zukünftig im Rahmen des Bohrprojektes „Hei- gut erhaltene Pollen lediglich in vier kurzen delberger Becken“ zu erwarten. Abschnitten aufgefunden wurden, konnte mit Dieses Themenheft über das Heidelberger Be- der Identifi kation der Waal-Warmzeit ein bio- cken erscheint zu einem frühen Zeitpunkt eines stratigraphischer Marker bestimmt werden, der gerade beginnenden Forschungsvorhabens, auch überregional von Bedeutung ist. Das der welches Aspekte diverser geowissenschaftli- torfi gen Sequenz zwischen 180,0 und 181,7 m cher Disziplinen vereint. Die Intention besteht zugehörige Pollenspektrum ähnelt sowohl darin, verschiedene grundlegende Ergebnisse, hinsichtlich der Pollentypen als auch der Pol- wie die Daten der Refl exionsseismik oder die lenhäufi gkeit stark der Flora des Typus-Profi ls Lithologs der neuen Kernbohrungen, der geo- für das Waalium (Profi l Leerdam, Niederlan- wissenschaftlich arbeitenden Gemeinschaft de). Insbesondere das Auftreten von Tsuga verfügbar zu machen. Tatsächlich fehlen noch bedingt die Einordnung in die Waal-Warmzeit. verschiedene detaillierte Untersuchungen am Basierend auf diesen ersten Ergebnissen wird Kernmaterial. Daher kann zum jetzigen Zeit- eine einheitliche Bewaldung Mitteleuropas im punkt keine gemeinsame Interpretation des Zeitraum des frühen Pleistozäns postuliert, die gesamten Kernmaterials vorgestellt werden, ein Klima repräsentiert, das nicht wärmer war was sich insbesondere in der unterschiedlichen als das heutige. Verwendung der Begriffe „Quartärbasis“ oder Korrelationen zwischen den verschiedenen „Übergang Plio-/Pleistozän“ niederschlägt. Mit Bohrungen müssen zukünftig auf der Kombi- den neuen Bohrkernen sollte aber einzigarti- nation der verschiedenen unabhängigen Ver- ges Material zur Verfügung stehen, um diese fahren aufbauen. Neben geophysikalischen und Aufgabe in den kommenden Jahren lösen zu palynologischen Daten sind vor allem absolute können. Ein Teil der Untersuchungen soll Altersdatierungen notwendig. Leider steht kein im Rahmen eines Antragpakets durchgeführt Datierungsverfahren zur Verfügung, welches werden, welches 2008 bei der Deutschen For- auf das gesamte Quartär angewendet werden schungsgemeinschaft eingereicht wurde. kann. Junge Sedimente (bis zu ~150 ka) kön- Die acht Beiträge zu diesem Themenheft des nen mit Lumineszenztechniken datiert werden. Quaternary Science Journal (Eiszeitalter und Obwohl inzwischen auch erste unpublizierte Gegenwart) präsentieren die aktuellsten Er- Ergebnisse für die neuen Kernbohrungen im gebnisse andauernder Forschungsarbeiten zum Heidelberger Becken vorliegen (Lauer, pers. Heidelberger Becken. Damit komplettieren 268 GERALD GABRIEL ET AL. sie verschiedene Artikel, welche sich mit dem das Angebot von PD Dr. H. Freund als Editor „Rhein – ein bedeutendes fl uviatiles Sediment- von Quaternary Science Journal (Eiszeitalter archiv“ befassen. Dies ist der frei übersetzte und Gegenwart) einen Sonderband zu publi- Titel eines Sonderbands des Netherlands Journal zieren. Er organisierte mit großer Geduld das of Geosciences, der 2008 unter der Editoren- Begutachtungsverfahren. Die wichtigsten Ar- schaft von Wim Westerhoff publiziert wurde. beiten wurden jedoch durch die vielen Autoren Dieser Sonderband spricht ergänzende Themen, durchgeführt, die mit ihren Artikeln zu diesem wie den Einfl uss der Tektonik auf die Erhaltung Themenheft beitragen. Die Anmerkungen der fl uviatiler Sedimente (WEIDENFELLER & KÄRCHER Gutachter gaben wesentliche Hinweise für die 2008), palynologische Untersuchungen (KNIP- Verbesserung einzelner Manuskripte. Vielen PING 2008), Schwermineralanalysen (HAGEDORN Dank an alle Kollegen, die sich beteiligt haben! & BOENIGK 2008) sowie gesteins- und paläoma- gnetische Studien (ROLF, HAMBACH & WEIDEN- Literatur FELLER 2008) im Oberrheingraben an.

BARTZ, J. (1951): Revision des Bohr-Profils der Hei- Dank delberger Radium-Sol-Therme. – Jahresberichte und Mitteilungen des Oberrheinischen Geologi- Bohrprojekte stellen stets eine herausfordernde schen Vereins, 33: 101-125. Aufgabe dar, die Unterstützung vieler Personen BARTZ, J. (1982), mit Beitr. von Brelie, G. von und Institutionen verlangt. Das Bohrprojekt der und Maus, H.: Quartär und Jungtertiär II „Heidelberger Becken“ hat wesentlich von der im Oberrheingraben im Großraum Karlsruhe. Unterstützung der derzeitigen und früheren – Geologisches Jahrbuch, A 63: 3–237. Leiter der beteiligten Einrichtungen profi tiert, BUNESS, H., GABRIEL, G. & ELLWANGER, D. (2008): The Heidelberg Basin drilling project: Geo- namentlich Prof. Dr. U. Yaramanci, Prof. Dr. physical pre-site surveys. – Quaternary Science H.-J. Kümpel, Prof. Dr. R. Watzel, Ltd. Berg- Journal (Eiszeitalter und Gegenwart), 57/3-4: direktor V. Dennert, Prof. Dr. B. Stribrny, Dr. 338-366. R. Becker und Prof. Dr. H. Ehses. Die Kern- ELLWANGER, D. (2003), unter Mitarbeit von Lämmer- bohrungen Ludwigshafen-Parkinsel wurden mann-Barthel, J. und Neeb, I.: Eine landschafts- durch die Technischen Werke Ludwigshafen übergreifende Lockergesteinsgliederung vom zur Verfügung gestellt. Logistische Unter- Alpenrand zum Oberrhein. – GeoArchaeoRhein, stützung gaben die Universität Heidelberg in 4: 81-124. Form der Bereitstellung des Grundstücks für ELLWANGER, D., GABRIEL, G., HOSELMANN, C., LÄMMERMANN-BARTHEL, J. & WEIDENFELLER, M. die Bohrung Heidelberg UniNord 1, Helmut (2005): The Heidelberg Drilling Project (Upper Huber sowie das Amt für Vermögen und Bau Rhine Graben, Germany). – Quaternaire, 16/3: Baden-Württemberg mit der Bereitstellung des 191-199. Geländes für die Bohrung Heidelberg UniNord ELLWANGER, D., GABRIEL, G., SIMON, T., WIELANDT- 2 und der Springer-Verlag. Dr. E. Würzner, SCHUSTER, U., GREILING, R.O., HAGEDORN, E.-M., Oberbürgermeister der Stadt Heidelberg, und HAHNE, J. & HEINZ, J. (2008): Long sequence of Dr. R. Franke, Stadtwerke Viernheim, vermit- Quaternary Rocks in the Heidelberg Basin De- telten Kontakte, wo immer notwendig. Die pocentre. – Quaternary Science Journal (Eiszeit- beteiligten Mitarbeiter des Amts für Umwelt- alter und Gegenwart), 57/3-4: 316-337. FEZER, F. (1997): 220 m Altpleistozän im „Heidel- schutz der Stadt Heidelberg und der Universität berger Loch“. – Eiszeitalter und Gegenwart, 47: Heidelberg waren stets am Fortgang des Pro- 145-153. jekts interessiert und gaben jegliche Hilfe, die FRECHEN, M., ELLWANGER D., RIMKUS, D. & TECHMER, notwendig war. Für die gesamte Unterstützung A. (2008): Timing of Medieval Fluvial Aggrada- herzlichen Dank! tion at Bremgarten in the Southern Upper Rhine Voraussetzung für dieses Themenheft über Graben. – Quaternary Science Journal (Eiszeit- das Bohrprojekt „Heidelberger Becken“ war alter und Gegenwart), 57/3-4: 411-432. Vorwort: Das Bohrprojekt „Heidelberger Becken“ 269

HAGEDORN, E. & BOENIGK, W. (2008): The Pliocene ROLF, C., HAMBACH, U. & WEIDENFELLER, M. (2008): and Quaternary sedimentary and fl uvial history Rock and palaeomagnetic evidence for the Plio- of the Upper Rhine Graben based on heavy mi- Pleistocene palaeoclimatic change recorded neral analysis. – Netherlands Journal of Geosci- in the Upper Rhine Graben sediments (core ences – Geologie en Mijnbouw, 87/1: 21-32. Ludwigshafen-Parkinsel). – Netherlands Journal HAHNE, J., ELLWANGER, D. & STRITZKE, R. (2008): of Geosciences – Geologie en Mijnbouw, 87/1: Evidence for a Waalian thermomer pollen record 41-50. from the research borehole Heidelberg UniNord, ROTSTEIN, Y., EDEL, J.-B., GABRIEL, G., BOULANGER, Upper Rhine Graben, Baden-Württemberg. D., SCHAMING, M. & MUNSCHY, M. (2006): In- – Quaternary Science Journal (Eiszeitalter und sight into the structure of the Upper Rhine Gra- Gegenwart), 57/3-4:403-410. ben and its basement from a new compilation of HGK (1999): Hydrogeologische Kartierung und Bouguer Gravity. – Tectonophysics, 425/1-4: Grundwasserbewirtschaftung Rhein-Neckar- 55-70. Raum. Fortschreibung 1983-1999. – Ministeri- SALOMON, W. (1927) : Die Erbohrung der Heidelber- um für Umwelt und Verkehr Baden-Württem- ger Radium-Sol-Therme und ihre geologischen berg, Hessisches Ministerium für Umwelt, Verhältnisse. – Abhandlungen Heidelberger Landwirtschaft und Forsten, Ministerium für Akademie der Wissenschaften, 14: 1 – 105. Umwelt und Forsten Rheinland-Pfalz: 155 p.; SYMBOLSCHLÜSSEL GEOLOGIE BADEN-WÜRTTEMBERG: Stuttgart, Wiesbaden, Mainz. Verzeichnis Geologischer Einheiten - Aktua- HOSELMANN, C. (2008): The Pliocene and Pleistocene lisierte Ausgabe März 2007. - Internet-Publ.: fl uvial evolution in the northern Upper Rhine http://www.lgrb.uni-freiburg.de; Freiburg i. Graben based on results of the research borehole Br. (Reg.-Präs. Freiburg - L.-Amt Geol. Rohst. at Viernheim (Hessen, Germany). – Quaternary Bergb.). Science Journal (Eiszeitalter und Gegenwart), WEDEL, J. (2008): Pleistocene molluscs from re- 57/3-4: 286-315. search boreholes in the Heidelberg Basin. HOSELMANN, C., ELLWANGER, D., GABRIEL, G., WEDEL, – Quaternary Science Journal (Eiszeitalter und J. & WEIDENFELLER, M. (2008): Forschungs- Gegenwart), 57/3-4: 382-402. bohrungen im nördlichen Oberrheingraben WEIDENFELLER, M. & KÄRCHER, T. (2008): Tectonic (Heidelberger Becken) - Neue Erkenntnisse zur infl uence on fl uvial preservation: aspects of geologischen Entwicklung. – Abhandlungen der the architecture of Middle and Late Pleistocene Geologischen Bundesanstalt, 62: 95-98. sediments in the northern Upper Rhine Graben, HUNZE, S. & WONIK, T. (2008): Sediment Input into Germany. – Netherlands Journal of Geosciences the Heidelberg Basin as determined from Down- – Geologie en Mijnbouw, 87/1: 33-40. hole Logs. – Quaternary Science Journal (Eis- WEIDENFELLER, M. & KNIPPING, M. (2008): Correla- zeitalter und Gegenwart), 57/3-4: 367-381. tion of Pleistocene sediments from boreholes in KNIPPING, M. (2008): Early and Middle Pleistocene the Ludwigshafen area, western Heidelberg Ba- pollen assemblages of deep core drillings in the sin. – Quaternary Science Journal (Eiszeitalter northern Upper Rhine Graben, Germany. – Ne- und Gegenwart), 57/3-4: 270-285. therlands Journal of Geosciences – Geologie en Mijnbouw, 87/1: 51-66. Eiszeitalter und Gegenwart 57/3–4 270–285 Hannover 2008 Quaternary Science Journal

Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area, western Heidelberg Basin

MICHAEL WEIDENFELLER & MARIA KNIPPING *)

Abstract: Cores from several boreholes in the Ludwigshafen area were analysed to investigate their sedimen- tology, palynology, palaeomagnetics, rock magnetics and heavy mineral composition. The preliminary results are presented from the new Ludwigshafen-Parkinsel borehole P35, which was drilled 500 m WSW of borehole P34, to a total depth of 300 m. Correlation between the two boreholes reveals similarities and dissimilarities in stratigraphy, structure and the thickness of the sediments. As a result of core documentation and the preliminary evaluation of the investigation results, a good correlation is established between the coarse and fi ne-grained se- quences in both boreholes down to a depth of 122 m. However, the Plio-Pleistocene boundary in borehole P35 is much deeper than in P34. A fault throw of 42 m is assumed, attributable to young tectonics. The poor correlation between the thicknesses of the sediments in the lower sections of the two boreholes suggests that tectonism was particularly active in the Pliocene and Lower Pleistocene. The different occurrence of interglacial sequences in the two Ludwigshafen boreholes can be attributed to fl uvial dynamics and neotectonic events. Further palyno- logical analysis is required to determine whether the alternation of at least fi ve interglacial periods determined in the Ludwigshafen-Parkinsel P34 borehole, can also be confi rmed in the P35 borehole. The information gained so far from the correlation of the already analysed Middle Pleistocene interglacials in the Ludwigshafen/Mannheim area, as well as the links with the primarily Lower Pleistocene sections in Schifferstadt, already suggest that this would allow a much better understanding of the changes in vegetation and climate during the Pleistocene.

[Korrelation pleistozäner Sedimente aus Bohrungen im Raum Ludwigshafen, westliches Heidelberger Becken]

Kurzfassung: Im Raum Ludwigshafen wurden mehrere Kernbohrungen sedimentologisch, palynologisch, paläomagnetisch, gesteinsmagnetisch und schwermineralogisch untersucht. Erste Ergebnisse der neuen Boh- rung Ludwigshafen-Parkinsel P35 werden vorgestellt, die 500 m WSW der Bohrung P34 bis 300 m abgeteuft wurde. Die Gegenüberstellung beider Bohrungen zeigt Übereinstimmungen, aber auch Unterschiede im Auf- bau, Struktur und Mächtigkeit der Sedimente. Nach der Bohrkerndokumentation und ersten Auswertungen von Untersuchungsergebnissen lassen sich die grob- und feinkörnigen Sequenzen aus beiden Bohrungen bis in eine Teufe von 122 m gut miteinander korrelieren. Allerdings liegt die Plio-/Pleistozängrenze in der Bohrung P35 deutlich tiefer. Wahrscheinlich ist ein Versatzbetrag von 42 m anzunehmen, der auf junge Tektonik zurückzuführen ist. Die geringe Übereinstimmung der Mächtigkeiten in den tieferen Abschnitten der Bohrungen lässt vermuten, dass die Tektonik besonders im Pliozän und Unterpleistozän aktiv war. Die unterschiedliche Präsenz von warmzeitlichen Sequenzen in den beiden Ludwigshafener Bohrungen kann auf fl uviale Dynamik und neotektonische Ereignisse zurückgeführt werden. Ob die in der Bohrung Ludwigsha- fen Parkinsel P34 erfassten Wechsel von mindestens 5 Warmzeiten auch in der Bohrung P35 bestätigt wer- den können, bleibt weiteren palynologischen Untersuchungen vorbehalten. Schon jetzt lässt die Korrelation zwischen den bereits bearbeiteten mittelpleistozänen Warmzeiten im Raum Ludwigshafen/Mannheim sowie die Verknüpfung mit den überwiegend altpleistozänen Abschnitten von Schifferstadt eine deutliche Kennt- niserweiterung der pleistozänen Vegetations- und Klimaentwicklung erwarten.

Keywords: Upper Rhine Graben, Heidelberg Basin, Pleistocene, fl uvial sediments, pollen analysis, neotectonics

*Adresses of authors: M. Weidenfeller, Landesamt für Geologie und Bergbau Rheinland-Pfalz, Emy-Roe- der-Straße 5, 55129 Mainz. E-Mail: [email protected]; M. Knipping, Universität Hohenheim, Institut für Botanik, Garbenstraße 30, 70593 Stuttgart. E-Mail: [email protected] Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area 271

1 Introduction Of particular value were the palynological ana- lyses (KNIPPING 2008), heavy mineral analyses To investigate hydrogeological aspects, numer- (HAGEDORN & BOENIGK 2008) and the palaeo- ous boreholes were cored in the Ludwigshafen/ magnetic and rock-magnetic analyses (ROLF et Mannheim area in recent years. These cores were al. 2008). This made it possible for the fi rst time analysed using a wide range of methods (Fig. 1, to reliably detect the Plio-Pleistocene boundary Table 1). The results of the Ludwigshafen-Park- in the northern Upper Rhine Graben in a core, insel P34 borehole in particular – which was confi rmed by various independent methods. An- drilled to a TD (total depth) of 300 m in 2002 other core of 300 m (P35) was drilled approxi- with 95 % core recovery – provided a great deal mately 500 m WSW from borehole P34 in 2006. of new information on the history of the river P35 was analysed using a very similar range of Rhine and the changes in vegetation and climate methods. The results are presented in this paper, in the northern Upper Rhine Graben during the including a preliminary correlation between the Pleistocene (WEIDENFELLER & KÄRCHER 2008). two boreholes.

Fig. 1: Position of the investigated boreholes in the Vorderpfalz, on the Frankenthal Terrace and in the Lud- wigshafen area.

Abb. 1: Lage untersuchter Bohrungen in der Vorderpfalz, auf der Frankenthaler Terrasse und im Raum Lud- wigshafen. 272 MICHAEL WEIDENFELLER & MARIA KNIPPING

The results of the P34 and P35 cores are the (Oberer Zwischenhorizont “OZH” (Upper key for the interpretation of the unconsolidated Intermediate Horizon), Unterer Zwischenho- sedimentary sequences in the Ludwigshafen/ rizont “UZH” (Lower Intermediate Horizon)). Mannheim area. The sequences in both cores Reddish-brown sandy sediments were encoun- are characterised by alternating coarse-grained tered in some sections and interpreted on the and fi ne-grained horizons. They are strati- basis of heavy mineralogical analysis as fans graphically subdivided using a hydrogeologi- deriving from the Pfälzerwald (HAGEDORN cal terminology (BARTZ 1959, 1974, KÄRCHER 2004, HAGEDORN & BOENIGK 2008). 1987) into aquifers (Oberes Kieslager “OKL” Whereas the stratigraphic position of the (Upper Gravels) , Mittlere sandig-kiesige Folge Lower Pleistocene sediments is uncertain, the (Middle Sandy-Gravely Series), Untere sandig- upper gravels (“OKL”) are conventionally at- siltige Folge (Lower Sandy-Silty Series)) and tributed to a Weichselian age and referred to in Zwischenhorizonte (intermediate horizons) the terminology of terrace division as a Lower

Table 1: Investigations of cores from boreholes Ludwigshafen-Parkinsel P34, P35 and Ludwigshafen-Mau- dach A36, TK 25 6516 Mannheim-Südwest

Tab. 1 : Untersuchungen an Kernen der Bohrungen Ludwigshafen-Parkinsel P34, P35 und Ludwigshafen- Maudach A36, TK 25 6516 Mannheim-Südwest

Lu-Parkinsel P34 Lu-Parkinsel P35 Lu-Maudach A36

Coordinate (R-Wert) 34 60 666 34 60 230 34 54 850 Coordinate (H-Wert) 54 81 069 54 80 990 54 79 490 Depth 300 m 300 m 50.6 m Surface 92 m NN 92 m NN 97 m NN Description of the borehole WEIDENFELLER WEIDENFELLER WEIDENFELLER sections (unpublished) (unpublished) (unpublished) Lithofacies HAGEDORN (2004), this volume WEIDENFELLER & KÄRCHER (2008) - Sedimentology KONTNY & SCHULTE SIROCCO & SCHABER (unpublished) (unpublished) - Gamma Log BLM, München BLM, München (unpublished) (unpublished) - Thermal conductivity - WERNER (2006) - Thin-section investigations MENZIES (2006) -- Pollen analysis KNIPPING (2008, in KNIPPING (in progress) KNIPPING (in progress) progress) Heavy minerals HAGEDORN (2004), HOSELMANN (in HAGEDORN & BOENIGK progress) (2008) - Palaeomagnetic investigations/ ROLF et al. (2008) ROLF & HAMBACH (in Susceptibility/ rock magnetic progress) - investigations Clay mineralogy - ELSASS et al. (in - progress) Molluscs WEDEL (2008) WEDEL (2008) WEDEL (2008) Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area 273 terrace (KÄRCHER 1987). Accordingly, the terial entering the Upper Rhine Graben came interpretation of the upper aquitard (Oberer from the graben margins. Whether or not it is Zwischenhorizont “OZH”) as an Eemian possible to subdivide the Pliocene sequences formation seems doubtful, which is confi rmed further depends on the results of additional by the research of ENGESSER & MÜNZING investigations. In the uppermost Pliocene, the (1991), RÄHLE (2005) and WEDEL (2008). connection of the Palaeo-Rhine to the Alpine Pollen analytical research by KNIPPING (2004, drainage system changed the heavy mineral 2008) in the Mannheim area and on drillings spectrum of the Rhine sediments and led to a at Schifferstadt (Fig. 1) and P34 indicates dominance of Alpine minerals (HAGEDORN & a Middle Pleistocene age (most probably BOENIGK 2008). The boreholes drilled in the Cromerian) for the OZH. Such positioning Ludwigshafen area revealed changes in the is further supported by palaeomagnetism position of the river bed. Whilst the Rhine measurements (ROLF et al. 2008), that indicate deposited sediments on the western margin of fi rst reversal magnetism (780 ka, Matuyama- the northern graben during the Pliocene and at Brunhes boundary) to be positioned below the the beginning of the Quaternary, the river bed upper aquitard. The base of the Quaternary moved to further east during the subsequent (Gauss-Matuyama boundary) at 177 m below period because the western margin is primar- surface in P34 is clearly deeper situated than ily dominated by sediments deriving from the in Schifferstadt and Speyer TB2 (Fig.1). This Pfälzerwald. The situation further to the east is prompted HAGEDORN (2004) to assume that the different because the sediments are dominated northeastern part of the central Graben block here by the Alpine heavy mineral spectrum. is being downthrown by active tectonism. Because of the rapid subsidence of the eastern The rock magnetic investigations (ROLF et al. margin of the graben (Heidelberg Basin) it is 2008) together with results of heavy mineral conceivable that the bed of the river Rhine was analyses (HAGEDORN & BOENIGK 2008) show located in this area of tectonic subsidence (ELL- a clearly structured sediment profi le in P34. WANGER et al. 2005). Renewed sedimentation It was possible to identify the change from by the Rhine in the western part of the northern mainly locally controlled sedimentation of Upper Rhine Graben did not start again before the graben margins to a more distinct alpine the deposition of the Upper Gravels during controlled sedimentation at a depth of 177 m the Weichsellian glaciations, as seen on the (G/M-boundary) by magnetic data. Based Frankenthal Terrace (WEIDENFELLER & KÄRCHER on lithostratigraphic correlation with other 2008). sedimentary records from the URG and also based on palynological evidence, this event 2 Results happened at the end of Late Pliocene during a time of normal polarity of the Earth’s magnetic The Upper Gravels (OKL) consist of arena- fi eld (Gauss Chron?). The well-documented ceous medium gravel to coarse gravel of up to characteristic change in magneto-mineralogy 20 m in both cores. The OKL can be divided from goethite to greigite almost at the same into two sections in both boreholes. The upper stratigraphic level, was interpreted solely as a section consists of coarse gravel, extends in climatic signal (ROLF et al. 2008) which can each case to a depth of 13 m, and is character- be correlated with the global climate change ised by fi ning upwards from 10 m to 1 m depth. at ~2.5 Ma that is well documented in deep- This is underlain by interbedded coarse sands sea sediments (SHACKLETON et al. 1984), loess and fi ne to medium gravels down to a depth deposits (HELLER & LIU 1982) and fl uvio-lacus- of 19.5 m. A coarse-grained facies is only trine sediments (HAN et al. 1997). present in the Upper Gravels. The underlying The heavy mineral spectrum in the Pliocene sediments are distinctly fi ner grained (sandy- sediments confi rms that the only erosional ma- gravelly in the middle aquifer, and sandy-silty 274 MICHAEL WEIDENFELLER & MARIA KNIPPING

Fig. 2: Correlation of the lithofacies sections and Gamma Ray logs in the Ludwigshafen P34 and P35 bore- holes.

Abb. 2: Gegenüberstellung der Lithofaziesprofi le und Gamma-Logs der Bohrungen Ludwigshafen P34 und P35. Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area 275 in the lower aquifer). The OKL is underlain by change of the facies at 177 m depth in borehole the Upper Intermediate Horizon (OZH) which P34, which is also interpreted as the Plio-Pleis- is widely distributed in the northern Upper tocene boundary (KNIPPING 2008, ROLF et al. Rhine Graben, in the same way as the OKL. 2008), does not occur in borehole P35 until a The OZH is located in borehole P34 between depth of 183 m. The more than 10 m-thick fi ne- 21 m to 40 m, and in borehole P35 between grained sequence lying beneath the Plio-Pleis- 19.5 m to approximately 34 m depth (Fig. 2). tocene boundary in P34 is absent at this depth The interbeds of the aquitard are clayey-silty in borehole P35, where it does not occur until a and frequently contain organic intercalations of depth of 218 m to 232 m. The Gamma Ray logs peat or turfy moulder. at the same depths in both boreholes differ to a The OZH in both boreholes is underlain to a greater or lesser extent. depth of 101 m by a medium to coarse sandy First analyses of the carbonate content and sequence containing only subordinate and thin heavy minerals from isolated samples in bore- horizons of fi ne gravel. A silty-sandy interme- hole P35 (pers. com. C. Hoselmann, Hessisches diate horizon with interbedded organic hori- Landesamt für Umwelt and Geologie) resulted zons (ZH2) occurs in borehole P34 between 50 in carbonate concentrations of 10 to 20 % down m and 60 m depth, and between 51 m and 66 to a depth of 190 m and carbonate contents of m depth in borehole P35. This is followed by a up to 3 % between 190 m to 218 m (Fig. 3). medium to coarse sandy section which reaches The samples are non-calcareous beneath 218 a depth of approximately 87 m in both bore- m. The spectrum of transparent heavy minerals holes, underlain in P34 by fi ne-grained sedi- also reveals a difference in composition below ments with organic horizons down to a depth a depth of 218 m. Garnet, epidote, alterite and of about 92 m; and down to a depth of 98 m hornblende dominate from 0 m to 218 m. Stable in P35. A distinct intermediate horizon, termed heavy minerals such as zircon and tourmaline the Unterer Zwischenhorizont (Lower Interme- are only present in subordinate amounts. The diate Horizon) (UZH), occurs at a depth of 101 spectra are typical for sediments deposited in m to 122 m in both boreholes, and also con- the Pleistocene Rhine. The sequences are inter- tains several organic horizons. The sequence rupted – as also confi rmed in the P34 borehole below 122 m is dominated by interbedded fi ne (HAGEDORN 2004, HAGEDORN & BOENIGK 2008) to medium-grained sand with intercalations – by sediments deposited by streams draining of clayey-silty horizons. Borehole P35 has the Buntsandstein of the Pfälzerwald. These are slightly thicker fi ne-grained sections between characterised by heavy minerals dominated by 151 m to 163 m, 167 m to 175 m, 183 m to tourmaline and higher concentrations of zircon. 187 m and from 201,5 m to 204 m. According Below 218 m, tourmaline and zircon are joined to the current status of the analysis, the fi ne- by signifi cant proportions of the TiO2 group, grained sections between 122 m to 183 m in as well as hornblende and garnet. Similar borehole P35, are much thinner or completely spectra occur in borehole P34 below the Plio- absent in borehole P34. Coarser horizons with Pleistocene boundary. This characteristic later fi ne to medium gravel fi rst occur between 162 Pliocene heavy mineral spectrum is also shown m to 167 m in P34 and between 175 m to 183 in other boreholes drilled in the Northern Up- m in P35. per Rhine Graben, such as the Schifferstadt There is a good correlation between the sedi- borehole (HAGEDORN 2004) and in Viernheim ments in both boreholes from 0 m to 122 m (HOSELMANN 2008). depth – as also highlighted by a comparison Nearly 1200 samples were taken from the P34 of the Gamma Ray logs run in both boreholes cores for pollen analysis. 120 samples were (Fig. 2). This changes between 122 m to 183 initially selected for a preliminary analysis and m where the boreholes have different lithofa- prepared at the laboratory operated by LGB cies profi les and Gamma Ray logs. The distinct Rheinland-Pfalz. This preliminary analysis 276 MICHAEL WEIDENFELLER & MARIA KNIPPING

Fig. 3: Heavy mineral diagram and carbonate content of the Ludwigshafen P35 borehole (HOSELMANN, pers. com.).

Abb. 3: Schwerminerale und Karbonatgehalt der Bohrung Ludwigshafen P35 (HOSELMANN, pers. Mitt.). involved a quick estimation of the pollen con- veral glacial pollen sequences (Fig. 4, Fig. 5). tent, or counting only a minor number of pollen At a depth of 13,6 m in the lower, fi ne-grained grains. 1600 pollen samples were taken from section of the OKL, the pollen assemblage (Lu- the P35 borehole, and 60 samples were looked I-A in Fig. 5) had high values of Corylus (ha- at. 38 samples from the Maudach A 36 borehole zel) as well as Picea (spruce) and Alnus (alder), also underwent preliminary analysis to roughly and low values of Quercus (oak), Ulmus (elm), determine the pollen content, or subjected to Carpinus (hornbeam) and Abies (fi r), which counting a small number of pollen grains (Fig. may indicate the early part of an interglacial 4, Fig. 5). The pollen sequences are mostly sequence or a part of a temperate interstadial. incomplete due to the variable tectonic sub- Another interglacial sequence was encountered sidence of the URG and the fl uvial dynamics in the OZH from 26.5 – 29.05 m. The lower part which didn’t allow a regular sedimentation. of this section (Lu-I-C) contains pollen from The preliminary investigation of borehole P34 Abies, Carpinus and Taxus (yew), and mas- revealed at least parts of 5 interglacials and se- sulae from Azolla fi liculoides (large mosquito Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area 277

Fig. 4: Summary of the preliminary pollen analysis results from boreholes P34, P35 and Maudach A36.

Abb. 4: Übersicht der pollenanalytischen Voruntersuchungen der Bohrungen P34, P35 und Maudach A36. 278 MICHAEL WEIDENFELLER & MARIA KNIPPING

Fig. 5: Summary and preliminary correlation of the investigated pollen sections in the Schifferstadt/ Ludwigshafen/Mannheim area.

Abb. 5: Übersicht und vorläufi ge Korrelation der untersuchten Pollenprofi le im Raum Schifferstadt/ Ludwigshafen/Mannheim. fern), whilst the upper part (Lu-I-B) contains pollen spectrum was identifi ed in two separate pollen from Fagus (beech). A further intergla- samples at 186 and 201 m. cial pollen assemblage (Lu-I-D, Ludwigshafen In the fi rst analysis of borehole P35, which in- Interglacial) containing Picea, Quercus, Alnus, volved the zone down to a depth of 93 m, there Ulmus and Corylus was present between 36.9 were at least three interglacial sequences along- – 38.4 m. side several glacial pollen spectra (Fig. 4). An Two samples from the UZH (103 m) contain analogous interglacial sequence was found at several grains of Tsuga (hemlock) in a pollen a similar depth to that in borehole P34. In the assemblage dominated by Pinus (pine), to- lower part of this sequence (30.4 – 30.7 m) pol- gether with Picea, Carpinus and Ulmus. Other len from Abies, Carpinus and Quercus were spectra with Tsuga, Picea, Alnus and Pinus identifi ed, along with massulae from Azolla. occur at a depth of 152.4 – 158.4 m. High con- In the upper part (26.2 – 29.0 m), Fagus pol- centrations of Fagus pollen alongside Quer- len was also found. The decline in pollen cus, Ulmus, Carpinus, Pterocarya (wingnut), from thermophilous taxa (from 26.5 m) and Ostrya type (hop hornbeam) and Tsuga, were the marked increase in Pinus pollen appears recovered at a depth of 161.45 m. A Tertiary to show the end of the interglacial. A pollen Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area 279 spectrum with Pinus, Picea, Corylus, Quercus of Fagus in the upper part of the interglacial and Alnus is also found at 42.1 m. Two inter- (26.2 - 29.0 m), correlates with a high degree glacial pollen spectra including Tsuga, as well of probability with the interglacial in P34 (Lu- as Corylus, Quercus and Carpinus were identi- I-B + C) and therefore with the Mannheim fi ed in fi ne-grained horizons (91.1 – 92.45 m) Interglacial (Fig. 4, Fig. 5). According to the below the UZH. pollen spectra identifi ed to date, the upper part In the OZH at Maudach A36 a pollen sequence of the interglacial is represented in P35 by a (9.0 – 11.2 m) shows interglacial conditions section with a thickness of 2.8 m, and is thus characterised by high amounts of Carpinus (up much thicker than in P34 where the thickness to 40 %) shifting to woodland richer in Abies, is only 0.3 m. The lower part of the interglacial then in Picea and dominated at last by Pinus has a similar thickness in both boreholes with a and Betula. Until now Fagus is absent, even thickness of approx. 0.3 m. though several samples have been analysed. Comparison with other Middle Pleistocene Pollen of Buxus has values up to 5 % in the interglacials indicates that the most likely cor- lower part of the interglacial. relation for the Mannheim Interglacial is with the Rhume Interglacial (MÜLLER 1986, 1992) 3 Discussion and the Kärlich Interglacial (URBAN 1983, BITTMANN 1992). The interglacial section of It should be stressed in advance that the follow- Meikirch II (WELTEN 1982, 1988) was recently ing correlations are only tentative in character reinterpreted by PREUSSER et al. (2004), and the because they are based on preliminary analysis, former “Eemian” is now correlated with MIS 7. and complete analysis of the samples still re- There are some similarities with the Mannheim mains to be done. The pollen sequences record- Interglacial, but Celtis which is present in the ed to date are often fragmentary and there are Mannheim Interglacial as well as the Kärlich uncertainties when correlating these with other Interglacial is not present at Meikirch. pollen sequences. Publications covering the The interglacial found in the OZH in P34 at boreholes from the Mannheim area (KNIPPING 36.9 – 38.4 m (Lu-I-D) is primarily character- 2004, 2008) already include some of the results ised according to the current degree of analysis of the preliminary analysis of the P34 borehole, by the absence of Carpinus, Abies and Fagus. which provided an invaluable addition to and There are some similarities to the pre-Rhume confi rmation of the biostratigraphic classifi ca- thermomere described by MÜLLER (1992) and tion of the penetrated sequences. the interglacial found by BLUDAU (2001) at ap- For the interglacial or temperate interstadial prox. 47 – 52 m in the Mannheim Ergo BK 3 pollen spectrum at a depth of 13.6 m in the borehole. Interglacial pollen spectra without OKL in borehole P34, a Holocene or Eemian Carpinus, Abies and Fagus were only found age can be rejected, but a correlation with in two horizons at 42 m in borehole P35. It is either one of the Early Weichselian interstadi- not certain at this stage whether these correlate als or an interglacial older than the Eemian is with Lu-I-D. Should this correlation be con- possible (KNIPPING 2008). No analogous pollen fi rmed, then there is a very marked difference spectrum has so far been found in P35. in the thickness of the sequence in P34 (1.5 m) P34 contains pollen spectra (26.5 – 29.05m) and the 0.1 m thick sequence in P35. which are correlatable with a high degree Another cored borehole in the Ludwigshafen of probability with the Middle Pleistocene area (Maudach A36) was also included in this Mannheim Interglacial (KNIPPING 2008). Bore- preliminary analysis (Fig. 1, Table 1). An in- hole P35 (Fig. 4) also revealed pollen spectra at terglacial with high proportions of Carpinus is a similar depth which, because of the presence reported in the OZH at a depth of 9 – 11.2 m. of Carpinus, Abies and Azolla in the lower part Based on the current status of the preliminary (30.4 - 30.7 m), and the additional occurrence analysis, this cannot be correlated with the 280 MICHAEL WEIDENFELLER & MARIA KNIPPING younger part of the Mannheim Interglacial lished). This, as well as the work of ENGESSER because no Fagus has been found. It is pos- & MÜNZING (1991) in the Mannheim area sup- sible that this interglacial correlates with the port the palynological correlation of the OZH older part of the Mannheim Interglacial. If this with the Cromerian Complex. Two boreholes is true, the Mannheim Interglacial represents of Mannheim (KNIPPING 2004, 2008) contained two separate interglacials because the end of additional pollen from thermophilous taxa the interglacial appears to have been reached above the Mannheim Interglacial, including in Maudach A36 with the transition to Pinus- Carpinus and Fagus (Fig. 5). Because these richer sections. The presence of a gastropod are only single samples, the question still re- fauna in the same borehole at a depth of 23 mains open of whether these can be correlated – 28 m, which WEDEL (2008) interprets as indi- with interglacials younger than the Mannheim cating the Cromerian Complex, could indicate Interglacial. It does, however, support the cor- a possible classifi cation as Cromerian. Another relation of the Mannheim Interglacial with the consequence of a correlation between Maudach Cromerian Complex. with the older part of the Mannheim Intergla- No Middle Pleistocene pollen spectra with cial would be to make the correlation between Pterocarya, which could be correlated with the Mannheim Interglacial with the earlier the Holstein/Pterocarya Interglacial (MÜL- “Eemian” at Meikirch (PREUSSER et al. 2004) LER 1974, GRÜGER 1983, DRESCHER-SCHNEIDER very unlikely (see above), because Carpinus 2000) have so far been identifi ed in the bore- pollen is very rare in the two lower intergla- holes in Mannheim, Schifferstadt or Ludwigs- cials of Meikirch “Holstein 1” and “Holstein 2” hafen. The Schifferstadt Interglacial described (WELTEN 1982, 1988), but accounts for nearly in the Schifferstadt borehole (KNIPPING 2002), 40 % in Maudach. The Upper Pleistocene posi- is also probably equivalent to the Ferdynan- tion of the interglacial at Maudach at a depth dowian Interglacial (JANCZYK-KOPIKOWA 1975), of 9 – 11.2 m cannot, however, be excluded and has also not been identifi ed so far in the on the basis of the current status of the pollen two boreholes in Ludwigshafen. analysis. Increased subsidence of sub-blocks during the Interdisciplinary analysis in the northern part Plio-Pleistocene in the northern Upper Rhine of the Upper Rhine Graben, which in addition Graben around the Mannheim/Heidelberg area to looking at the lithostratigraphy, also looks is not only indicated lithostratigraphically, but at “Upper Pleistocene” mammal remains, also by pollen analysis. According to the initial gastropods, wood remains and pollen, pro- investigation, the P34 and P35 boreholes pen- vided no reliable stratigraphic classifi cation etrated sediments down to a depth of 102 m in of the material (KOENIGSWALD 1988). Dating which at least 3 superposed interglacials have of parts of the Upper Gravels (OKL) and the been partially identifi ed (KNIPPING 2004, 2008). “Oberer Ton” (Upper Clay = OZH) to the last Tsuga occurs from approximately 103 m in P34 interglacial (Eemian) has, however, been fa- and 92 m in P35, which currently still indi- voured by some authors. However, the latest cates a Lower Pleistocene age. Notable in this analysis by KNIPPING (2002, 2004, 2008) and context is the single identifi cation of a Tsuga WEDEL (2008) has shown that the OZH in the pollen grain in the lower part of the Mannheim Mannheim/Ludwigshafen area cannot be as- Interglacial (UVB-3) (Fig. 5) (KNIPPING 2008). signed to the Eemian but must be older. The Indications that Tsuga could also be present in analysis of gastropods from the “Upper Clay” the Cromerian Complex are supported by the in the Mannheim-Lindenhof borehole (RÄHLE analysis conducted by BLUDAU (2001) in the 2005) gave a Middle Pleistocene, probably Mannheim Ergo BK3 borehole. The author Cromerian age. The same samples contained describes several isolated occurrences of Tsuga analogous pollen spectra to those found in in an interglacial and discusses a possible Cro- the Mannheim Interglacial (KNIPPING, unpub- merian age. In addition, in the Schifferstadt Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area 281

Fig. 6: Assumed position of a fault between the Ludwigshafen P34 and P35 boreholes, depicting the position of the Quaternary faults, interpreted on the basis of industrial seismic and river seismic profi les (after WIRS- ING et al. 2007).

Abb. 6: Vermuteter Verlauf der Störung zwischen den Bohrungen Ludwigshafen P34 und P35 mit Darstel- lung des Verlaufs quartärer Störungen, entwickelt aus industrieseismischen und fl ussseismischen Profi len (nach WIRSING et al. 2007). borehole lying further to the west (KNIPPING 91 m. The Middle-Lower Pleistocene boundary 2002), which is also described as containing a and Quaternary base deepen in these boreholes Middle Pleistocene interglacial (Schifferstadt from west to east in the direction of the centre Interglacial), several occurrences of Tsuga of the Heidelberg Basin. The Quaternary base have been confi rmed at depths below 36 m. in the Viernheim research borehole is at a depth This section has therefore been preliminarily of 224 m (HOSELMANN 2008). correlated with the Lower Pleistocene down to Lower Pleistocene and Tertiary sediments from the Plio-Pleistocene boundary at approximately the northern Upper Rhine Graben have mainly 282 MICHAEL WEIDENFELLER & MARIA KNIPPING been looked at in the Schifferstadt borehole. Heidelberg Basin (Fig. 6). Throws of up to 10 Various interglacial and glacial vegetation m at the base of seismic horizon 2 (OZH and sequences were described here in the older Middle Sandy-Gravely Series) are interpreted sections (KNIPPING 2002). Lower Pleistocene from the seismic sections. In general, the faults sediments have so far only been recorded in identifi ed in the Ludwigshafen/Altrip area can the P34 borehole. The occurrence of Tsuga be linked to three NNW-SSE running, easterly pollen, together with Picea, Alnus and Pinus at dipping antithetic downthrown faults (WIRS- 152.4 – 158.4 m, points more to cool climatic ING et al. 2007). Because the drilling location conditions, but no detailed biostratigraphic of borehole P34 lies approximately 500 m subdivision is currently possible. Pollen spec- ENE of borehole P35, it must be assumed tra with high proportions of Fagus, in addition that a sub-block lying further to the west has to Tsuga, Pterocarya, Carpinus, Quercus and subsided more strongly (P35), an anomaly Picea, occur at 160.45 – 161.45 m. Because of when compared to the regional situation. It is the common occurrence of Fagus, it can prob- possible that a previously unidentifi ed WNW- ably be classifi ed as lying within the Tegelen ESE running transverse fault separates this Complex, probably Tegelen A (ZAGWIJN 1963). sub-block from the easterly lying sub-block on Tertiary pollen spectra at 186 and 201 m in which borehole P35 was drilled. Indications of P34, combined with heavy mineralogical and young tectonic movements in the northern Up- palaeomagnetic and rock-magnetic analysis, per Rhine Graben are documented in numerous confi rm the Plio-Pleistocene boundary at 177 recent publications (PETERS et al. 2005, PETERS m. No pollen analysis has yet been carried out & VAN BALEN 2007a, 2007b, WEIDENFELLER & on the Lower Pleistocene and Pliocene sections KÄRCHER 2008). Interestingly, the Quaternary in borehole P35. faults are very closely related to faults which The new results of the analyses of borehole P35 cut the Tertiary sediments and the base of the (heavy minerals, carbonate content, lithofacies Tertiary (ANDRES & SCHAD 1959, DERER et al. profi le, gamma ray log) indicate that the Plio- 2005). Pleistocene boundary in borehole P35 is not at Because the upper 122 m of the P34 and P35 183 m depth as implied by the fi rst interpreta- boreholes can be very well correlated in terms tion, but probably more likely at a depth of 218 of thickness, as well as sedimentary facies and m. Because the base of the Quaternary in the gamma logs, it is assumed that tectonism was P34 borehole was confi rmed at a depth of 177 particularly active prior to the start of sedi- m (KNIPPING 2008, ROLF et al. 2008), the Plio- mentation of the Lower Intermediate Horizon Pleistocene boundary in borehole P35 probably (UZH), and that it then weakened consider- lies approximately 42 m deeper. The large ably. Because the OZH is assigned to the difference in depth within a distance of only Cromerian Complex on the basis of current 500 m cannot be explained by fl uvial dynamics fi ndings (KNIPPING 2008, RÄHLE 2005, WEDEL alone. It is more likely that the two boreholes 2008), and because the UZH is also assigned are separated by a fault, and that borehole P34 to the transition zone between the Lower and lies on the upthrown and P35 on the down- Middle Pleistocene, the phase of tectonism thrown side of the fault. The river seismic giving rise to the approximately 42 m throw survey shot on the Rhine, and the interpreta- is considered to have taken place during the tion of industrial seismic sections, indicate the latest Pliocene and Lower Pleistocene. It presence of young faults in the Ludwigshafen/ seems clear that this period was characterised Mannheim area (BERTRAND et al. 2006, HAIM- by more rapid subsidence of the Heidelberg BERGER et al. 2005, WIRSING et al. 2007). These Basin, and thus the Ludwigshafen-Mannheim easterly dipping faults indicate the en-echelon area as well, and that this rapid subsidence faulted subsidence of the Quaternary base from was compensated for by high rates of sedi- west to east in the direction of the centre of the mentation. Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area 283

4 Conclusions Mainz). We like to thank Marion Mays and Anke Hildebrandt (LGB Mainz) for preparing Fluctuating fl uvial dynamics over very short the pollen samples. distances leave behind strongly differentiated sequences in the geological record which can References only be approximately interpreted with the information gained from several cores. The dif- ANDRES, J. & SCHAD, A. (1959): Seismische Kar- ferences in the nature of the sediments between tierung von Bruchzonen im mittleren und the P34 and P35 boreholes highlights that the nördlichen Teil des Oberrheingrabens und deren interpretation of the climatic and fl uvial his- Bedeutung für die Ölansammlung. – Erdöl und tory of an area on the basis of the analysis of a Kohle, 12: 323-334. few boreholes becomes very diffi cult because BARTZ, J. (1959): Zur Gliederung des Pleistozäns im the sediments are not only affected by fl uvial Oberrheingraben. – Zeitschrift der deutschen dynamics, but also by small-scale tectonics. geologischen Gesellschaft, 111: 653-661. The complex fault pattern in the northern BARTZ, J. (1974): Die Mächtigkeit des Quartärs im Oberrheingraben. – In: ILLIES, H. & FUCHS, K. Upper Rhine Graben is partially responsible (eds.): Approaches to Taphrogenesis. – Inter- for the preservation and character of the sedi- Union Commission on Geodynamics Scientifi c ments. Unlike major cycles which can still be Report, 8: 78–87; Stuttgart (Schweizerbart). recognised and correlated across several bore- BERTRAND, G., ELSASS, P., WIRSING, G. & LUZ, A. holes, closer analysis reveals the presence of (2006): Quaternary faulting in the Upper Rhine frequent gaps which make interpretation more Graben revealed by high-resolution multi-chan- diffi cult. Sedimentation is often controlled by nel refl ection seismic. – Comptes Rendus Geos- young tectonics where small-scale fault block cience, 338: 574-580. movements can result in the deposition of very BITTMANN, F. (1992): The Kärlich Interglacial, Midd- le Rhine region, Germany: vegetation history different sequences of sediments, as recorded and stratigraphic position. – Vegetation History in the cores. The clear characterisation and and Archaeobotany, 1: 243-258. stratigraphic identifi cation based on several BLUDAU, W. (2001): Preliminary results of pollen- independent methods, and on pollen analysis analytical investigations in the northern part of in particular, provides the information required the Upper Rhine Valley. – Internal report: 2 pp. to make reliable interpretations of the sedi- DERER, C.E., SCHUMACHER, M.E. & SCHÄFER, A. mentation history infl uenced by palaeoclimatic (2005): The Northern Upper Rhine Graben: fl uctuations and tectonic movements. The dif- basin geometry and early syn-rift tectono-se- ferences identifi ed by comparing the two bore- dimentary evolution. – International Journal of Earth Sciences (Geologische Rundschau), 94: holes P34 and P35, which are only 500 m apart, 640-656. emphasise that the large-scale correlation of DRESCHER-SCHNEIDER, R. (2000): 2. Halt: Kiesgrube boreholes separated from one another by sev- Thalgut: Pollen- und großrestanalytische Un- eral tens of kilometres, will only succeed when tersuchungen. – In: KELLY, M., LINDEN, U. & the sediments in the cores are analysed using SCHLÜCHTER, C.: Exkursionsführer DEUQUA analogous methods and can be stratigraphically 2000, Eiszeitalter und Alltag, Bern 6.-8. Sep- classifi ed. tember 2000: 128-136; Bern. ELLWANGER, D., GABRIEL, G., HOSELMANN, C., Acknowledgments LÄMMERMANN-BARTHEL, J. & WEIDENFELLER, M. (2005): The Heidelberg Drilling Project (Upper Rhine Graben, Germany). – Quaternaire, 16(3): For fruitful discussions we have to thank 191-199. Dietrich Ellwanger (LGRB Freiburg), ENGESSER, W. & MÜNZING, K. (1991): Mollus- Christian Hoselmann (HLUG Wiesbaden), kenfaunen aus Bohrungen im Raum Phillips- Christian Rolf (Leibniz Institute for Applied burg-Mannheim und ihre Bedeutung für die Geophysics) and Thomas Kärcher (LGB Quartärstratigraphie des Oberrheingrabens. 284 MICHAEL WEIDENFELLER & MARIA KNIPPING

– Jahreshefte des Geologischen Landesamts the northern Upper Rhine Graben, Germany. Baden-Württemberg, 33: 97-117. – Netherlands Journal of Geosciences, 87(1): GRÜGER, E. (1983): Untersuchungen zur Gliederung 51-65. und Vegetationsgeschichte des Mittelpleistozäns KOENIGSWALD, W. VON. (ed.) (1988): Zur Paläoöko- am Samerberg in Oberbayern. – Geologica Ba- logie des letzten Interglazials im Nordteil der varica, 84: 21-40. Oberrheinebene. – Paläoklimaforschung, 4: HAGEDORN, E.-M. (2004): Sedimentpetrographie 327 pp. und Lithofazies der jungtertiären und quartären MENZIES, J. (2006): A Report on Samples from Lud- Sedimente im Oberrheingebiet. – Dissertation wigshafen-Parkinsel. – Brock University: 30 Universität zu Köln: 248 pp.; Köln. pp.; St. Catharines, Canada. HAGEDORN, E.-M. & BOENIGK, W. (2008): New MÜLLER, H. (1974): Pollenanalytische Untersuchun- evidences of the Pliocene and Quaternary sedi- gen und Jahresschichtenzählungen an der hol- mentary and fl uvial history in the Upper Rhine steinzeitlichen Kieselgur von Munster-Brehloh. Graben on basis of heavy mineral analysis. – Ne- – Geologisches Jahrbuch, A21: 107-140. therlands Journal of Geosciences, 87(1): 21-32. MÜLLER, H. (1986): Altquartäre Sedimente im Deck- HAIMBERGER, R., HOPPE, A. & SCHÄFER, A. (2005): gebirge des Salzstockes Gorleben. – Zeitschrift High-resolution seismic survey on the Rhine Ri- der deutschen geologischen Gesellschaft, 137: ver in the northern Upper Rhine Graben. – Inter- 85-95. national Journal of Earth Sciences (Geologische MÜLLER, H. (1992): Climate changes during and at the Rundschau), 94(4): 657-668. end of the interglacials of the Cromerian Com- HAN, J., FYFE, W.S., LONGSTAFFE, F.J., PALMER, H.C., plex. – In: KUKLA, G. J. & WENT, E. (eds): Start of YAN, F.H. & MAI, X.S. (1997): Pliocene-Pleisto- a Glacial. – NATO ASI Series, 13: 55-69. cene climatic change recorded in fl uviolacustrine PETERS, G., BUCHMANN, T.J., CONNOLLY, P., VAN sediments in central China. – Palaeogeography, BALEN R.T., WENZEL, F. & CLOETINGH, S.A.P.L. Palaeoclimatology, Palaeoecology, 135: 27-39. (2005): Interplay between tectonic, fl uvial and HELLER, F. & LIU, T. S. (1982): Magnetostratigraphi- erosional processes along the Western Border cal dating of loess deposits in China. – Nature, Fault of the northern Upper Rhine Graben, Ger- 300: 431-433. many. – Tectonophysics, 406: 39-66. HOSELMANN, C. (2008): The Pliocene and Pleistocene PETERS, G. & VAN BALEN, R.T. (2007a): Pleistocene fl uvial evolution in the Northern Upper Rhine tectonics inferred from fl uvial terraces of the Graben based on results of the research borehole northern Upper Rhine Graben, Germany. – Tec- at Viernheim (Hessen, Germany). – Eiszeitalter tonophysics, 430: 41-65. und Gegenwart (Quaternary Science Journal), PETERS, G. & VAN BALEN, R.T. (2007b): Tectonic 57/3-4: 286-315. geomorphology of the northern Upper Rhine JANCZYK-KOPIKOWA, Z. (1975): Flora of the Mazo- Graben, Germany. – Global Planetary Change, vian Interglacial at Ferdynandów. – Biuletyn 58: 310-334. Institut Geologica, 290: 1-94. PREUSSER, F., DRESCHER-SCHNEIDER, R., FIEBIG, M. & KÄRCHER, Th. (1987): Beiträge zur Lithologie und SCHLÜCHTER, C. (2004): Re-Interpretation der Hydrogeologie der Lockergesteinsablagerungen Meikirch-Bohrungen, Aaretal, und Konsequen- (Pliozän, Quartär) im Raum Frankenthal, Lud- zen für die Quartärstratigraphie in der Schweiz. wigshafen-Mannheim, Speyer. – Jahresberichte – DEUQUA meeting 30. August – 3. September, und Mitteilungen des Oberrheinischen Geologi- Abstract Volume: 67; Nijmwegen. schen Vereines, N.F. 69: 279-320. RÄHLE, W. (2005): Eine mittelpleistozäne Mollus- KNIPPING, M. (2002): Pollenanalytische Unter- kenfauna aus dem Oberen Zwischenhorizont suchungen am Profi l „Schifferstadt BK 30c des nördlichen Oberrheingrabens (Bohrung GM“. – Arbeitsbericht Geologisches Landesamt Mannheim-Lindenhof). – Mainzer Geowissen- Rheinland-Pfalz: 11 pp.; Mainz. schaftliche Mitteilungen, 33: 9-20. KNIPPING, M. (2004): Pollenanalytische Untersu- ROLF, C., HAMBACH, U. & WEIDENFELLER, M. (2008): chungen an einem mittelpleistozänen Interglazi- Rock and palaeomagnetic evidence for the Plio- al bei Mannheim. – Tübinger Geowissenschaft- Pleistocene palaeoclimatic change recorded liche Arbeiten D10: 199-217. in Upper Rhine Graben sediments (Core Lud- KNIPPING, M. (2008): Early and Middle Pleistocene wigshafen-Parkinsel). – Netherlands Journal of pollen assemblages of deep core drillings in Geosciences, 87(1): 41-50. Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area 285

URBAN, B. (1983): Biostratigraphic correlation of WELTEN, M. (1982): Pollenanalytische Untersu- the Kärlich Interglacial, northwestern Germany. chungen im Jüngeren Quartär des nördlichen – Boreas, 12: 83-90. Alpenvorlandes der Schweiz. – Beiträge zur SHACKLETON, N. J., BLACKMAN, J., ZIMMERMAN, Geologischen Karte der Schweiz, N. F. 156: 174 H., KENT, D.V., HALL, M.A., ROBERTS, D. G., S. + Diagrammheft. SCHNITKER, D., BALDAUF, J.G., DESPRAIRIES, A., WELTEN, M. (1988): Neue pollenanalytische Ergeb- HOMRIGHAUSEN, R., HUDDLESTUN, P., KEENE, J.B., nisse über das Jüngere Quartär des nördlichen KALTENBACK, A.J., KRUMSIEK, K.A.O., MORTON, Alpenvorlandes der Schweiz (Mittel- und Jung- A.C., MURRAY, J.W. & WESTBERG, S.J. (1984): pleistozän). – Beiträge zur Geologischen Karte Oxygen isotope calibration of the onset of ice- der Schweiz, N. F. 162: 40 S. + 20 Diagramme. rafting and history of glaciation in the North WERNER, S. (2006): Wärmeleitfähigkeitsmessungen Atlantic region. – Nature, 307: 620-623. an Kernen der 300 m Bohrung Parkinsel2/ Lud- WEDEL, J. (2008): Pleistocene molluscs from re- wigshafen. – Diplomarbeit TU Clausthal: 128 search boreholes in the Heidelberg Basin. – Eis- pp.; Clausthal. zeitalter und Gegenwart (Quaternary Science WIRSING, G., LUZ, A., ENGESSER, W. & KOCH, A. Journal), 57/3-4: 382-402. (2007): Hochaufl ösende Refl exionsseismik auf WEIDENFELLER, M. & KÄRCHER, T. (2008): Tectonic dem Rhein und dem Rheinseitenkanal zwischen infl uence on fl uvial preservation: aspects of Mannheim und Rheinfelden. – LGRB-Fachbe- the architecture of Middle and Late Pleistocene richt, 1/07: 60 pp.; Freiburg. sediments in the northern Upper Rhine Graben, ZAGWIJN, W. H. (1963): Pollen-analytic investiga- Germany. – Netherlands Journal of Geosciences, tions in the Tiglian of the Netherlands. – Me- 87(1): 33-40. dedelingen van de Geologische Stichting, N. S., 16: 49-71. Eiszeitalter und Gegenwart 57/3–4 286–315 Hannover 2008 Quaternary Science Journal

The Pliocene and Pleistocene fluvial evolution in the northern Upper Rhine Graben based on results of the research borehole at Viernheim (Hessen, Germany)

*) CHRISTIAN HOSELMANN

Abstract: The research borehole drilled in 2006 by the Hessian Agency for the Environment and Geology (HLUG) north of Viernheim (Hessisches Ried) reached a total depth of 350 m, and penetrated high resolution fl uviatile and limnic-fl uviatile sediments (0 to 225 m) of Pleistocene age, and partially highly pedogenically overprinted limnic-fl uviatile sands, clays and silts of Pliocene age (225 to 350 m). The Pliocene sediments tend to be sourced locally. The sediments repeatedly show sourcing from the Odenwald which is characterised by a high percentage of green hornblende in the heavy mineral fraction. As part of the Heidelberg Basin research programme, one of the main purposes of this borehole was to analyse the Pleistocene “Normal Facies” of the northern Upper Rhine Graben, i.e. a sedimentary sequence subject to minimum disturbance, largely unaffected during the Pleistocene by material sourced from the graben margins or smaller tributaries. The Pleistocene sedimentary sequence consists of three units: a thin horizon with reworked Pliocene mate- rial is overlain by ten cycles each beginning erosively with gravely sandy sediments and ending with silty- argillaceous to in part peat-like sediments. Internal cycles can also be identifi ed, amongst other features. A characteristic aspect is the green-grey, strongly calcareous, micaceous and well sorted, fi ne to medium sands of the Rhine. These are dominated by the Rhine Group (garnet, epidote, green hornblende and alterite) in the heavy mineral fraction. These sediments are classifi ed as the “Rhenish Facies”. The upper Pleistocene sedi- mentary sequences at the top of the Viernheim research borehole are dominated by several fi ning-upward and in part coarsening-upward sequences. The deposits in this part of the well are dominated by gravel deposited by the Neckar. The heavy mineral distribution of the sand fraction reveals, however, that there was mixing with Rhenish sediments. Weichselian to Holocene aeolian sands form the topmost part of the well section. The stratigraphic classifi ca- tion of the Pleistocene sedimentary sequences is still uncertain in parts. The Pliocene-Pleistocene boundary is placed at 225 m because of the characteristic change in facies. Due to lithostratigraphic correlations with sediments within the Lower Rhine Embayment, a larger unconformity at the depth of 225 m must be accept- ed. Research carried out in the area around the well indicates that the youngest fi ne-clastic section penetrated by the well between 39.76 and 58.55 m is of Cromerian age.

[Die pliozäne und pleistozäne fluviatile Entwicklung im nördlichen Oberrheingraben unter beson- derer Berücksichtigung der Forschungsbohrung Viernheim (Hessen, Deutschland)]

Kurzfassung: Die 2006 durch das Hessische Landesamt für Umwelt und Geologie (HLUG) abgeteufte Forschungsbohrung nördlich von Viernheim (Hessisches Ried) hat mit einer Endteufe von 350 m hoch auf- gelöst fl uviatile und limnisch-fl uviatile Sedimente (0 bis 225 m) des Pleistozäns und zum Teil stark pedogen überprägte limnisch-fl uviatile Sande, Tone und Schluffe des Pliozäns (225 bis 350 m) durchteuft. Die Liefer- gebiete der pliozänen Sedimente sind eher regional geprägt. Die Sedimente zeigen wiederholt Schüttungen aus dem Odenwald, die durch einen hohen Anteil grüner Hornblende in der Schwermineralfraktion gekenn- zeichnet sind. Als Teil des Forschungsprogramms „Heidelberger Becken“ zielte diese Bohrung insbesondere

* Address of author: C. Hoselmann, Hessisches Landesamt für Umwelt und Geologie, Postfach 3209, D- 65022 Wiesbaden, Germany. E-Mail: [email protected] The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben 287 im Pleistozän auf die „Normalfazies“ des nördlichen Oberrheingrabens ab, das heißt: auf eine möglichst ungestörte Sedimentabfolge, die im Pleistozän Schüttungen von den Grabenrändern oder kleineren Zufl üssen weitestgehend ausschließt. Die pleistozäne Sedimentabfolge besteht aus drei Einheiten: über einem geringmächtigen Horizont mit auf- gearbeitetem pliozänen Material folgen zehn Zyklen, die erosiv mit kiesig sandigen Sedimenten einsetzen und mit schluffi g-tonigen bis zum Teil torfi gen Ablagerungen abschließen. Mitunter sind interne Zyklen zu erkennen. Charakteristisch sind grünlich-graue stark carbonatische, glimmerführende und gut sortierte Fein- bis Mittelsande des Rheins. In diesen dominiert die Rhein-Gruppe (Granat, Epidot, grüne Hornblende und Alterit) in der Schwermineralfraktion. Diese Sedimente werden als „Rheinische Fazies“ bezeichnet. In der hangenden letzten pleistozänen Sedimentabfolge der Forschungsbohrung Viernheim bestimmen mehrere fi ning-upward und zum Teil coarsening-upward Sequenzen das Sedimentationsgeschehen. Die Ab- lagerungen dieses Profi labschnitts sind Kies dominiert, der vom Neckar geschüttet worden ist. Die Schwer- mineralverteilung der Sandfraktion zeigt aber an, dass es zu einer Vermischung mit rheinischen Sedimenten gekommen ist. Weichsel- bis holozänzeitliche Flugsande schließen das Profi l ab. Die stratigraphische Einstufung der pleistozänen Sedimentabfolge ist in Teilen noch unsicher. Die Pliozän- Pleistozängrenze wird auf Grund des charakteristischen Fazieswechsels auf 225 m gelegt. Eine überregionale Korrelation mit Sedimenten der Niederrheinischen Bucht spricht für eine Diskordanz mit größerer zeitlicher Lücke an der Plio-Pleistozängrenze. Untersuchungen im Umfeld der Bohrung sprechen für cromerzeitliches Alter des jüngsten feinklastischen Abschnitts der Bohrung zwischen 39,76 und 58,55 m.

Keywords: Quaternary, Pleistocene, Pliocene, Cromerian Complex, fl uvial sediments, heavy minerals, Car- bonate, Upper Rhine Graben, Germany

1 Introduction however, not been looked at systematically in recent times. This was one of the reasons The north-eastern part of the Upper Rhine Gra- why the Geological Survey of Hessen (Hes- ben (URG) is known as the “Hessisches Ried” sisches Landesamt für Umwelt und Geologie (Fig. 1). This area has become an important (HLUG)) drilled several research boreholes in research area for Quaternary graben develop- the Hessisches Ried in recent years. In addition ment in recent years. According to VAN GIJSSEL to scientifi c aspects concerning the sedimento- (2006), the URG is a non-glaciated type region logy, sedimentary petrography, vegetation his- for mid Central European large and medium tory, palaeontology and tectonic development sized upland basins. during the Pleistocene and Upper Pliocene, The historical landscape development in the investigation was also interested in applied the late and post-glacial period in the north- geological aspects, which require a thorough ern URG was recently studied by BOS et al. understanding of the structure of the graben fi ll (2008), DAMBECK (2005), DAMBECK & BOS for their clarifi cation. The focus of this aspect (2002), DAMBECK & THIEMEYER (2002) as well of the investigation was on hydrogeology, re- as ERKENS et al. (2009). The geometry of the source geology and geothermy. Quaternary sediment body was investigated The boreholes were designed to reveal the geo- using high resolution refl ection seismic by metry of the Pleistocene sedimentary body in HAIMBERGER et al. (2005) and WIRSING et al. more detail, and to specify each of the facies (2007). The interaction between tectonics, and in the area of investigation. The thickness of fl uviatile and erosive processes, particularly Quaternary sedimentary fi ll increases from the along the western graben margin, was inves- western to the eastern graben margin. There tigated by PETERS & VAN BALEN (2007a, b) as is also an increase in thickness from north to well as PETERS et al. (2005). The sedimento- south-east in the direction of the Heidelberg logical structure of the Pleistocene sedimentary Basin (Fig. 2). At the eastern graben margin fi ll in the northern Upper Rhine Graben has, of the Hessisches Ried, the fl uviatile or limnic- 288 CHRISTIAN HOSELMANN

Hanau Rhenish Frankfurt Main Massif Offenbach Wiesbaden  N Rhine Mörfelden-Mörfelden- WalldorfWalldorf Hanau- Mainz RüsselsheimRüsselsheim Seligenstadt Sprend- Depression lingen Groß-Groß- GerauGerau Horst GGräfenhausenräfenhausen Mainz n e Darm- b stadt Basin a r

d

G l

e a Gernsheim Crystalline n w

i Odenwald n h GGroß-Rohrheimroß-Rohrheim ein e RRhineh BiblisBiblis Bensheim d R EinhausenEinhausen r O

- e

n p Worms

i

p

e

t

U Weinheim s n d

r

n

e Viernheim

a

h

s t Ludwigs- Mannheim t r hafen

n o Pfalz Syncline

u NNorthern Upper Rhine Graben Neckar Heidelberg BBuntsandstein-Odenwald

Research area 0 5 10 20 km State boundary Hessisches Ried

Fig. 1: Location map with the geological structural zones and the area of investigation “Hessisches Ried”.

Abb. 1: Übersichtskarte mit den geologischen Strukturräumen und dem Untersuchungsgebiet „Hessisches Ried”. The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben 289

fl uviatile deposits repeatedly contain interbeds runway (BK 1200; R 3465891 – H 5542863) of redeposited sediments of hard rocks lying revealed Pleistocene, calcareous sediments of on higher ground further east, i.e., from the the Upper Rhine Graben beneath the Lower Odenwald or the Sprendlingen Horst. This Pleistocene Untermain-Hauptterrassen Forma- hard rock, consisting of Palaeozoic crystalline tion (HOSELMANN 2007a). A research borehole rocks and sedimentary rocks of Rotliegend age drilled to the north of Mörfelden (R 3468725 (Sprendlingen Horst) and Buntsandstein, was – H 5538979) also penetrated Main and Rhine intensively weathered during the Mesozoic sediments. Limnic-fl uviatile and fl uviatile sedi- and Tertiary. The resulting unconsolidated rock ments of Pliocene age were penetrated below was easily eroded and redeposited during the the base of the Quaternary at 64.5 m below Pleistocene periglacial periods. Directly along ground level. The “Walldorf Horst” postu- the graben margin in particular, there are also lated by ANDERLE & GOLWER (1980) with thin very high proportions of redeposited sediments Quaternary sediments lying on unconsolidated derived from these source areas. The 111 m Miocene sediment is therefore non-existent. deep C/04 B1 borehole drilled south of Gräfen- In the eastern part of the Hessisches Ried, the hausen north-west of Darmstadt (R 3472203 fl uviatile sediments of the northern URG are – H 5531111 based on the Gauss-Krüger overlain by a few metres of Weichselian aeo- coordinates of German topographic maps), lian sands, partially drifted to form dunes. The clearly shows an almost 20 m thick sequence thickness of the aeolian sands can even exceed of redeposited sediments aligned east-west in 30 metres in places, for instance, at the western this part of the northern URG, forming part of edge of the town of Darmstadt. This means that the Quaternary sedimentary sequence with a the aeolian sands may also have been redepos- total thickness of 83.58 m. These redeposited ited and incorporated in the normal facies of sediments can be traced for approx. 5 km from the Pleistocene graben fi ll. Sedimentation in the graben margin in the northern URG. The the western part of the Hessisches Ried ended Pleistocene fl uviatile graben fi ll itself consists with Holocene fl uviatile sediments laid down in the area of investigation of alternating fl u- by various meander generations of the Rhine viatile sands and gravels mixed up in various (DAMBECK 2005 amongst others). proportions, as well as silts, clays and peat. The aim of the Viernheim research borehole This sequence is the “Normal Facies” of the was to derive a standard section for the “Nor- northern URG. mal Facies” of the graben fi ll in the northern In the north part of the Hessisches Ried, URG, and to provide detailed descriptions of the Rhenish sediments interfi nger with the these sediments with regard to the sedimentol- fl uviatile sediments deposited by the Main ogy, sedimentary petrography, palaeobotany river. Several hundred boreholes were geologi- and palaeontology. It was also the intention to cally analysed and recorded by HLUG between date these sediments by physical dating meth- 2003 and 2004 during the planning work for ods such as OSL, IR-RF, TIMS-230Th/U and the Deutsche Bahn’s ICE high speed rail track Burial Age Dating (DEHNERT & SCHLÜCHTER from Frankfurt/Main airport (Rhine-Main dis- 2008; PREUSSER et al. 2008; GEYH 2008) and trict) to Mannheim (Rhine/Neckar zone). This to provide information on sedimentation rates revealed the presence of fl uviatile sediments, where possible. The form of subsidence in this laid down by the Main all the way up to the area region means that large parts of the section can to the north of Gräfenhausen (borehole 2.3/41 be expected to be preserved in superposition. drilled along the planned ICE track: R 3472332 The work on the Viernheim research borehole – H 5533832). On the other hand, indisputable is closely related to other research activities in Rhenish sediments were also found as far north the Heidelberg Basin (ELLWANGER et al. 2005). as the southern edge of Frankfurt airport. For The fi rst results of this work have already been instance, the borehole drilled close to the west published, particularly on the Ludwigshafen- 290 CHRISTIAN HOSELMANN

34 50 34 70

Rhenish Frankfurt Massif Main

Offenbach 20 Wiesbaden

Rhine 40 Mörfelden- Walldorf 55 40 Mainz 40 Rüssels- Sprend- heim

n lingen 0

N 6 e

0 2 Horst

b Groß- Gerau a

r

Mainz 120

0 Darm- 5

1 stadt Basin G 55 20 e

n

i

h Gernsheim

Crystalline 40

R r Odenwald

e

1 Rhine 7

p 5 Bensheim

p

55 00 2

0

0 100 Worms U

n

r

e

h Viernheim Weinheim

t 250

r

o Ludwigs-

300 60 hafen

NNorthern Upper Rhine Graben

3

Mannheim 5 20

54 80 0

200 Heidelberg Neckar Pfalz Syncline Pfalz

thickness of Quaternary 20 40 60 80 100 125 150 175 200 250 300 350 [m] sediments faults 0 5 10 20 km

Fig. 2: Thicknesses of the Quaternary sediments in the northern URG; redrawn from BARTZ (1974), HAIM- BERGER et al. (2005) as well as a great deal of new information from this work. The thickness of the Quater- nary sediments increases from north to south as well as from west to east. The Heidelberg Basin begins in the Hessisches Ried south of Gernsheim. Around Heidelberg, a more strongly subsided subbasin revealing approx. 400 m of Quaternary sediments is documented.

Abb. 2: Mächtigkeitsverteilung quartärer Sedimente im nördlichen URG; umgezeichnet nach BARTZ (1974), HAIMBERGER et al. (2005) sowie mit verschiedenen Aktualisierungen aus dieser Arbeit. Generell ist eine Zu- nahme quartärer Sedimente von Norden nach Süden sowie Westen nach Osten zu erkennen. Das Heidelber- ger Becken beginnt im Hessischen Ried südlich von Gernsheim und bildet bei Heidelberg ein noch stärker abgesenktes Teilbecken mit einer maximalen Quartärmächtigkeit von rund 400 m. The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben 291

Parkinsel borehole. Of particular interest here again cut by ram coring. The wireline rotary is the work on sedimentary petrography (HAGE- coring method was again used from 228 m DORN 2004; HAGEDORN & BOENIGK 2008), the down to 350 m TD. Despite some technical fl uviatile development during the Middle and problems during coring, the quality of the Upper Pleistocene (WEIDENFELLER & KÄRCHER cores is very good with core recovery of ap- 2008), palaeomagnetics (ROLF et al. 2008), pal- prox. 97 %. The cores were sliced in halves: aeobotany (KNIPPING 2004, 2008; WEIDENFELLER one half for scientifi c analysis and one half to & KNIPPING 2008) and tectonics (ELLWANGER et be archived in the core store. al. 2008). The borehole can be subdivided into two chro- nostratigraphic sections. From 350 m TD up to 2 Geological description of the Viernheim a depth of 225 m, the section largely consists research borehole of fi ne-clastic sediments assigned to the Plio- cene on the basis of their lithological charac- 2.1 Viernheim research borehole ter, composition, pedogenic overprinting, and supra-regional correlation. The section from The Viernheim research borehole lies almost 225 – 221.21 m is a transition zone between 2 km to the north of Viernheim in the Hes- Pliocene and the Pleistocene. The overlying se- sisches State Forest, and specifi cally on the quence largely consists of Pleistocene fl uviatile Buchnerschneise (R 3469080 – H 5492215; sediments. height of the borehole drilling location: The discussion in the following dispenses with 96.95 m asl; cf. point 5 in Fig. 10). The bore- detailed core descriptions. This material can be hole was drilled by the drilling contractor requested from the author by e-mail, along with Daldrup & Söhne from January to June 2006. photo documentation and analysis data. Down to the total depth (TD) of 350 m, cores were cut in liners with an internal diameter of 2.2 Subdivision of the 10 cm. The sediments penetrated by the bore- sedimentological record hole were ram cored to a depth of 40,5 m. The wireline rotary coring method was then used A strongly simplifi ed description of the bore- to cut the next cores down to a depth of 64 m. hole section is shown in Figure 3. The Pliocene The cored section from 64 m to 228 m was sequence can be subdivided as follows:

Unit Depth in m below Description summary Special aspects ground level 10 225-228 Fine-clastic cycle with numerous cal- Without strong pedo- careous clusters; slightly oxidised in genic overprint the lower part, repeatedly strongly re- duced at top 9b 228-228,6 Strongly humic from here on, lignite in part 9a 228.6-238.5 Fine-clastic sediments, similar to unit Without strong pedo- 7, dominantly reduced genic overprint 8 238.5-250.45 With fi ning-upward sequence starting With local sediment with gravely sand (together with unit source probably from 9), repeated fi ne gravely horizons, silty the Odenwald; sec- in the upper part; reduced in part tion damaged during drilling 292 CHRISTIAN HOSELMANN

Unit Depth in m below Description summary Special aspects ground level 7 250.45-261 Fine-clastic sediments, strongly spot- Pedogenic overprint ted: reduced and oxidised, calcareous in = “Plinthosol” clusters (similar to unit 1a, 3 and 5) 6 261-270.44 Sand-dominated unit with a silt horizon Local sedimentary at 268-268.85 m; largely reduced, also source, probably from oxidised zones the Odenwald 5 270.44-315.85 Compact unit similar to 1a, 3 and 7; Strong pedo- silts and clays, with repeated discord- genic overprint = ant interbeds of sand, also calcareous “Plinthosol”; in clusters, predominantly strongly oxi- Unit discordantly dised and some reduced zones overlain by 6 4 315.85-318.55 Sand deposits, upper part reduced, silty Local sediment in part source, probably from the Odenwald 3 318.55-323.1 Similar to unit 1a, 3, 5 and 7, compact/ Only weak pedogenic homogenous overprint 2 323.1-330.62 Sand-dominated unit, layered in part, at Local sediment 329-330 m with fi ne-gravely clasts; hu- source, probably from mus in parts with redeposited lignite the Odenwald 1b 330.62-333.4 Fine clastic, humus-banded, with sandy horizons, with a lot of fi ne sand to- wards the base, at the top similar to 1a

1a 333.4-350 Fine-clastic sediments, strongly spot- Strong pedo- ted: reduced and oxidised, calcareous genic overprinting = in clusters “Plinthosol” The Pliocene sediments are marked by a higher of reworked Pliocene sediments. This zone is bedding density than the overlying sediments. given a preliminary chronostratigraphic clas- The Pliocene sediments are followed discord- sifi cation as Plio-Pleistocene – this section antly by a short section which mainly consists consists of:

Unit Depth in m below Description summary Special features ground level 11 221.21-225 Fining-upward sequence of Transition zone with fi ne sand to silt, clayey, strong numerous reworked Pliocene humic concentrations in parts sediments in the upper section

This sequence is overlain by Pleistocene sedi- thickness and with respect to other parameters. ments. Up to 39.76 m below ground level, this Generally the cycles are repeated sequences of sequence is divided into 10 cycles (I-X) which fi ning-upward suites which begin discordantly have similar internal structures that vary in with sandy-gravely sediments. Every sequence The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben 293

96.95 m above sea level meter csg

0.00 Calcareous pure sand; yellowish brown – aeolian sand 90 D C 3.10 Calcareous gravel and sand; brown to reddish brown – fluviatile sediments of the northern URG 80 B 15.00 Calcareous sand and gravel; greyish brown – fluviatile sediments of the northern URG 70

60 Calcareous sandy gravel; grey brown – fluviatile sediments of the northern URG A 35.00 Xb 39.76 50 Silt- and loam-marl; grey – limnic-fluviatile sediments of the northern URG 40 Xa 58.55 30 Calcareous sand and gravel; yellowish grey und grey brown – fluviatile sediments of the northern URG 20 IXb 73.90 Silt and loam; dark grey – limnic-fluviatile sediments of the northern URG IXa2 77.00 10 Calcareous gravelly sand; yellowish grey to grey – fluviatile sediments of the northern URG

0

-10 IXa1 101.50 Calcareous gravelly sand; grey – fluviatile sediments of the northern URG -20

-30 VIIIb 122.09 Calcareous silt and sand; greyish olive – limnic-fluviatile sediments of the northern URG VIIIa 122.95 Calcareous pure sand; grey – fluviatile sediments of the northern URG Calcareous silt and loam; grey to brownish black – limnic-fluviatile sediments of the -40 VIIb 131.23 133.18 northern URG VIIa

-50 Pleistocene Calcareous pure sand; grey to grey brown – fluviatile sediments of the northern URG

-60 VIb 156.38 Silt- and loam-marl; grey – limnic-fluviatile sediments of the northern URG -70 VIa 162.05 Calcareous gravelly sand; grey – fluviatile sediments of the northern URG Vb 164.73 Calcareous heavy humic clay; dark grey – limnic-fluviatile sediments of the northern URG 169.90 -80 Va Gravelly calcareous sand; grey – fluviatile sediments of the northern URG

-90 IVb 185.33 Calcareous silt and loam; olive grey – limnic-fluviatile sediments of the northern URG IVa 186.75 Calcareous pure sand; olive grey – fluviatile sediments of the northern URG -100 191.50 IIIb Clay- and silt-marl; dark grey – limnic-fluviatile sediments of the northern URG 200.40 Calcareous pure sand; grey – fluviatile sediments of the northern URG -110 IIIa IIb 203.37 Silt-marl; grey to black – limnic-fluviatile sediments of the northern URG 206.40 Calcareous sand and gravel; grey – fluviatile sediments of the northern URG IIa -120 213.50 Silt- and sand-marl; dark olive grey – limnic-fluviatile sediments of the northern URG Ib 214.24 Calcareous pure sand; dark grey – fluviatile sediments of the northern URG -130 Ia 221.21 Calcareous clay and silt; grey – Plio-/Pleistocene (unstructured) 11 225.00 Clay and loam; olive grey – Pliocene 10 228.00 Lignite; black – Pliocene -140 9b 228.60 Clay and loam; olive grey to dark brown – Pliocene 9a 238.50 -150 Pure sand; olive grey – Pliocene 8 7 250.45 -160 Clay and silt; grey and brown – Pliocene

261.00 -170 6 Sand and silt; pale brown – Pliocene

270.44 -180 5

-190

Clay and silt; grey and brown – Pliocene -200

-210 Pliocene

-220 4 315.85 Sand and loam; olive grey – Pliocene 3 318.55 Clay and silt; olive grey – Pliocene -230 323.10 2 Pure sand; grey brown – Pliocene 330.62 Sand and silt; grey to grey brown – Pliocene -240 1b 1a 333.40 Clay and silt; olive grey and greenish grey – Pliocene -250

350,00350.00

Fig. 3: Schematic geological section of the Viernheim research borehole showing a summary of the sedimen- tological units.

Abb. 3: Schematisiertes geologisches Profi l der Forschungsbohrung Viernheim mit den zusammengefassten sedimentologischen Einheiten. 294 CHRISTIAN HOSELMANN

Table 1: Summary of some characteristic sediments occurring in the area drilled by the Viernheim research borehole.

Tab. 1: Zusammenfassung einiger charakteristischer Sedimente, die im Gebiet der Forschungsbohrung Viernheim auftreten.

characteristic features fl uvial gravels and cobbles of the Rhine Quartz, quartzite, crystalline rock, lydite, radiolarite fl uvial gravels and cobbles of the Neckar Muschelkalk and Late limestone, Buntsandstein sandstone, Keuper sandstone Rhenish Facies well to very well sorted fi ne up to medium grained sands, carbonate rich, greenish grey, light mica ends with fi ne-clastic silts and clays. Other se- can exceed 20 % in part. quences can be identifi ed within these cycles. A characteristic feature is the distinctive pres- The description repeatedly mentions sediments ence of mica. The light mica fl akes can have in “Rhenish Facies” (Table 1). This is a well to diameters up to several millimetres. very well sorted grey to greenish-grey fi ne to This part of the well section has the following medium grained sand. The carbonate content geological setup (cf. Figure 3):

Section Depth in m Description summary Special features below ground level Xb 39.76-58.55 Dominantly fi ne-clastic with sandy 51.9-52.5 m in typical intercalations, partially in Rhenish Rhenish Facies Facies, at 49 and 53.5 m strongly humic, fi ve partial sequences in total, humic clays and peat in the upper section Xa 58.55-73.9 The cycle begins with sand and some Concretionary in part gravel, coarsening upwards, from 67- due to calcareous 69 m reddish because of the stronger content Neckar infl uence, then fl uctuating fi ne gravel portions IXb 73.9-77 Fine-clastic sediments, reduced at the 70-80 m, 87.2-88.2 bottom, then humic up to 75 m, followed and 101,8-103 m in by strong humic peat and fi nally by silt typical Rhenish Facies IXa2 77-101.5 Marked change in colour from grey to Notable colour more reddish colours up to 98 m change IXa2 to IXa1. Coarsening-upward sequence, from 88.2 IXa2 with strong m again sediments in Rhenish Facies, infl uence from Neckar becoming more fi ne-grained upwards sediments? IXa1 101.5-122.09 VIIIb is discordantly overlain by sandy zone with subordinate interbedded gravely horizons The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben 295

Section Depth in m Description summary Special features below ground level

VIIIb 122.09-122.95 Thin fi ne sandy silts With calcareous concretions and geodes VIIIa 122.95-131.23 VIIb is erosively overlain by sands with 124.5-126.5 m in gravel grading into fi ne to medium- typical Rhenish Facies sized sands towards the top, 123-123.5 m oxidised, high concentrations of light mica in part VIIb 131.23-133.18 Fine clastic, reduced, more humic towards the top with sandy intercalations, oxidised in part VIIa 133.18-156.38 VIb is erosively overlain by gravely 133.8-134 m in typical sands, becoming coarser upwards as Rhenish Facies a coarsening-upward sequence, then dominant sand with gravely horizons, sand at the top VIb 156.38-162.05 Fine clastic sediments with gravely Characteristic banding interbeds at 161.1-161.45 m, silt and clay weakly reduced with oxidation zones Vb is discordantly overlain by next VIa 162.05-164.73 fi ning-upward sequence starting with gravely sands Vb 164.73-169.9 Fine clastic zone reduced at the bottom Gravels largely from and more humic towards the top, from the Neckar 168.2 m reduced, in part oxidised, then humic again Va 169.9-185.33 IVb is erosively overlain by coarse 169.9-172.5 m in sands, gravely in part, very gravely typical Rhenish at 182.5 m, fl uctuating gravel Facies. Pedogenic concentrations in this section overprint in part IVb 185.33-186.75 Silts and clays, partially reduced Similar to IIIb IVa 186.75-191.5 IIIb is discordantly overlain by coarser sands, grading into typical sands of the Rhenish Facies IIIb 191.5-200.4 Silts and clays, strongly humic in part, light grey to dark greenish-grey (reduced) IIIa 200.4-203.37 IIb is discordantly overlain by well With typical Rhenish sorted, micaceous sands without gravely Facies, fi ning upward horizons sequence overall 296 CHRISTIAN HOSELMANN

Section Depth in m Description summary Special features below ground level

IIb 203.37-206.4 Fine-clastic sediments, humic in part, also reduced IIa 206.4-213.5 Ib is discordantly overlain by sandy Dominant limestones gravel grading up into sand dominated in the gravel fraction sediments, with abundant mica in parts Ib 213.5-214.24 Mainly silts, reduced

Ia 214.24-221.21 Fining-upward sequence with gravely First sediments in sands and sands Rhenish Facies

This part of the section is overlain by a more of the sequence formed by Weichselian to Ho- coarse clastic carbonate unit more strongly locene aeolian sands (D). infl uenced by Neckar sediments (A to C), top

Unit Depth in m below Description summary Special features ground level D 0-3.1 Markedly coarse, pedogenically 0-1 m core loss overprinted aeolian sand C 3.1-15 Gravely sands and gravels with Neckar gravels fi ning-upward and coarsening-upward sequences, Rhenish portion strongly reduced B 15-35 Four fi ning-upward sequences, With Rhenish Facies inhomogeneous, 27-32 m gravel in the fi ne grained parts, Neckar gravels A 35-39.76 Xb is discordantly overlain by gravely With Rhenish Facies sands to gravels in three fi ning-upward in the fi ne grained sequences parts, Neckar gravel

The cycles I-X reveal fl uviatile and limnic-fl u- described by e.g. LÖSCHER (1988). The fractions viatile sediments which were mainly deposited analysed are dominated by Keuper limestones by the Rhine. Mixing with Neckar sediments and sandstones transported by the Neckar, as occurs in the gravely parts. Units A-C are, how- well as red sandstones from Buntsandstein ever, much more strongly dominated by gravel, areas. The interesting fi nding is that the lime- and the infl uence of Rhenish sedimentation stones in the lowest sample in particular are reduces upwards. partially dissolved. In addition to the Neckar Gravel analysis was carried out at various pebbles, there is also mixing with a local com- depths to determine the provenance of the ponent from the Odenwald. This is revealed by gravel (Table 2). the relatively high proportion of red sandstones There are basically no signifi cant changes in derived from the Buntsandstein, as well as the gravel content. The values are similar to crystalline pebbles. These are less well round- those for the area of the Neckar alluvial fans ed, which indicates shorter transport distances. The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben 297

Table 2: Summary of the gravel analysis at various depths in the Viernheim research borehole. The fi gures are percentages and add up to 100 % in total. 200 to 500 pieces of gravel were counted in the fraction higher than 5 mm.

Tab. 2: Zusammengefasste Schotteranalysen aus verschiedenen Teufenbereichen der Forschungsbohrung Viernheim. Die Werte geben Prozent an und summieren sich insgesamt auf 100 %. Gezählt wurden zwischen 200 und 500 Kiese der Fraktion größer 5 mm.

miscellaneous (chert, radiolarite, phyllite, limestone claystone, Depth red sandstone (Late limestone sandstone quartzite, and Layer [m] quartz crystalline (Buntsandstein) Jurassic) (Muschelkalk) lydite (e.g. Keuper) marl) 5.3- C 5.75 20.5 22.5 8.5 17.0 17.2 1.6 6.7 6.0 31.7- B 31.8 16.2 11.4 3.1 18.3 29.3 2.6 4.1 15.1 99- IXa2 99.5 6.5 15.9 19.4 26.4 13.9 2.0 9.0 7.0 148.2- VIIa 148.5 26.6 10.5 12.2 16.7 20.7 1.1 9.6 2.5 161.3- VIb 161.4 12.9 11.3 3.5 39.5 13.2 6.4 7.7 5.5

The limestones are well to very well rounded mineral distribution provides information because of their longer transport distances and on the source of the sediments as well as the lower hardness. The portions of up to 26.6 % weathering of the sediments. quartz, and lydite occurring as an acces- 171 samples from the Viernheim research sory component, indicate mixing with Rhine borehole were analysed for their heavy mineral pebbles. These were transported long distances content. The main analytical method was that from either the Black Forest or the Alps. of BOENIGK (1983). Sodium polywolframate

(Na6(H2W12O40)*H2O) with a density of 2.85 g/ 3 Results cm3 was used as the heavy liquid to separate the heavy from the light fraction in a centrifuge. 3.1 Heavy Mineral Analysis The samples were boiled with concentrated hydrochloric acid prior to centrifuging to re- Various systematic investigations of the heavy move iron and manganese hydroxide crusts mineral composition of Pliocene and Pleisto- which would complicate the identifi cation. The cene sediments in the Upper Rhine Graben disadvantage of this method is the dissolution have been undertaken previously (e.g. VAN of carbonate, apatite and parts of monazite and ANDEL 1950; MAUS in BARTZ 1982; BOENIGK olivine (BOENIGK 1983). This was deemed ac- 1987; HAGEDORN 2004; HAGEDORN & BOENIGK ceptable because of the benefi t of being able 2008). Heavy mineral analysis is an important to make comparisons with our own and other instrument for characterising fl uviatile Plio- previous analyses. cene and Pleistocene fi ne sands from the Rhine Generally, the sediments in the borehole from system as part of work conducted in the middle a depth of 350 to 225 m are dominated by the Rhine area, the Lower Rhine Embayment and stable heavy mineral group (Fig. 4). These are the Netherlands. The composition of the heavy mainly zircon, but also tourmaline and rutile. 298 CHRISTIAN HOSELMANN

transparent heavy minerals [%] opaque heavy minerals meter csg 0 20 40 60 80 100 50 0 % 0 D 10 C 20

30 B 40 A

50

60 Xb

70 Xa 80 IXb

90

100 IXa2

110

120 IXa1 VIIIb 130 VIIIa VIIb 140

150 VIIa 160 VIb VIa 170 Vb

180 Va 190 IVb IVa 200 IIIb IIIa 210 IIb IIa 220 Ib Ia 230 11 10 9b 240 9a 250 8

260 7

270 6

280

290

300

310 5 320 4 3 330 2 1b 340

350 1a

garnet epidote alterite hornblende pyroxene

rare zircon TiO2-minerals tourmaline staurolite minerals

Fig. 4: Heavy mineral diagram on 171 sand samples from the Viernheim research borehole; hornblende includes green and subordinate brown hornblende; the TiO2-group includes rutile, brookite and anatase; the rare minerals include andalusite, sillimanite, disthene, titanite, monazite and spinel.

Abb. 4: Schwermineraldiagramm an 171 Sandproben der Forschungsbohrung Viernheim; Hornblende bein- haltet grüne und untergeordnet braune Hornblende; die TiO2-Gruppe schließt Rutil, Brookit und Anatas ein; die seltenen Minerale fassen Andalusit, Sillimanit, Disthen, Titanit, Monazit und Spinell zusammen. The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben 299

Subordinately also occur heavy minerals of weathering processes after sedimentation (cf. the Rhine Group (garnet, green hornblende Chapter 3.2). Heavy mineral analysis without and epidote) (cf. also Fig. 5). However, some boiling with HCl is very diffi cult in the non- samples have very high percentages of dark calcareous Pleistocene terrace deposits with green hornblende (up to 86 %). no overburden to protect them from weather- The composition of the heavy mineral spec- ing, which are characterised by strong iron trum changes signifi cantly above sample and manganese hydroxide deposits, and are

222,9-222,8 m: zircon, the TiO2-group and frequent in the Middle Rhine and Lower Rhine tourmaline become insignifi cant. These are re- areas. This can give rise to erroneous results. placed by garnet, epidote and green hornblende Decisions to change the methodology should which determine the composition of the heavy therefore be looked at very critically because minerals in the sand fraction, although the changing the methodology would considerably distribution overall remains relatively homo- restrict direct comparison with most of the old genous. This is emphasised even more when analysis data collected in the Rhine area. the heavy minerals are divided into separate groups (Fig. 5). The Rhine Group dominates 3.2 Analysis of the Carbonate Content with proportions between 60 and 80 %. Insta- ble minerals have sometimes undergone strong The carbonate content was analysed in 136 alteration or are strongly dissolved. Garnet sand samples from the Viernheim research shows some evidence of corrosion, and green borehole. The samples were initially ground hornblende has been strongly altered in parts. up in a mortar before being ground down to Accessory minerals include the volcanic heavy ca. 100 μ in a ball mill. The carbonate content minerals pyroxene and brown hornblende. was determined using the method described by Boiling with concentrated HCl leads to the dis- Scheibler (DIN ISO 10693), which involved solution of some heavy minerals such as car- two to three measurements. The results were bonate and apatite. A test run with 16 samples used to derive an average number. Total car- studied at the effect of the concentrated HCl bonate content was determined in each case. treatment on the heavy mineral distribution. The carbonate in sediments from the Upper Figure 6 shows the distribution of selected Rhine Graben primarily consists of calcite samples with and without HCl treatment. (CaCO3), and to a lesser extent also dolomite

Generally, the heavy mineral distribution re- (CaMg(CO3)2). mains the same with or without treatment. The The analysed sediments are almost all calca- differences lie within the range of statistical reous above the boundary at 225 m. Concentra- error. However, there is a signifi cant rise in tions fl uctuate signifi cantly between 0.96 and opaque heavy minerals (no HCl boiling), that 37.17 % (Fig. 7). The sediments in the lower is explained by the iron and manganese hydro- sequences are almost completely non-calca- xide encrustations on some grains which can reous. A notable fi nding is that the carbon- therefore not be identifi ed in transmitted light ate concentration in the Viernheim research under a polarised microscope. Apatite now oc- borehole fl uctuates very strongly in general. A curs in proportions up to 8 %, however, only in similar carbonate distribution picture was also samples between 163.55 and 5.5 m. In general, shown in sediments from the borehole drilled counting during heavy mineral analysis be- less than 1 km to the south down to a TD of 110 comes much more diffi cult, and some grains m to investigate the groundwater (STW Viern- can only be identifi ed after a lot of work. The heim; R 3469366 – H 5491377; point 4 in Fig. difference for the sediments in the Upper Rhine 10). The carbonate concentration in 26 samples Graben is, however, not as signifi cant because ranges from 0,02 to 26.85 %. The highest of the presence of carbonate-rich sands which carbonate values are found in the fi ne clastic have not been subject to any very intensive sediments (fi ne sands) predominantly in the 300 CHRISTIAN HOSELMANN

heavy mineral groups meter csg 0 20 40 60 80 100% 0 D 10 C 20

30 B 40 A

50

60 Xb

70 Xa 80 IXb

90

100 IXa2

110

120 IXa1 VIIIb 130 VIIIa VIIb 140

150 VIIa 160 VIb VIa 170 Vb

180 Va 190 IVb IVa 200 IIIb IIIa 210 IIb IIa 220 Ib Ia 230 11 10 9b 240 9a 250 8

260 7

270 6

280

290

300

310 5 320 4 3 330 2 1b 340

350 1a Rhine-minerals stable minerals metamorphic minerals (garnet, green hornblende, (zircon, TiO2-minerals, (staurolite, anadalusite, epidote, and alterite) and tourmaline) sillimanite, and disthene) volcanic minerals other minerals (brown hornblende, pyroxene, (alterite, monazite, and sphene) and spinel)

Fig. 5: Heavy mineral distribution divided into heavy mineral groups (after VAN ANDEL 1950 and VINKEN 1959), used for provenance analysis.

Abb. 5: Verteilung der Schwerminerale nach Schwermineralgruppen (nach VAN ANDEL 1950 und VINKEN 1959), die zur Liefergebietsanalyse verwendet wurden. mitgezählt. ohne Behandlung durch HCl. Bei der Probenaufbereitung ohne Kochen mit HCL wurden Apatite separat Abb. 6:Schwermineralverteilung von16ausgewähltenProbenderForschungsbohrung Viernheim mitund without HCltreatment. Apatite wascountedseparately inthesamplespreparedwithoutboilingHCl. Fig. 6:Heavymineraldistribution in16selectedsamplesfromthe Viernheim researchborehole withand opaque opaque transparent heavy minerals [%] heavy minerals transparent heavy minerals [%] - without HCl [%] heavy minerals meter tsg 0 20 40 60 80 100 50 0 % 0 20 40 60 80 100 50 0 % 0 D apatite 4 10 The PlioceneandPleistocenefluvial evolutioninthenorthernUpperRhineGraben C 20 5 30 B 40 A

50 4 60 Xb

70 Xa 80 IXb 3 90

8 100 IXa2

110 1 120 IXa1 VIIIb 5 130 VIIIa VIIb 140

150 3 VIIa 160 VIb VIa 5 170 Vb

180 Va 190 VIb IVa 200 IIIb IIIa 210 IIb IIa 220 Ib Ia 230 11 10 9b 240 9a 250 8

260 7

270 6

280

290

300

310 5 320 4 3 330 2 1b 340

350 1a garnet epidote alterite hornblende pyroxene 301 rare zircon TiO2-minerals tourmaline staurolite minerals 302 CHRISTIAN HOSELMANN

carbonate content/unstable heavy minerals

meter csg 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 % 0 D 10 C 20

30 B 40 A

50

60 Xb

70 Xa 80 IXb

90

100 IXa2

110

120 IXa1 VIIIb 130 VIIIa VIIb 140

150 VIIa 160 VIb VIa 170 Vb

180 Va 190 IVb IVa 200 IIIb IIIa 210 IIb IIa 220 Ib Ia 230 11 10 9b 240 9a 250 8

260 7

270 6

280

290

300

310 5 320 4 3 330 2 1b 340

350 1a

unstable heavy minerals carbonate content (garnet, green and brown hornblende, and pyroxene)

Fig. 7: Carbonate distribution from 136 sand samples from the Viernheim research borehole. The carbonate content is shown in relation to the group of unstable heavy minerals which weather easily in post-sedimen- tary environments.

Abb. 7: Carbonatverteilung von 136 Sandproben der Forschungsbohrung Viernheim. Der Carbonatgehalt wurde in Bezug zur Gruppe der instabilen Schwerminerale gesetzt, die postsedimentär leicht verwittern. The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben 303

Rhenish Facies, as in the Viernheim research extremely stable heavy minerals. Amphiboles borehole. A similar picture is shown by another formed by magmatic crystallisation or by research borehole (C/00-BK01), lying between metasomatic processes are typical for the crys- Biblis and Groß-Rohrheim (Fig. 1), approx. 18 talline Odenwald geology. In the other cases, km north-west of the Viernheim research bore- the heavy mineral spectrum is characterised by hole (R 3460250 – H 5508325). The Quaterna- high percentages of stable minerals such as the ry base lies almost 100 m below ground level. dominant zircons, but also tourmaline and the

The carbonate concentrations in the 42 samples TiO2-group. The Black Forest and the Vosges fl uctuate between 1.39 and 22.71 %. They are are interpreted as the sources of the subordinate therefore lower in general than the boreholes proportions of garnet and epidote (HAGEDORN & further to the south. However, the C/00-BK01 BOENIGK 2008). Sections 1 to 10 (Fig. 3) of the research borehole does not have the silty and well section are classifi ed as Pliocene. clayey beds with fi ne sand intercalations which The next section (Section 11) is a transition usually contain the calcareous sediments. Fu- zone which follows discordantly from 225 ture work should investigate whether the distri- to 221.21 m and is interpreted as a reworked bution pattern of the carbonate concentrations horizon. This section contains deposits de- can be correlated between boreholes. rived from the underlying sediments which have been signifi cantly reworked. In terms of 4 Discussion heavy minerals, it contains a rather localised stable spectrum as well as a typical Pleistocene Subdivision of the Viernheim spectrum dominated by the Rhine Group. This research borehole section is preliminarily classifi ed as Pliocene to Pleistocene. The Viernheim research borehole can be di- The zone from 221.21 to 39.76 m in the Viern- vided into four sections (cf. Chapter 2). The heim research borehole is made up of ten basi- zone from 350 to 225 m contains clay-rich, cally repeated suites (I-X) which begin autocy- densely layered limnic-fl uviatile deposits laid clically and discordantly with gravely sands and down on a fl oodplain. Some of these deposits end with clayey sediments or peat. The thickness have been subjected to strong post-sedimen- of each cycle fl uctuates between 6.17 m (IV) and tary pedogenic overprinting giving rise to soils 48.19 m (IX). Additional partial sequences were similar to plinthosols. These soils were formed identifi ed in each cycle. The sediments (I-X) are by stagnant water or under the infl uence of almost exclusively medium to strongly calcare- groundwater, and have gley and pseudo-gley ous. A typical feature is the repeated occurrence characteristics. Rust and bleach spots are of very well sorted sands of the “Rhenish Fa- typical of plinthosols. They are formed under cies” (cf. Chapter 2.2). These were formed by humid-tropical climatic conditions. The fi ne fl uviatile fl ood sediments from the Rhine. The clastic sediments contain calcareous clusters at whole section in the well contains sediments some places and repeated intercalations of san- dominated by the Rhenish Facies, with a gravel dy deposits. Sections 8 to 9 (Fig. 3) comprise a fraction which includes pebbles from the Neck- fi ning-upward sequence topped by an organic ar, and subordinately local components with sediment (lignite). The sands have partly high crystalline pebbles from the Odenwald and red proportions of green hornblende indicating a sandstones from the Buntsandstein. However, local sedimentary source from the Odenwald high percentages of quartz and the presence of situated to the east (Fig. 8). The extreme domi- lydite also show that the gravel fraction contains nance of such an unstable mineral group (up to material sourced from areas to the south of the 86 %) must indicate the local provenance of Neckar (Tab. 1 and 2). the mineral because it would otherwise have The fl uviatile part of the section is topped from become much more intensively mixed with 39.76 to 3.1 m by highly gravely sands and 304 CHRISTIAN HOSELMANN

Hanau Rhenish Frankfurt Main Massif Offenbach Wiesbaden N Rhine Mörfelden-Mörfelden- WalldorfWalldorf Hanau- Mainz RRüsselsheimüsselsheim Seligenstadt Sprend- Depression lingen GGroß-roß- GGerauerau Horst

Mainz n e Darm- b stadt

Basin a

r

G

e Gernsheim Crystalline

n i Odenwald h ein RRhineh Bensheim

R

r

e Worms p

p

U Weinheim

n

r Viernheim e Ludwigshafen h

t Mannheim t s a n

r n dstein-Odenwald Syncline Pfalz o u

NorthernN Upper Rhine Graben Neckar Heidelberg B u

0 5 10 20 km Research boreholes heavy mineral load Heidelberg Basin

Fig. 8: Heavy mineral deposits during the Pliocene in the northern Upper Rhine Graben. Dominated by local- ly reworked sediments with stable heavy minerals and subordinate unstable heavy minerals derived from the Black Forest and the Vosges. Repeated local deposition from the graben margins which dominantly supply green hornblende in the eastern part of the northern URG.

Abb. 8: Schwermineralschüttungen während des Pliozäns im nördlichen Oberrheingraben. Dominant sind lokal aufgearbeitete Sedimente mit stabilen Schwermineralen und untergeordnet instabilen Schwerminera- len, die aus dem Schwarzwald und Vogesen stammen. Wiederholt kommt es zu lokalen Schüttungen von den Grabenrändern, die im östlichen Teil des nördlichen URG dominant grüne Hornblende liefern. The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben 305 gravels mainly laid down by the Neckar. The result of dissolution and dilution by tributaries dominance of the Rhine Group in the heavy (VAN ANDEL 1950). mineral fractions in the sands, however, indi- The importance of heavy mineral analysis for cates mixing with Rhenish sediments around provenance analysis in the northern Upper Viernheim. This is also indicated by the quartz Rhine Graben is highlighted by a comparison constituents and lydite in the gravel fraction of the unstable heavy minerals (garnet, green (Tab. 2). This section is also marked by domi- and brown hornblende, and pyroxene) with the nant fi ning-upward and subordinately coarsen- carbonate content (Fig. 7). The post-sedimen- ing-upward sequences. The top of the section tary weathering of sediments with a pedogenic from 3.1 m to the ground surface is formed by overprint initially gives rise to a decrease in Weichselian to Holocene aeolian sands. and relocation of the carbonate content. If the The unequivocal identifi cation of the Rhine section has also undergone pedogenic over- signal in the heavy mineral fraction of the printing, which was not obvious in the sec- sands can be deduced from the proportions tion, this would also have led to a decrease in of heavy minerals in the sediments. Unlike the concentration of unstable heavy minerals. the Pleistocene Neckar sediments which only However, this is not the case in the Viernheim contain around 0.04 % heavy minerals, the research borehole because zones with lower Rhine sediments contain approx. 0.5 % heavy carbonate contents for instance have raised minerals. This means that the fl uviatile Rhenish levels of unstable heavy minerals. No correla- sediments have around 10 times more heavy tion is shown between low carbonate contents minerals than the Neckar sediments (Fig. 9). and low concentrations of unstable heavy min- HAGEDORN (2004) reports similar findings. erals. This in turn means that the Pleistocene The change in provenance in sample 222.8 m sediments have almost preserved their original show a strongly alpidic dominated heavy min- heavy mineral association and are therefore eral spectrum, indicating the connection of ideal for provenance analysis. Some of the the Rhine to the Alpine drainage system. The samples show signs of dissolution and traces general homogenous structure of the heavy of corrosion. mineral distribution (Fig. 4 and 5) in the Pleis- tocene shows that lateral sources of sediment Stratigraphy in the Viernheim area are almost completely absent. This locality is therefore different to The lithostratigraphic subdivision of the Viern- that of the Ludwigshafen-Parkinsel borehole, heim research borehole is proving diffi cult at for instance, which is marked by the periodic the current state of the investigation because of deposition of local sediments from the western the general absence of reliable data. The initial graben margin (HAGEDORN & BOENIGK 2008). correlations can only be undertaken on the This confi rms the assumption by HAGEDORN & basis of analogies with other boreholes in the BOENIGK (2008), that the Rhine tended to flow area, in the Lower Rhine Embayment (LRE), in the eastern part of the northern URG during and in The Netherlands (detailed investigations the Pleistocene. Subordinate proportions of in the Dutch/German border by e.g. DONDERS volcanic heavy minerals (pyroxene and brown et al. 2007; KEMNA & WESTERHOFF 2007; hornblende) are probably not associated with WESTERHOFF et al. 2008). The most distinct the initiation of Middle Pleistocene East Eifel lithological changes in the borehole are at volcanism prior to approx. 700 ka (BOGAARD 225 m, and after the thin reworked horizon at & SCHMINCKE 1990). In principle, the Neckar 221.21 m. The change at 225 m is considered could also be the source for the pyroxenes to be the boundary between the Pliocene and as well as the brown hornblendes, although a the Pleistocene. The Plio-Pleistocene boundary strong decrease in the pyroxenes is observed at 2.58 Ma is used in the sense of BOWEN & GIB- towards its confl uence with the Rhine as a BARD (2007), GIBBARD & COHEN (2008), LITT 306 CHRISTIAN HOSELMANN

Hanau Rhenish Frankfurt Main Massif Offenbach Wiesbaden ca. 0.1 % N Rhine Mörfelden-Mörfelden- WalldorfWalldorf Hanau- Mainz RRüsselsheimüsselsheim Seligenstadt Sprend- Depression lingen GGroß-roß- GGerauerau Horst

n

Mainz e

b Darm-

a stadt

Basin r

G

e

n Gernsheim Crystalline

i

h Odenwald ein RRhineh R Bensheim

r

e

p Worms

p

U

n Weinheim

r

e Viernheim

h Ludwigshafen t

r Mannheim t s a n ca. 0.5 % ca. 0.04 %

o n dstein-Odenwald Syncline Pfalz

u NNorthern Upper Rhine Graben Neckar Heidelberg B u

0 5 10 20 km Research boreholes heavy mineral load Heidelberg Basin

gravel and cobble load

Fig. 9: Heavy mineral and gravel deposition during the Pleistocene in the northern Upper Rhine Graben.

Abb. 9: Schwermineral- und Kiesschüttungen während des Pleistozäns im nördlichen Oberrheingraben. The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben 307

(2007), and PREUSSER (2008) and coincide with equivalent to the Ladenburg Horizon (Sym- the palaeomagnetic Gauss/Matuyama boundary. bolschlüssel Geologie Baden-Württemberg The deposition of Rhine Group alpine heavy 2007, VILLINGER 2005). This section has been minerals in the URG already is of Late Pliocene classifi ed as part of the Cromerian Complex age (HAGEDORN & BOENIGK 2008; PREUSSER since ENGESSER & MÜNZING (1991) on the basis 2008). Investigations in the LRE confi rm this: of its mollusc fauna. Palynological investiga- a fi rst shift from a stable heavy mineral spectra tions by KNIPPING (2004, 2008) on various sec- to unstable spectra of alpine type was detected tions in the Mannheim-Ludwigshafen area led in the Kieseloolite Formation (KEMNA 2005, to the conclusion that the OZH contains several 2008 a, b). The Öbel beds (Latest Pliocene) also interglacial fl ora which are assigned to the Cro- contain unstable heavy mineral spectra (BOENIGK merian Complex. A correlation with the Eemi- & FRECHEN 2006; DONDERS et al.2007; KEMNA & an interglacial is ruled out. This means that WESTERHOFF 2007). In some parts of the LRE the Section Xb in the Viernheim borehole can also Öbel beds cover the Reuver Clay s.s. and thus be assumed to be of Cromerian age. Important defi ne the top of the Pliocene sedimentation. biostratigraphic indications of the Lower Pleis- In the Viernheim research borehole, no typical tocene sections in particular are provided by alpine heavy mineral spectra can be found below the investigations conducted by WEDEL (2008). a depth of 225 m. Consequently, these sediments No other chronostratigraphic interpretations of are correlated with the Pliocene. A larger uncon- the Viernheim research borehole are possible at formity at this depth must be accepted. There is the current stage of the research. no doubt that a marked change in sedimentation took place at that time. At the present stage of Regional Trends the investigation a further stratigraphic subdivi- sion of these Pliocene sediments is not possible. Regional trends can only be investigated This characteristic change at 225 m in the at on the basis of characteristic horizons or Viernheim research borehole is comparable boundaries which extend over larger areas. to the boundary at 176 m in borehole P 34 The horizons selected for this purpose are the Ludwigs-hafen-Parkinsel (WEIDENFELLER & Quaternary base as well as the top and base of KÄRCHER 2008; WEIDENFELLER & KNIPPING Section Xb. This of course presupposes that the 2008). There are also indications in the P 34 same unit or boundary could be selected for the borehole of a palaeomagnetic change from the correlation in the various wells and correlation Gauss to Matuyama-Chron (ROLF et al. 2008). could only use those boreholes with reliable ROLF et al. also proposed that a characteristic stratigraphic logs, and gamma logs where change of the magneto-minerals from goethite possible (Tab. 3 and Fig. 10). Despite a large (Pliocene) to greigite (Pleistocene) can be number of boreholes in the Hessisch part of interpreted as a climatic signal. Pollen analysis the area of investigation, only eight boreholes from organic sediments just beneath and above in the Viernheim-Bensheim area are currently the boundary at 225 m are planned to provide suitable for such a correlation. important information on the age of this section The top of Section Xb dips to the south towards in the Viernheim research borehole. the centre of subsidence of the Heidelberg Ba- Another key zone in the borehole is the Xb sin. The thickness of the unit increases accord- section (58.55 to 39.76 m). According to the ingly. The minor amount of data available on hydrostratigraphic classifi cation, this upper- the Quaternary base indicates a similar picture most signifi cant fi ne-clastic section of the bore- with a major increase in thickness from north hole corresponds to a high resolution Obere to SSE. Care must be taken for the difference Zwischenhorizont (OZH) in the sense of the in the quality of the samples. The absence of hydrogeological mapping in the Rhine/Neckar Section Xb in the Einhausen research borehole zone (HGK 1999) or the sequence-stratigraphic highlights a fundamental problem when look- 308 CHRISTIAN HOSELMANN ing at the Pleistocene sedimentary fi ll in the the Mosbach Sands occur which have supra- northern Upper Rhine Graben: some horizons regional signifi cance because of their rich are very diffi cult to correlate, particularly and typical fossil content (BOENIGK 1977/78; towards the north. Despite high subsidence KAHLKE 2007; KELLER 1999). In particular, the rates in this part of the northern URG as well, Graues Mosbach Horizon (nowadays called the horizons are absent and can no longer be litho- Haupt-Mosbach-Subformation, HOSELMANN logically correlated even over short distances. 2007b) assigned to the Cromerian Complex, Although correlation seems to function reason- has signifi cant macroscopic and sedimentary ably well in the centre of the Heidelberg Basin, petrographic similarity with the Rhenish Facies there are also some fi ne-clastic horizons here in the Heidelberg Basin in the URG. The lower which are only of restricted use for lithostrati- Middle Rhine zone contains the Hönningen graphic correlations. For instance, a fi ne-clastic Sands in the Mittelrhein-Hauptterassen For- horizon occurs in the Deponie Hirschländer mation (WEIDENFELLER 2007), which is almost borehole GWM1/03 at a depth of 21.58 to identical to the Rhenish Facies in the URG (BI- 25.65 m (thickness 4.07 m). This horizon is BUS 1980; BOENIGK & FRECHEN 2006; BOENIGK not seen in any of the surrounding boreholes. & HOSELMANN 1991; HOSELMANN 1996). The This is interpreted as indicating the presence of Rhine Group dominates the heavy mineral- a very local channel deposit cut into the older ogy in these sediments, and carbonate contents sediments. Although easier to correlate region- of almost 30 % have been measured. These ally, the fl ood deposits of Section Xb become sediments are probably part of the Cromerian thinner as the distance from its subsidence cen- Complex. Similar sediments also occur in the tre increases, and even disappear in some cases. upper Middle Rhine (BIBUS & SEMMEL 1977). The conclusion drawn from this is that the use No other correlatable sediments are known in of sequence-stratigraphic models – as used for the other terraces of the Middle Rhine or in instance by LANG (2007) for the Hanau-Seli- the Lower Rhine Embayment. The question genstadt Basin (Fig. 1), a parallel structure to therefore remains whether the sediments either the URG – are more promising. Determining did not accumulate in other times or whether the A/S rates (A= accommodation space avail- they did not survive because they are easy to able for the sediment; S: sediment supply), and erode. In the area of the lower Middle Rhine, the interpretation of A/S domains can be used fl uviatile terrace sediments occur in a series of successfully in sedimentary basins with low terraces so that the uplift of the Rhenish Massif subsidence rates. This approach needs to be exposed the sediments to much stronger post- tested fi rst in sedimentary basins with higher sedimentary erosion than the deposits in the subsidence rates, such as the northern URG. Heidelberg Basin. A more detailed explanation is required in Comments on supra-regional the future of the type of mechanism which correlation and outlook controlled the depositional cycles. A key role is played here by the uplift of the German Mit- The Rhine as the link between the Alpine and telgebirge and the subsidence of the URG, and North European glaciated areas also linked in particular in this case the Heidelberg Basin. up different areas of provenance, accumula- The cause for the start of a new cycle could also tion areas and tectonic structural areas during have been controlled by climatic conditions the Quaternary (PREUSSER 2008; WESTERHOFF because periglacial environmental conditions 2008). The typical sediments of the Rhenish were required to make these sediments avail- Facies which are wide-spread in the northern able, particularly the coarse clastic sediments, Upper Rhine Graben also have equivalents which then accumulated in proximal locations. downstream. At the northern edge of the The interaction of sea level rises and falls on URG in Wiesbaden (Fig. 1), deposits called accumulation behaviour in the URG needs to The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben 309

Table 3: Selected boreholes from the Viernheim-Bensheim area with the depths of the characteristic marker horizons. Petrographic descriptions of the fl ush drilled wells are uncertain.

Tab. 3: Ausgewählte Bohrungen aus dem Raum Viernheim–Bensheim mit der Tiefenlage charakteristischer Leithorizonte. Die petrographischen Beschreibungen der Spülbohrungen sind unsicher.

No. Identifi er Gamma Top Base Thickness layer Base of the (Fig. 10) Drilling method logging layer Xb layer Xb Xb [m] Quaternary total depth (TD) [m] [m] sediments [m]

1 Deponie Hirschländer – 46 60 24 – GWM1/03 dry drilling; TD 80 m 2 EWS Viernheim 2006/ –?? ? 297? 780 fl ush drilling (petrography uncertain); TD 300 m 3 EWS Viernheim 2006/ X 45.5 65 19.5 – 594 (2008) fl ush drilling; TD 140 m 4 STW Viernheim X 42.25 62.15 19.9 – tube core drilling and fl ush drilling; TD 110 m 5 FB Viernheim B1/06 X 39.76 58.55 18.79 225 tube core drilling; TD 350 m 6 EWS Hüttenfeld 2007/ X 43 60 17 – 581 fl ush drilling; TD 99 m 7 FB Einhausen C/01-BK4 X–– 0 164.8 tube core drilling; TD 205 m 8 WW Feuersteinberg X 35 45 10 – GWM 75t fl ush drilling; TD 65 m 310 CHRISTIAN HOSELMANN

1 13 5 11 15 4 6 12 5 12 N B Xb 45 m 16 B qp - 2 8 4 4 7 B Xb - 7 16 B qp 164.8 m 12 4 3 6 5 5 2 13 3 8 8 3 16 10 11 5 6 1 7 6 4 9 15 6 7 6 5 2 6 5 7 6 8 6 1

B Xb ? 5 B qp 297? 5 B Xb 60 m 6 5 B qp - 6 15 7 7 7 6 2 7 6 1 7 B Xb 58.55 m B qp 225 m 2 5 6 5 4 6 4 B Xb 62.15 m 2 B qp - 7 3 B Xb ? B Xb 65 m B qp 297 m? B qp - 6 7 2 10 6 3 7 5 5 B Xb 60 m 1 3 4 B qp - 6 7 5 3 5 2

0 123 km 5 5 6 The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben 311

1 Loam Stagnant water sediments

2 Loam, sand, gravel Flood plain deposit Holocene

Holocene organic sediment 3 Peat

Clay, silt, frequently with 4 cobbles, detritus and sand Solifluction cover Quaternary

5 Clay, loam Flood plain loam

!!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! Pleistocene !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! Sand Aeolian sand, [8] dune !!!!!!!67 !!!!!!!!! !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!!

!!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! Gravel, sand Terrace deposit !!!!!!!8 !!!!!!!!! !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!!

9 Clay-silt, sand-gravel, marl Oligocene, not subdivided Oligocene Older Tertiary Tertiary

Sandstone, partly with cobbles, clay- and- Germanic 10 siltstone Lower Buntsandstein Lower Triassic

Metasediments (predominantly biotite-plagioclase-gneiss, ?- hornblende-gneiss, graphite schist, quartzite, Metasediments, not subdivided 11 marble, calc-silicate rock, garnet rock) Flaser granitoid (predominantly oligoclase- Early "Flaser gneiss" 12 K-feldspar-quartz-biotite-gneiss, (synorogenic primary gneiss) mostly plagioclase-metablastic) Aplitic granitoid (plagioclase-K-feldspar- 13 biotite-gneiss, biotite-muscovite-gneiss "Younger biotite granite" up to aplite granite)

14 Granite Early

!!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! Plutonic rocks of the !!!!!!! !!!!!!!!! Granodiorite, partly migmatic !!!!!!! !!!!!!!!! !!!!!!!15 !!!!!!!!! Odenwald Mountains and Spessart !!!!!!! !!!!!!!!! !!!!!!! !!!!!!!!! Early 16 Diorite, quartz diorite, gabbro diorite, gabbro Carboniferous (Frankenstein- Pluton, Higher Geological boundary Late Devonian) Faults, known faults, assumed State boundary

Scientific editing by members of the "Hessisches Landesamt für Umwelt und Geologie" Status: 5. revised, digital edition; August 2007

Base data: General geological map of Hessen at a scale of 1:300,000 (1.-3. edition of F. RÖSING) and geological maps at a scale of 1:25,000

Topographic base of the map: Hessen at a scale of 1:200,000 (H200) reproduced with permission of the "Hessisches Landesamt für Bodenmanagement und Geoinformation". Verv.-Nr: 2006-3-81

© Hessisches Landesamt für Umwelt und Geologie, Wiesbaden 2007 Diese Karte ist gesetzlich geschützt. Vervielfältigung nur mit Erlaubnis des Herausgebers. Als Vervielfältigung gelten z.B. Nachdruck, Fotokopie, Mikroverfilmung, Digitalisierung, Scannen sowie Speicherung auf Datenträgern.

Fig. 10: Distribution of various boreholes drilled recently in the southern Hessisches Ried used to evaluate “regional trends”. The well locations are plotted on the geological base map of Hessen 1:300,000. The graben margin at the boundary to the crystalline Odenwald can be seen in the eastern part of the map; in the south- east with sedimentary rock remains of the lower Buntsandstein. B Xb = Base section Xb in m below ground level; B qp = Base Pleistocene in m below ground level

Abb. 10: Verteilung verschiedener in den letzten Jahren abgeteufter Bohrungen im südlichen Hessischen Ried, die für die Auswertung „regionaler Trends” verwendet wurden. Die Bohransatzpunkte wurden in die Geologische Übersichtskarte 1:300.000 von Hessen eingetragen. Im östlichen Teil des Kartenausschnitts ist an der Grenze zum kristallinen Odenwald der Grabenrand zu erkennen; im Südosten mit Sedimentgesteins- resten des unteren Buntsandsteins. B Xb = Basis Sequenz Xb in m unter GOK; B qp = Basis Pleistozän in m unter GOK 312 CHRISTIAN HOSELMANN be clarifi ed for this purpose. Rapid rises in 50–64, Hessisches Landesamt für Bodenfor- sea level can also cause water to back up in schung. the hinterland and possibly trap accumulation BARTZ, J. (1974): Die Mächtigkeit des Quartärs im in front of the rising Rhenish Massif and lead Oberrheingraben. – In: FUCHS, K. & ILLIES, J.H. (eds.): Approaches to Taphrogenesis. – Inter- to increased coarse clastic sedimentation in Union Commission on Geodynamics Scientifi c the southern Upper Rhine Graben and in the Report, 8: 78–87; Stuttgart (Schweizerbart). northern URG north of the Karlsruhe High to BARTZ, J. (1982): Quartär und Jungtertiär II im dominant fi ne-clastic sedimentation. Answer- Oberrheingraben im Großraum Karlsruhe mit ing these questions requires detailed analysis Beiträgen von BRELIE, G. VON DER & MAUS, H. of cores in the Heidelberg Basin because – Geologisches Jahrbuch, A 63: 3-237. understanding the depositional processes and BIBUS, E. (1980): Zur Relief-, Boden- und Sedimen- palaeogeographic development of this region tentwicklung am unteren Mittelrhein. – Frank- and the fl uviatile Rhine system is only possible furter Geowissenschaftliche Arbeiten, Serie D, 1: 296 pp. in the high resolution deposits which are only BIBUS, E. & SEMMEL, A. (1977): Über die Auswirkung found here in the thickest Quaternary sedimen- quartärer Tektonik auf die altpleistozänen Mittelr- tary succession in the URG. hein-Terrassen. – Catena, 4: 385-408. BOENIGK, W. (1977/78): Zur petrographischen Acknowledgements Gliederung der Mosbacher Sande im Dycker- hoff-Steinbruch, Wiesbaden/Hessen. – Mainzer The research borehole project in the Heidelberg Naturwissenschaftliches Archiv, 16: 91-126. Basin was only possible by the co-operation BOENIGK, W. (1983): Schwermineralanalyse. – 152 between the HLUG and the Geological Surveys pp.; Stuttgart (Enke). BOENIGK, W. (1987): Petrographische Untersuchun- in Baden-Württemberg (Dietrich Ellwanger, gen jungtertiärer und quartärer Sedimente am Theo Simon, Eckhard Villinger, and Ulrike linken Oberrhein. – Jahresberichte und Mit- Wielandt-Schuster) and Rheinland-Pfalz (Mi- teilungen des Oberrheinischen Geologischen chael Weidenfeller), and the Leibniz Institute Vereines, N.F. 69: 357-394. for Applied Geosciences (Hermann Buness, BOENIGK, W. & FRECHEN, M. (2006): The Pliocene Manfred Frechen, Gerald Gabriel, Christian and Quaternary fl uvial archives of the Rhine Rolf, Thomas Wonik, and Kathrin Worm). system. – Quaternary Science Reviews, 25(5-6): This co-operation was also benefi cial thanks to 550-574. the many discussions and ideas it engendered. BOENIGK, W. & HOSELMANN, C. (1991): Zur Genese der Hönninger Sande (unterer Mittelrhein). Thanks go to Roman Haimberger (now 360plus – Eiszeitalter und Gegenwart, 41: 1–15. Consult GmbH, Karlsruhe) for many years of BOGAARD, P. VAN DEN & SCHMINCKE, H.U. (1990): friendly co-operation. Credit also goes to Mi- Die Entwicklungsgeschichte des Mittel- chaela Dersch-Hansmann, Heiner Heggemann, rheinraumes und die Eruptionsgeschichte des Heinz-Dieter Nesbor and Joachim Wedel (all Osteifel-Vulkanfeldes. – In: SCHIRMER, W. (ed.): HLUG), Carl-Peter Ziehlke (formerly HLUG), Rheingeschichte zwischen Mosel und Maas. and Markus Diehl (TU Darmstadt) for their – deuqua-Führer; 1: 166-190; Hannover. project assistance and numerous ideas. Markus BOS, J.A.A., DAMBECK, R., KALIS, A.J., SCHWEIZER, A. Fiebig and Jef Vandenberghe are thanked for & THIEMEYER, H. (2008): Palaeoenvironmental changes and vegetation history of the northern their critical and constructive reviews of the Upper Rhine graben (southwestern Germany) manuscript. since the Lateglacial. – Netherlands Journal of Geosciences, 87(1): 67-90. References BOWEN, D.Q. & GIBBARD, P.L. (2007): The Qua- ternary is here to stay. – Journal of Quaternary ANDERLE, H.-J. & GOLWER, A. (1980): Tektonik. Science, 22(1): 3-8. – In: Erläuterungen zur Geologischen Karte von DAMBECK, R. (2005): Beiträge zur spät- und post- Hessen 1 : 25 000, Blatt Nr. 5917 Kelsterbach: glazialen Fluß- und Landschaftsentwicklung The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben 313

im nördlichen Oberrheingraben. – Diss. Fb million years. – Episodes, 31(2): 243-247. Geowiss./Geogr. Univ. Frankfurt a. M.: 246 pp.; HAGEDORN, E.-M. (2004): Sedimentpetrographie und Frankfurt a. M. (online-publication – URL: http: Lithofazies der jungtertiären und quartären Sedi- //publikationen.ub.uni-frankfurt.de/volltexte/ mente im Oberrheingebiet. – Inaugural-Disser- 2005/908/). tation, Geologisches Institut der Universität zu DAMBECK, R. & BOS, J.A.A. (2002): Lateglacial Köln: 248 pp.; (online-publication – URL: http: and Holocene Landscape evolution of the //kups.ub.unikoeln.de/volltexte/2004/1253/). northern Upper Rhine-Rift-Valley. – Zeit- HAGEDORN, E.-M. & BOENIGK, W. (2008): New evi- schrift für Geomorphologie Neue Folge, Sup- dences of the Pliocene and Quaternary sedimen- plement-Band, 128: 101–127. tary and fl uvial history in the Upper Rhine Graben DAMBECK, R. & THIEMEYER, H. (2002): Fluvial History on basis of heavy mineral analyses. – Netherlands of the northern Upper Rhine river (south-western Journal of Geosciences, 87(1): 19-30. Germany) during the Lateglacial and Holocene HAIMBERGER, R., HOPPE, A. & SCHÄFER, A. (2005): Times. – Quaternary International, 93/94: 53–63. High-resolution seismic survey on the Rhine DEHNERT, A. & SCHLÜCHTER, C. (2008): Sediment River in the northern Upper Rhine Graben. burial dating using terrestrial cosmogenic nu- – International Journal of Earth Sciences (Geo- clides. – Quaternary Science Journal (Eiszeital- logische Rundschau), 94(4): 657–668. ter und Gegenwart), 57/1-2: 210-225. HGK (1999): Hydrogeologische Kartierung und DONDERS, T.H., KLOOSTERBOER-VAN HOEVE, M.L., Grundwasserbewirtschaftung Rhein-Neckar- WESTERHOFF, W.E., VERREUSSEL, R.M.C.H. & Raum. Fortschreibung 1983-1999. – Ministeri- LOTTER, A.F. (2007): Late Neogene continental um für Umwelt und Verkehr Baden-Württem- stages in NW Europe revisted. – Earth-Science berg, Hessisches Ministerium für Umwelt, Reviews, 85: 161-186. Landwirtschaft und Forsten, Ministerium für ELLWANGER, D., GABRIEL, G., SIMON, T. WIELANDT- Umwelt und Forsten Rheinland-Pfalz: 155 pp.; SCHUSTER, U., GEILING, R.O., HAGEDORN, E.-M., Stuttgart, Wiesbaden, Mainz. HAHNE, J. & HEINZ, J. (2008): Long sequence of HOSELMANN, C. (1996): Der Hauptterrassen-Kom- Quaternary Rocks in the Heidelberg Depocentre. plex am unteren Mittelrhein. – Zeitschrift – Quaternary Science Journal (Eiszeitalter und Deutsche Geologische Gesellschaft, 147(4): Gegenwart): 57/3-4: 316-337. 481–497. ELLWANGER, D., GABRIEL, G., HOSELMANN, C., HOSELMANN, C. (2007a): Untermain-Hauptterrassen- LÄMMERMANN-BARTHEL, J. & WEIDENFELLER, M. Formation. – In: LithoLex [Online-database]. (2005): The Heidelberg Drilling Project (Upper Hannover: BGR. Last updated 13.11.2007. [ci- Rhine Graben, Germany). – Quaternaire, 16(3): ted 02.05.2007]. Record No. 1000003. Available 191-199. from: http://www.bgr.bund.de/DE/Themen/GG_ ENGESSER, W. & MÜNZING, K. (1991): Mollus- _Palaeontol/LithoLex. kenfaunen aus Bohrungen im Raum Phillips- HOSELMANN, C. (2007b): Haupt-Mosbach-Subfor- burg-Mannheim und ihre Bedeutung für die mation. – In: LithoLex [Online-database]. Han- Quartärstratigraphie des Oberrheingrabens. nover: BGR. Last updated 13.11.2007. [cited – Jahreshefte des Geologischen Landesamts 27.04.2007]. Record No. 1000001. Available Baden-Württemberg, 33: 97-117. from: http://www.bgr.bund.de/DE/Themen/ ERKENS, G., DAMBECK, R., VOLLEBERG, K.P., BOUMAN, GG__Palaeontol/LithoLex. M.T.I.J., BOS, J.A.A., COHEN, K.M., WALLINGA, J. KAHLKE, R.-D. (2007): Late Early Pleistocene Euro- & HOEK, W.Z. (2009): Fluvial terrace formation pean large mammals and the concept of an Epi- in the northern Upper Rhine Graben during the villafranchian biochron. – Courier Forschungs- last 20 000 years as a result of allogenic controls institut Senckenberg, 259: 265-278. and autogenic evolution. – Geomorphology, KELLER, T. (1999): Fundstellen von Kleinsäugern in 103(3): 476-495. den mittelpleistozänen Mosbach-Sanden. – Jahr- GEYH, M. (2008): 230Th/U dating of interglacial and bücher des nassauischen Vereins für Naturkun- interstadial fen peat and lignite: Potential and de, 120: 167-171. limits. – Quaternary Science Journal (Eiszeitalter KEMNA, H.A. (2005): Pliocene and Lower Pleisto- und Gegenwart), 57/1-2: 77-94. cene Stratigraphy in the Lower Rhine Embay- GIBBARD, P. & COHEN, K.M. (2008): Global chrono- ment, Germany. – Kölner Forum für Geologie stratigraphical correlation table for the last 2.7 und Paläontologie, 14: 1-121. 314 CHRISTIAN HOSELMANN

KEMNA, H.A. (2008a): A Revised Stratigraphy for PREUSSER, F. (2008): Characterisation and evolution the Pliocene and Lower Pleistocene Deposits of the River Rhine system. – Netherlands Jour- of the Lower Rhine Embayment. – Netherlands nal of Geosciences, 87(1): 5-17. Journal of Geosciences, 87(1): 91-105. PREUSSER, F., DEGERING, D., FUCHS, M., HILGERS, KEMNA, H.A. (2008b): Pliocene and Lower Pleis- A., KADEREIT, A. KLASEN, N. KRBETSCHEK, M., tocene fl uvial history of the Lower Rhine Em- RICHTER, D. & SPENCER, J.Q.G. (2008): Lumines- bayment, Germany: Examples of the tectonic cence dating: basics, methods and applications. forcing of river courses. – Quaternary Internati- – Quaternary Science Journal (Eiszeitalter und onal, 189: 106-114. Gegenwart), 57/1-2: 95-149. KEMNA, H.A. & WESTERHOFF, W.E. (2007): Remarks ROLF, C., HAMBACH, U. & WEIDENFELLER, M. (2008): on the palynology-based chronostratigraphical Rock and palaeomagnetic evidence for the Plio- subdivision of Pliocene terrestrial deposits in Pleistocene palaeoclimatic change recorded NW-Europe. – Quaternary International, 164- in Upper Rhine Graben sediments (Core Lud- 165: 184-196. wigshafen-Parkinsel). – Netherlands Journal of KNIPPING, M. (2004): Pollenanalytische Untersu- Geosciences, 87(1): 39-48. chungen an einem mittelpleistozänen Interglazi- VAN ANDEL, T.H. (1950): Provenance, Transport and al bei Mannheim. – Tübinger Geowissenschaft- Deposition of Rhine Sediments. – 129 pp., Wa- liche Arbeiten, D 10: 199-217. geningen (Veenman & Zonen). KNIPPING, M. (2008): Early and Middle Pleistocene VAN GIJSSEL, K. (2006): A continent-wide framework pollen assemblages of deep core drillings in for local and regional stratigraphies. – Doctoral the northern Upper Rhine Graben, Germany. thesis, Leiden University: 119 pp.; (online-pub- – Netherlands Journal of Geosciences, 87(1): lication – URL: https://openaccess.leidenuniv.nl/ 49-63. dspace/handle/1887/4985). LANG, S. (2007): Die geologische Entwicklung der VILLINGER, E. (2005): Symbolschlüssel Geologie Hanau-Seligenstädter Senke (Hessen, Bayern). Baden-Württemberg – Regelwerk für eine ein- – Dissertation an der Technischen Universität heitliche Nomenklatur. – LGRB-Informationen, Darmstadt: 97 pp.; (online-publication – URL: 17: 8-24. http://elib.tu-darmstadt.de/diss/000782/). VINKEN, R. (1959): Sedimentpetrographische Unter- LITT, T. (2007): Das Quartär als chronostratigraphi- suchungen der Rheinterrassen im östlichen Teil sche Einheit – The Quaternary as a chronostra- der Niederrheinischen Bucht. – Fortschritte in tigraphical unit. – Quaternary Science Journal der Geologie von Rheinland und Westfalen, 4: (Eiszeitalter und Gegenwart): 56/1-2: 3-6. 127-170. LÖSCHER, M. (1988): Stratigraphische Interpre- WEDEL, J. (2008): Pleistocene molluscs from re- tation der jungpleistozänen Sedimente in search boreholes in the Heidelberg Basin. der Oberrheinebene zwischen Bruchsal und – Quaternary Science Journal (Eiszeitalter und Worms. – In: KOENIGSWALD, W. VON (ed.): Zur Gegenwart): 57/3-4: 382-402. Paläoklimatologie des letzten Interglazials im WEIDENFELLER, M. (2007): Mittelrhein-Hauptterras- Nordteil der Oberrheinebene: 79-104; Stuttgart sen-Formation. – In: LithoLex [Online-databa- (Fischer). se]. Hannover: BGR. Last updated 13.11.2007. PETERS, G., BUCHMANN, T.J., CONNOLLY, P., VAN [cited 2.05.2007]. Record No. 1000004. BALEN, R.T., WENZEL, F. & CLOETINGH, S.A.P.L. Available from: http://www.bgr.bund.de/DE/ (2005): Interplay between tectonic, fl uvial and Themen/GG__Palaeontol/LithoLex. erosional processes along the Western Border WEIDENFELLER, M. & KÄRCHER, T. (2008): Tectonic Fault of the northern Upper Rhine Graben, Ger- infl uence on fl uvial preservation: Aspects of many. – Tectonophysics, 406: 39–66. the architecture of Middle and Late Pleistocene PETERS, G. & VAN BALEN, R.T. (2007a): Pleistocene sediments in the northern Upper Rhine Graben, tectonics inferred from fl uvial terraces of the Germany. – Netherlands Journal of Geosciences, northern Upper Rhine Graben, Germany. – Tec- 87(1): 31-38. tonophysics, 430: 41–65. WEIDENFELLER, M. & KNIPPING, M. (2008): Correla- PETERS, G. & VAN BALEN, R.T. (2007b): Tectonic tion of Pleistocene sediments from boreholes in geomorphology of the northern Upper Rhine the Ludwigshafen area, western Heidelberg Ba- Graben, Germany. – Global Planetary Change, sin. – Quaternary Science Journal (Eiszeitalter 58: 310-334. und Gegenwart): 57/3-4: 270-286. The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben 315

WESTERHOFF, W.E. (2008): The Rhine – a major Rhine Embayment. – Netherlands Journal of fl uvial record. – Netherlands Journal of Geosci- Geosciences, 87(1): 107-125. ences, 87(1): 1-4. WIRSING, G., LUTZ, A., ENGESSER, W. & KOCH, A. WESTERHOFF, W.E., KEMNA, H.A. & BOENIGK, W. (2007): Hochaufl ösende Refl exionsseismik auf (2008): The confl uence area of Rhine, Meuse, dem Rhein und dem Rheinseitenkanal zwischen and Belgian rivers: Late Pliocene and Early Mannheim und Rheinfelden. – LGRB-Fachbe- Pleistocene fl uvial history of the northern Lower richt, 1/07: 60 pp.; Freiburg i. Br. Eiszeitalter und Gegenwart 57/3–4 316–337 Hannover 2008 Quaternary Science Journal

Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre

DIETRICH ELLWANGER, GERALD GABRIEL, THEO SIMON, ULRIKE WIELANDT-SCHUSTER, REINHARD O. GREILING, EVA-MARIE HAGEDORN, JÜRGEN HAHNE & JÜRGEN HEINZ *)

Abstract: A description and classifi cation of the successions of the new scientifi c core drillings at Heidelberg is presented. Since 2002 drilling and research activities were ongoing in the Heidelberg Basin (HDB), as a mid-continental sedimentary archive within the Upper Rhine Graben (URG), Germany. The HDB is sup- posed to host one of the longest continuous successions of Quaternary sediments in Europe, due to continu- ous subsidence of the basin and sediment input from various sources. The HDB is about half-way between the Alpine source area of the Rhine and the North Sea. Here the Quaternary input is least affected by discon- tinuities due to climate events as alpine glacier meltdown events or periods of low sea level. Reversely, the low infl uence of climate leads to a larger tectonic control. The sedimentary succession of more than 500 m is considered as primarily controlled by tectonics, but with incorporated climate signals. For classifi cation purposes, sediment provenance, lithofacies-associations, and the ratio of accommodation space and sediment input are used. Some biostratigraphic markers are also available. We suggest a sedimentary scenario where the overall fl uvial environment is twice interrupted by lacustrine intervals. The accommodation space varies too: in one period it expands even beyond the eastern boundary fault of the HDB.

[Mächtige Abfolge quartärer Sedimente im Depozentrum des Heidelberger Beckens]

Kurzfassung: Die neue Forschungs-Kernbohrung aus Heidelberg wird beschrieben und gegliedert. Die For- schungs- und Bohraktivitäten im Heidelberger Becken (HDB) begannen im Jahr 2002; sie erschließen ein kontinentales Sedimentarchiv im Oberrheingraben (URG). Im HDB wird eine der längsten Sedimentabfol- gen quartärer Sedimente in Europa erwartet, dank kontinuierlicher Subsidenz des Beckens in Verbindung mit kontinuierlichem Input von Sedimenten unterschiedlicher Herkunft. Das HDB befi ndet sich auf halber Stre- cke zwischen dem alpinen Einzugsgebiet des Rheins und seiner Mündung in die Nordsee. Eine kontinuier- liche Sedimentation ist hier eher möglich als am Alpenrand mit seinen Schmelzwasser-Erosionsereignissen oder an der Küste mit ihren Meeresspiegelschwankungen. Dieser eher geringe Einfl uss des Klimas hat zur Folge, dass die Tektonik eine umso größere Rolle bei der Steuerung der Sedimentation spielt. Die über 500 m mächtige quartäre Abfolge ist daher in erster Linie durch Tektonik kontrolliert, wobei Klimasignale ebenfalls

*Addresses of authors: D. Ellwanger, Regierungspräsidium Freiburg, Abteilung 9 (Landesamt für Geolo- gie, Rohstoffe und Bergbau), Albertstraße 5, 79104 Freiburg i. Br., Germany. E-Mail: dietrich.ellwanger@ rpf.bwl.de; G. Gabriel, Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hannover, Germany. E-Mail: [email protected]; T. Simon, Regierungspräsidium Freiburg, Abteilung 9 (Lan- desamt für Geologie, Rohstoffe und Bergbau), Albertstraße 5, 79104 Freiburg i. Br., Germany. E-Mail: [email protected]; U. Wielandt-Schuster, Regierungspräsidium Freiburg, Abteilung 9 (Landesamt für Geologie, Rohstoffe und Bergbau), Albertstraße 5, 79104 Freiburg i. Br., Germany. E-Mail: ulrike.wielandt- [email protected]; R. Greiling, Geologisches Institut - Strukturgeologie und Tektonophysik, Universität Karlsruhe (TH), Hertzstr. 16, 76187 Karlsruhe, Germany. E-Mail: [email protected], E.-M. Hagedorn, Leineweberstr. 9, 51381 Leverkusen, Germany. E-Mail: [email protected]; J. Hahne, Tiefental 3, 37586 Dassel; Germany. E-Mail: [email protected]; J. Heinz, Hydroisotop GmbH, Karl-Friedrich-Str. 19, 79312 Emmendingen; Germany. E-Mail: [email protected] Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre 317 erkannt werden können. Die hier vorgestellte Gliederung der Abfolge beruht auf Provenienz, Lithofazies und wechselnden Verhältnissen von Akkomodationsraum und Sedimentinput (a/s-ratio). Dazu kommen biostratigraphische Zeitmarken. Im skizzierten Sedimentations-Szenario dominieren fl uviale Verhältnisse; dazwischen zwei lakustrine Abschnitte. Letztere sind verknüpft mit zunehmendem Akkomodationsraum, der in mindestens einer Zeitscheibe über die Grabenrandstörung hinweg sich bis in die Täler des Odenwalds erstreckt.

Keywords: Upper Rhine Graben, Heidelberg Basin, research borehole, lithofacies, sediment provenance, sequence stratigraphy, lithostratigraphy, biostratigraphy, differential uplift, subsidence.

1 Introduction 2 Regional geological context

This paper summarises fi rst results and impres- The northern URG contains a more or less con- sions of the newly cored research borehole at tinuous succession of Oligocene, Neogene and Heidelberg. It is located at the depocentre of Quaternary sediments, which accumulated due the „Heidelberg Basin“ (HDB), close to the to ongoing subsidence since Oligocene time eastern margin of the northern Upper Rhine (DÈZES, SCHMID & ZIEGLER 2004, DURINGER Graben (URG). The probably largest and most 1988, GIDEON, LOPES CARDOZO & BEHRMANN complete Quaternary sediment succession 2006, ROTSTEIN et al. 2006, SCHUMACHER 2002, along the Rhine has been exhibited, amounting ZIEGLER 1992). In the Quaternary, the subsid- to > 500 m. It proved to be a fairly continuous ence increased towards the east, which led to continental archive of the Quaternary in super- a halfgraben architecture with a maximum position and quite good resolution. sediment thickness at the eastern margin of the The sediments are strongly infl uenced by the URG, i.e. the Heidelberg deep (Heidelberger input of the river Neckar, a major tributary of Loch, location of the Heidelberg borehole, the Rhine which has its outlet into the URG BARTZ 1974). The western part of the Graben within Heidelberg. Two other boreholes repre- is slightly uplifted. As a result, the HDB low- senting other parts of the HDB are the borehole lands are bordered in the east by the Odenwald of Viernheim in the geographic centre of the highlands and the Kraichgau depression. West basin (HOSELMANN 2008), and the borehole of of the HDB, there is a widespread foothill Ludwigshafen at the western margin (WEIDEN- landscape within the URG (PETERS 2007), and FELLER & KÄRCHER 2008, ROLF, HAMBACH & the Pfälzerwald highlands at the western URG WEIDENFELLER 2008; Fig. 1). Their sediments shoulder (Fig. 1). are both dominated by input of the Rhine. The subsidence of the HDB is balanced by All three boreholes are part of a multidisci- sediment input throughout the Quaternary. plinary research project (The Heidelberg Basin The primary sediment sources are the fl u- Drilling Project; ELLWANGER et al. 2005, 2007, vial systems of Rhine and Neckar. The deposits GABRIEL et al. 2008). Its aims will be to identify mainly refl ect this fl uvial environment, but also the interaction of climate and tectonics as con- include intervals dominated by local coarse trolling mechanisms of sedimentation, describe debris input from the nearby highlands, and properties and 3D architecture of the infi ll, and also some lacustrine intervals. The HDB suc- contribute to the correlation of alpine and north cession is, therefore, not only an archive of the European Quaternary stratigraphy. This paper Quaternary stratigraphic evolution, but also of only contributes to the basics of this research, the varying sedimentary dynamics. as is it primarily focused on the Heidelberg borehole. 318 DIETRICH ELLWANGER ET AL.

Fig. 1: Location of the UniNord boreholes in Heidelberg and other boreholes. The Eastern Boundary Fault (EBF) of the Upper Rhine Graben (URG) separates the lowland plains of the Upper Rhine from the adjacent highlands. The Heidelberg Basin (HDB) covers approximately the area between the present River Rhine and the EBF, extending some 10 – 15 km north and south of Heidelberg. The highlands east of the EBF are two- parted, the Odenwald anticline (highlands) in the north, and the Kraichgau syncline (lowlands) in the south. The Neckar valley is incised into the southern Odenwald highlands, as is the buried early Neckar valley at Mauer.

Abb. 1: Lokation der UniNord Bohrungen in Heidelberg und anderer Bohrungen. Die „östliche Hauptver- werfung“ (EBF) des Oberrheingrabens (URG) trennt die Oberrheinebene von den angrenzenden Mittelgebir- gen. Das Heidelberger Becken (HDB) erstreckt sich zwischen dem heutigen Rheinlauf und der EBF, sowie, ausgehend von Heidelberg, jeweils 10 – 15 km nach Norden und Süden. Die Mittelgebirge östlich der EBF sind zweigeteilt, im Norden die Odenwald-Antikline (als Mittelgebirge) und im Süden die Kraichgau-Syn- kline (als Tiefl and). Das Neckartal ist in den südlichen Odenwald eingeschnitten, wie auch das verlassene Neckartal bei Mauer mit seiner Talverschüttung. Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre 319

3 Definitions and methods 3.2 Sediment evaluation

3.1 Definition of „Quaternary“ in the In Applied Geology, the Quaternary sediment Upper Rhine Graben (URG) succession of the URG is up to now described as an alternation of units of coarse and fi ne- Some popular stratigraphic schemes of the grained sediments (Kieslager, Zwischenho- URG are diffi cult for stratigraphers to apply, as rizonte, BARTZ 1982). These units are widely chronostratigraphic terms are used to describe used in e.g. in hydrogeology, serving as aquifer lithostratigraphic units (Table 1 in GABRIEL et resp. aquitard units. Most data in archives fi t in al. 2008). In this routine, „Quaternary“ and this routine. „Pliocene“ are defi ned by their sediment prov- In this paper we describe the succession as enance (e.g. BARTZ 1982, HGK Rhein-Neckar lithofacies resp. lithofacies associations and 1999). I.e. „Pleistocene“ Rhine sediments identify genetic units (FIEBIG 1999). We attempt enclose material of alpine origin, „Pliocene“ to give a fi rst interpretation of sedimentary sediments don’t. This refers to a major event cycles of various orders, stacking patterns and in the history of the alpine Rhine, when its sedimentary control in different environments. course changed from „circumalpine“ towards Dealing with borehole cores of often quite the North Sea (VILLINGER 1998). coarse grained sediments, this is based primar- In the URG, this provenance transition is usual- ily on fi rst analysis of grain sizes, stratifi cation, ly a very distinct and widely recognized bound- petrography, heavy minerals, carbonate con- ary. The alpine origin of the sediments above tent, pollen, molluscs, ichnofossils etc. Studies is easely detectable by carbonate content and on stratifi cation and textures are limited due to identifi cation of pebbles of alpine origin. It can weak consolidation of the material. further be proved by heavy mineral analysis We distinguish gravel, sand and fi nes (silt and (BOENIGK 1987, HAGEDORN 2004). According to clay) according to DIN 4022 and lithofacies the few yet available chronostratigraphic mark- terms according to MIALL (1985, 1996). The ers, the boundary is considered diachronic. The succession is related to trends of the relative markers come from the non-alpine sediments base level and the sediment input (a/s-ratio). below. They are located close to the present They again depend on what is considered to river Rhine and 30 km apart: In Sessenheim ultimately control the sedimentary system: (25 km north of Strasbourg) the transition is tectonic uplift and subsidence, compaction, but identifi ed still within the uppermost Neogene also effects of climate as intensifi ed mechanical (BOENIGK 1987), in Marlen (5 km south of erosion. Strasbourg) at least post-Tiglian (BROST & ELL- The base level concept as applied here goes WANGER 1991, ELLWANGER 2003) or even post- back to basic studies of CROSS et al. (1993) and Bavelian (BLUDAU 1998). In the far downriver of CROSS & LESSENGER (1998). They combine Lower Rhine area, the provenance transition WALTHER’s law with sediment volume parti- has been frequently detected as heavy mineral tioning. This leads to a simplifi ed way to regard signal within the Pliocene Reuver Clay (BOE- sedimentary cycles as a function of accommo- NIGK 1970, 1987, BOENIGK & FRECHEN 2006, dation space vs. sediment supply (a/s-ratio). In KEMNA 2008, KEMNA & WESTERHOFF 2007, particular the grain size variations and changes WESTERHOFF 2004, 2008). in the recorded environment are interpreted, In this paper we use the lithostratigraphic e.g. sequences with dominant pedogenesis scheme outlined below (chapter 3.3), which represent very low input and high accommo- has been created some years ago to avoid con- dation space, i.e. high a/s-ratio; in contrast to fusion. We also use chronostratigraphic terms, sequences with dominant sand preservation in but only when referring to chronostratigraphy the fl uvial system where the fi nes are reworked, and only based on chronostratigraphic data. i.e. low a/s-ratio. The changes of increase and 320 DIETRICH ELLWANGER ET AL. decrease of the a/s-ratio are then used to iden- 4 The Heidelberg Cores – Description and tify the sequence stratigraphic frame which can basic classifications be used for correlation. (Litho- and Biostratigraphy)

3.3 Lithostratigraphy 4.1 Some general remarks

The sedimentary succession is put in the frame The Heidelberg research boreholes are the deep- of several lithostratigraphic units which were est in the project, representing the depocentre on lately defi ned as formations and sub-forma- the eastern margin of the HDB. They are located tions (Fm, Sfm, SYMBOLSCHLÜSSEL GEOLOGIE just north of the Campus of Heidelberg Univer- BADEN-WÜRTTEMBERG 2007). They avoid the sity, still close to the mouth of the River Neckar former mix-up with chronostratigraphy but, in downtown Heidelberg, and situated on the al- at the same time, try to continue to use major luvial fan of the Neckar. For technical reasons, observations formerly registered. Primarily this a fi rst borehole was cored to 190 m, a second concerns two observations: in the lower part of borehole from 184 to 500 m (UniNord 1+2). The the succession the provenance change related two sites are only 300 m apart and are easily cor- to the alpine Rhine; and in the upper part (only related (Fig. 2). Their combined depth of 500 m northern URG) a specifi c boundary, revealing exhibits Quaternary sediments down to ~ 500 m a wide-spread, externally controlled and abrupt which is more than originally predicted (before change of lithofacies: drilling the chronostratigraphic Plio- Pleistocene • Mannheim-Formation (upper unit), series transition was expected around 400 m, i.e. we of two or three sand cycles, low preserva- intended to recover 400 m cores of Quaternary tion potential of fi nes; topmost unit with sediments, plus 100 m of Pliocene sediments). increased ratio of local sand and gravel; We present a condensed lithostratigraphic de- • Boundary: abrupt fi ne-coarse transition scription and classifi cation of the sediments, • Kurpfalz-Formation (middle unit), series including some remarks on with basal coarse-fi ne-cycles of Rhenish • sediment provenance, derived from pebble provenance, followed by a sand-dominated and heavy minerals analysis; section, and fi nally a widely recognized • the sedimentary environment; subunit of fi nes on top; • the few already available biostratigraphic • Boundary: change of provenance; markers, derived from pollen analysis, that are • Iffezheim-Formation (lower unit), series of used to set up a chronostratigraphic frame; sand-to-mud cycles of local origin, usually • and depositional trends. including strongly weathered sediments. Following the conventional technique of core The above patterns refl ect the lithofacies of the documentation, the major units are in order central HDB. They are modifi ed by local input, from top to bottom; but subunits in upward di- in this case of the Neckar close to Heidelberg. rection. A detailed description including further Please note that in the frame set up by these data will be published later in a special volume defi nitions, of LGRB Informationen (Regierungspräsidium • Provenance plays no part with regard to the Freiburg, www.rp-freiburg.de). upper boundary (Kurpfalz-Formation vs. The sediment succession is provisionally sub- Mannheim-Formation); divided in three large units according to the • Lithofacies plays no part with regard to the above lithostratigraphic terms. At UniNord lower boundary (Iffezheim-Formation vs. they were identifi ed as follows: Kurpfalz-Formation); and • Mannheim-Formation from 56 to 0 m; as • Chronostratigraphy plays no part with re- a series dominated by coarse gravels, with gard to both boundaries. layers of diamicton and fi nes, including a well preserved fossil soil; Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre 321

4.2 Mannheim Formation at UniNord

The Mannheim-Formation at UniNord covers the interval from 0 to 56 m. The sediments are composed of about 75 % coarse debris and grav- el, 10 % sand, 5 % fi nes, and 10 % diamicton. Fluvial gravels dominate. However, the succes- sion begins and ends with a layer of coarse de- bris, the upper one resembling the alluvial fan of the Neckar which presently undergoes erosion and terrace formation. Within the gravels there are insertions dominated by diamicton; one of them grading into fi nes with a fossil soil.

The succession is stratifi ed as follows (cf. Fig. 3): • 0 – 12 m coarse debris with boulders, gravel and layers of sand; • 12 – 26 m fl uvial gravel with some layers of sand; • 26 – 34 m diamicton with sand cover; • 34 – 38 m diamicton grading into mud Fig 2: Overview of the sediment succession of the with fossil soil ; Heidelberg deep down to 500 m, comprised from • 38 – 46 m fl uvial gravel; the UniNord boreholes of 2006 (interval from 0 to • 46 – 48 m diamicton; 190 m) and of 2008 (interval from 184 m to 500 m). • 48 – 55 m fl uvial gravel; Lithostratigraphic frame, major lithologies and sedi- • 55 – 56 m coarse debris and gravel; mentary environments. Legend cf. Fig. 3.

Abb. 2: Übersicht der Sediment-Abfolge im Hei- Provenance: The petrographic spectra of the delberger Loch bis 500 m Tiefe, zusammengesetzt gravels refl ect the up-river catchment of the aus den Bohrungen UniNord aus 2006 (Abschnitt present Neckar valley passing through the Oden- von 0 bis 190 m) und aus 2008 (Abschnitt von wald highlands. There are large components of 184 m bis 500 m). Lithostratigraphischer Rahmen, the nearby Buntsandstein which are coarse and vorherrschende Lithologie und Ablagerungsmilieu. poorly rounded. The Muschelkalk components Legende vgl. Abb. 3. are usually fi ner and better rounded; however, one boulder occurs at the basis of the unit at • Boundary: abrupt transition of fi ne-coarse 56 m. Some small components come from the sedimentation far distant Neckar catchment, i.e. the Jurassic • Kurpfalz-Formation from 299 to 56 m; as a of the Swabian Alb. The crystalline basement series with coarse debris at the basis (sub- with the nearby major exposure below Heidel- unit K1); a two-parted main section with berg castle is only poorly represented. – Most coarse debris and gravel, sand and fi nes in sand and fi nes are also of Neckar provenance, the middle part; and a fi ne sediment domi- with the exception of several sand-rich strata re- nated section on top; sembling traces of Rhenish provenance by their • Boundary: change of provenance and abrupt instable heavy mineral composition. They are transition of fi ne-coarse sedimentation very well sorted and therefore supposed to come • Iffezheim-Formation from >500 to 299 m; as from reworked eolian input, alike to the nearby a cyclic alternation of white-sand to clay and dunes, and may represent elder phases of cold dark sand, altogether of non-alpine origin. climate (26 – 29 m). 322 DIETRICH ELLWANGER ET AL.

Fig. 3: The sediment succession of the Mannheim-Formation in the Heidelberg UniNord research borehole (location Fig. 1). Centre: Stratigraphic succession as Lithofacies log (schematic), genetic units; Left: Lithostratigraphic inter- pretation; Right: Sequence stratigraphic trends (increasing and decreasing a/s-ratio). The succession is dominated by coarse debris fl ows and proximal fl uvial gravels, but also includes insertions of matrix-rich diamicton and fi ne sediments. – Further details on the stratigraphic succession, provenance, chronostratigraphic markers and sedimentary environment see text.

Abb. 3: Die Sedimentfolge der Mannheim-Formation aus der Forschungsbohrung Heidelberg UniNord (Lokation Abb. 1): Mitte: Stratigraphische Abfolge als schematisches Lithfazieslog, genetische Einheiten; Links: Lithostratigra- phische Interpretation; Rechts: Sequenzstratigraphische Trends (zu- und abnehmendes a/s-Verhältnis). Die Abfolge wird beherrscht von groben Debris-Flows und proximalen Flussschottern; sie enthält auch Einschaltungen von Matrix-reichen Diamikten und Feinsedimenten. – Weitere Angaben zur Schichtenfolge, Provenienz, chronostratigraphischen Marken und Ablagerungsmilieu im Text. Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre 323

Sedimentation: The depocentre of the HDB cor- fi ne sediments. The subunit from 126 to 237 m responds with the alluvial fan of the Neckar. The (subunit K3) subsumes two pulses of coarse genetic units in intervals with coarse debris and input (intervals 126 – 168 m and 189 to 206 fl uvial gravels match well with this proximal m), but throughout with layers of fi nes and setting (Fig. 3). One major interval with diamic- sand. The next subunit from 237 to 263 m ton, fi nes and pedogenesis, occurs all over is again wholly dominated by fi ne sediments the depocentre (HGK 1999). As a result, the (K2). Some genetic units grade into dark fi nes Mannheim-Fm shows an overall coarse – fi ne (organic), others into clay with evidence of – coarse trend, going along with a fi rst increas- pedogenesis and ichnofossils. The lowermost ing then decreasing a/s-ratio. Any further inter- subunit (263 – 299 m, K1) is dominated by pretation needs a chronostratigraphic frame. massive coarse debris (263 – 288 m) which represents the termination of a coarsening-up Chronostratigraphy: No chronostratigraphic trend that begins with red sands below the For- markers are yet available. As the underlying mation boundary at 316 m. The defi nition of unit (Ladenburg-Subformation) is supposed to the lower boundary of the Kurpfalz-Formation date from the Cromerian, post-Cromerian ages is, as indicated above, not a matter of the local are expected. The fossil soil at 34 m is quite cycle architecture but of provenance. The low- well preserved, dividing the succession into ermost signal of instable „alpine“ heavy miner- an upper and a lower part. Their interpretation als has been identifi ed at 292 m; we suggest the remains open (last and penultimate glaciation, Formation-basis at 299 m. effects of loading and compaction). The sediment succession of the Kurpfalz-For- Summary and interpretation: The major part mation is stratifi ed as follows (Fig. 4): of the Mannheim-Formation at the Heidel- berg UniNord borehole is built up by coarse Ladenburg-Subformation from 56–126 m = sediments representing the proximal lithofacies 70 m (20 % gravel, 10 % sand, 70 % fi nes) of the Neckar alluvial fan. This is an input- • 56 – 67 m graded sand to fi nes and controlled system which strongly depends on fossil peat, fl uvial, sediment supply from the nearby Odenwald some sand from eolian input highlands. As preservation in superposition is and fl uvially reworked; discontinuous, due to lateral shifting within the • 67 – 74 m massive fi nes, lacustrine; fan, the subsidence of the basin plays only a • 74 – 80 m graded sand to fi nes; minor part. • 80 – 83 m silt and clay, ichnofossils, fossil soil, fl uvial 4.3 Kurpfalz Formation at UniNord environment; • 83 – 89 m massive fi nes, lacustrine; The Kurpfalz-Formation at UniNord covers • 89 – 92 m gravely sands, ?diamicton; the interval from 299 to 56 m, i.e. its thick- • 92 – 101 m gravel, some sand from ness amounts to 243 m. It is composed of 35 % eolian input and fl uvially debris and gravel, 20 % sand, and 45 % fi nes. reworked, ?diamicton There is a continuous background supply and (no or poor cores); preservation of fi ne sediments (lacustrine, • 101 – 103 m fi nes and sand, gravely, fl uvial overbanks), interrupted by three major ?diamicton (poor cores); intervals with coarse debris and gravel input • 103 – 109 m coarse debris, gravel, sand, (fl uvial bedload, mass fl ow). Accordingly it is ?diamicton (poor cores); subdivided into lithostratigraphic subunits. • 109 – 126 m massive fi nes, at the basis The uppermost subunit (interval 56 to 126 m, with coarse components, Ladenburg-Subformation) is dominated by lacustrine; 324 DIETRICH ELLWANGER ET AL.

Fig 4: The sediment succession of the Kurpfalz-Formation in the Heidelberg UniNord research borehole (location Fig. 1). Centre: Stratigraphic succession as Lithofacies log (schematic), genetic units; Left: Lithostratigraphic interpretation (Formation and sub-units); Right: Medium and large scale sequence stratigraphic trends. The succession begins with sediments refl ecting a lacustrine environment, with and without coarse mass fl ow insertions (K1, K2). It grades up into fl uvial over- banks and gravels (lower K3) and a pro- grading system of fl uvial gravels (upper K3). After abrupt change, the pattern is twice repeated on smaller scale (Laden- burg-Horizon). – Further details on the stratigraphic succession, provenance, chronostratigraphic markers and sedi- mentary environment see text. Legend cf. Fig. 3.

Abb. 4: Die Sedimentfolge der Kurpfalz- Formation aus der Forschungsbohrung Heidelberg UniNord (Lokation Abb. 1): Mitte: Stratigraphische Abfolge als schematisches Lithfazieslog, genetische Einheiten Links: Lithostratigraphische Interpretation (Formation und Untereinheiten); Rechts: Sequenzstratigraphische Trends mittlerer und großer Ordnung. Die Abfolge beginnt mit lakustrinen Sedimenten, zunächst mit, dann ohne Grobsediment-Einschaltungen (K1, K2). Darüber fl uviale Overbank-Sedimente und Schotter (K3 unterer Teil) und schließlich ein progradierendes System fl uvialer Schotter (K3 oberer Teil). Nach einem abrupten Wechsel wiederholt sich dasselbe Muster in kleinerer Ord- nung zwei Mal (Ladenburg-Horizont). – Weitere Angaben zur Schichtenfolge, Provenienz, chronostratigraphischen Marken und Ablagerungsmilieu im Text. Legende vgl. Abb. 3. Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre 325

Section (K3) from 126 – 237 m = 111 m of Neckar origin, and of very local origin. They (35 % gravel, 30 % sand, 35 % fi nes) may be subdivided in: • 126 – 138 m sand, gravel, debris (no or (a) fi nes and sand of the Rhine (proven by in- poor cores recovered); stable heavy mineral ratio > 50 %); • 138 – 152 m sand and gravel with some (b) local or Neckar fi nes and sand (instable fi nes (no or poor cores heavy mineral ratio < 50 %); recovered); (c) gravel of the Neckar (pebbles of Buntsand- • 152 – 168 m sand and gravel (no or poor stein, Muschelkalk and Jurassic); and cores recovered), basis of (d) coarse debris and gravel of the nearby subunit K3b; Odenwald (mainly Buntsandstein, some • 168 – 179 m massive fi nes upon insertion crystalline and Muschelkalk). of sandy gravel; The sediments of the Ladenburg-Subforma- • 179 – 185 m cycle of tion belong primarily to the „fi nes and sands of gravel-sand-fi nes-peat; Neckar or local origin“. There are exceptions at • 185 – 206 m basal debris, gravel, red sand the top of two lacustrine intervals, where minor and nes, K3a;fi sand pulses of Rhine origin are identifi ed by • 206 – 211 m gravely sand and fi nes; their instable heavy mineral content. Presently • 211 – 215 m sand; we interpret this to be fl uvially reworked eolian • 215 – 217 m fi nes, fossil soil; input. – The Ladenburg-deposits of UniNord are • 217 – 222 m gravel, debris; contemporaneous with similar deposits all over • 222 – 227 m fi nes, fossil soil; the HDB which are usually of Rhine origin. • 227 – 234 m grey and red sand; They also correlate with the upstream buried • 234 – 237 m coarse debris grading into valley infi ll at the discovery site of the Homo dark nes (organic);fi heidelbergensis located near to the village of Mauer, some 15 km southeast of UniNord Section (K2) from 237 – 263 m = 26 m (LÖSCHER 1996). From this it follows that the (10 % gravel, 15 % sand, 75 % fi nes) sediment of this subunit covered the whole • 237 – 263 m fi nes, sandy to muddy, with HDB, and extended beyond the Eastern Bound- few insertions of sand ary Fault (EBF) of the URG. I.e. the nearby (254 – 257), gravel Neckar valley within the Odenwald highlands is (247 – 248) and debris also, as a drowned valley, part of the basin. (258 – 259), fossil soils; The subunits K1 and the lower part of K3 show strong evidence of periodical fl uvial input from Section (K1) from 263 – 299 m = 36 m the alpine Rhine, with continuous input from (60 % gravel and debris, 10 % sand, 30 % the Neckar upheld. In K1, the arrival of the fi nes) Rhine and the preservation of fi nes even when • 263 – 287 m debris of coarse gravels and alternating with coarse local sediments indicate some boulders, few layers of a strongly increasing a/s-ratio. In K2, only sand sand and fi nes; on fi nes of non-Rhine origin are yet identifi ed. • 287 – 297 m fi nes, silt and clay with The K3 succession begins with an alternation ichnofossils, sand layers; of local and Rhine input. Then the local input is • 297 – 299 m debris of coarse gravels gradually replaced by supply from the Neckar, and some boulders. and still further up the input from the Rhine ter- minates. From 190 m upwards only sediments of Provenance: The sediment input in the Kur- Neckar provenance are left. pfalz-Formation of the UniNord succession The three intervals of coarse debris and gravel is classifi ed in sediments of Rhine origin (i.e. (subunits K1 and K3) refer to expanding ero- comprising a signal of the alpine source area), sion into the Odenwald, probably due to uplift. 326 DIETRICH ELLWANGER ET AL.

There is always an overall dominance of coarse the fi nes of the Ladenburg-Subformation, is Buntsandstein, but the ratio of the supplemen- again very abrupt. The fi nes are massive; again tary components varies (Muschelkalk, crystal- with insertions of mass fl ow deposits (here the line). The fi rst coarse pulse (299 – 297 m, basis components are well rounded i.e. reworked of K1) contains much local crystalline (Heidel- from the gravels). This again represents a la- berg Granite). The main pulse (287 – 263 m) custrine environment. Towards the top of these is mainly Buntsandstein, but with an upward fi nes, the environment migrates back towards increasing ratio of Muschelkalk; i.e. the sedi- fl uvial, fi rst visible in traces of plant roots ment source is fi rst „downtown Heidelberg“, and ichnofossils, still within the fi nes, then by then expanding towards the Muschelkalk scarp. re-establishing the prograding fl uvial system – Two coarse intervals of fl uvial gravels follow (lacustrine-to-fl uvial cycle from 126 to 89 m (206 – 189 m and 168 – 126 m, subunit K3). = 37 m). In the upper part of the Ladenburg- Within the latter a fi rst small then increasing Subformation, two more lacustrine to fl uvial ratio of Jurassic is present, and there are some transitions are identifi ed (89 – 74 m = 15 m; layers where the Muschelkalk components and 74 – 56 m = 18 m). They range from mas- dominate. This is also characteristic regarding sive fi nes up to graded sands, i.e. they comprise some correlative gravely insertions in the suc- no gravely sediments. Further up, the lacustrine cession of the Viernheim sister drilling (inter- to fl uvial cyclicity is drowned by the input of val 180 to 80 m, HOSELMANN 2008). the Mannheim-Formation. The Kurpfalz-Formation shows an overall de- Sedimentation: The overall fl uvial evolution creasing a/s-ratio throughout the succession, of the UniNord succession is interrupted in the with various symmetrical and asymmetrical Kurpfalz-Formation by intervals of lacustrine cycles of lower order (Fig. 4). The maximum conditions and by intervals of strong supply of accommodation space is given in the fi rst la- mass fl ows. Our interpretation as a lacustrine custrine cycle (K1, K2), which hosts not only environment is based upon the abrupt occur- coarse local debris but also alpine sands of the ance of coarse-grained debris fl ows within Rhine. The alpine infl uence is then pushed back the fi ne-grained background sedimentation. In by prograding coarse-grained fl uvial Neckar some parts of the succession, even matrix sup- deposits (K3). ported mass fl ow deposits including boulders and cobbles occur (high density mass fl ows). Chronostratigraphy: Some biostratigraphic The abrupt alternation of mass fl ow- and back- markers based on pollen analysis are already ground-sedimentation is a clear indication for available. They are preliminarily interpreted. lacustrine deposition in a lake system with a At 57 – 70 m and at 82 – 85 m, „coniferous minimal water depth of several meters. forest“: Interpretation: cool to cold „inter- The fi rst lacustrine interval is at the basis of the stadial“ climate. Formation where mass fl ow deposits of coarse At 81 – 82 m and at 87 m, „typical middle debris are embedded in fi nes, with almost no Pleistocene pollen spectra“ but no Fagus transition (subunit K1). It carries on in subunit and no early Pleistocene species. Interpre- K2 with few coarse layers in the fi nes. Eventu- tation: Cromerian. ally the lacustrine sedimentation terminates, At 162 – 163 m, pollen spectra with Pinus, fi rst indicated by fossil soils in the fi nes (transi- Picea and Tsuga, no Carya, no Eucommia. tion of subunits K2 to K3), then by cycles of Interpretation: Bavelian (per se uncertain, fl uvial gravels to fi nes (subunit K3). The lower but in the succession quite likely). gravel seems to represent a local event; the up- At 180 – 208 m, pollen spectra with Tsuga per refl ects a long and overall coarsening-up and Pterocarya. Interpretation: Waalian series of a prograding fl uvial system. – The (certain, HAHNE, ELLWANGER & STRITZKE transition to follow, from fl uvial gravels to 2008). Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre 327

At 212 – 249 m „coniferous forest“: Inter- begins in Ludwigshafen close to the Pliocene- pretation: rather cold climate, may match Pleistocene transition; then it continues in Hei- with the Eburon cold period. delberg in the Eburonian; and fi nally comes to The Cromerian age of the Ladenburg-Sub- Viernheim in the Waalian. formation was fi rst published by ENGESSER & The subunit of prograding gravels (K3, Bave- MÜNZING (1991); also the „Maurer Sande“ are lian) appears to be the fi rst unit covering the of Cromerian age (LÖSCHER 1996). HDB in its present extent as a whole, as do the above units of the Ladenburg-Subforma- Summary and interpretation of the Kurpfalz- tion and the Mannheim-Formation. Below Formation: The succession of the Kurpfalz-For- the gravels (K3) there is a patchwork of local mation at UniNord, within its upper „sequence“- units which are diffi cult to correlate. Here the boundary and its lower „provenance“-boundary, units including alpine Rhine sediments may comprises one overall large scale cycle, from a be of small extend. Their west-to-east migra- basal lacustrine environment up to a large and tion (from Ludwigshafen to Heidelberg) seems input controlled subunit of prograding fl uvial to be subsidence-controlled, as a result of the gravels. The fi nes to follow are, although in parts Halfgraben architecture. Their return back west lacustrine and related to a fi nal pulse of subsid- to Viernheim is related to Neckar input. The ence, only of local importance. We suggest this upper units covering the entire HDB are related has to do with the pattern of Rhine sediments to input pulses of Rhine and Neckar which in- through time in the HDB. This is confi rmed by clude potentially increased sediment volumes the sister boreholes of the Heidelberg project during the Pleistocene glaciations. at Ludwigshafen and Viernheim, where, as it All sediments below the „alpine“ Rhine, re- seems, the Rhine signal comes, in each case, at a gardless of their chronostratigraphic position, different chronostratigraphic level. are not part of the Kurpfalz-Formation. They • In Heidelberg, the overall depocentre of belong, to the Iffezheim-Formation. the HDB, the Rhine signal begins at 299 m (Eburonian) and ends at 190 m (Waalian); 4.4. Iffezheim Formation at UniNord • In Ludwigshafen at the western margin of the HDB, the Rhine signal begins at 177 m The Iffezheim-Formation at UniNord covers close to the Pliocene-Pleistocene transition the interval from >500 to 299 m, i.e. >202 m. It (WEIDENFELLER & KÄRCHER 2008 and WEI- is a cyclic alternation of fl uvial deposits with an DENFELLER & KNIPPING 2008), then comes average composition of 55 % sand, and 45 % to a standstill (increase of local sediments fi nes. The succession is subdivided in several with only stable heavy minerals) at 137 lithostratigraphic subunits, according to litho- – 127 m and 109 – 97 m (Waalian); facies variations. They are dominated by sand • In Viernheim at the geographic centre of at 316 to 382 m (I5); by fi ne sediments at 382 to the HDB, the Rhine signal begins at 220 m 411 m (I4); again by sand at 411 to 452 m (I3); (HOSELMANN 2008, KNIPPING 2002, 2008). fi ne sediments at 452 to 467 (I2); and fi nally As discussed above we suggest correlating by sand at 467 to >500 m (I1). The uppermost a subunit of prograding gravels from Hei- subunit at 299 to 316 m (I6) resembles the tran- delberg (Bavelian) with the 80 – 180 m in- sition to the lacustrine environment and to the terval at Viernheim. This leaves 40 m with onset of coarse local debris of subunit (K1). little evidence of any greater hiatus. From The main fl uvial lithofacies are: all this we suggest the provenance change • Grey, coarse to medium-grained sands. to happen in the Waalian. They contain only few gravely compo- The above may be interpreted as „alpine“ nents, the small pebbles being well rounded Rhine sediments migrating in three steps and often with weathering halos. Quite fre- through what later became the HDB: This story quently there are other coarse components, 328 DIETRICH ELLWANGER ET AL.

as pieces of wood of various size (in the • 351 – 382 m grey sand with reworked cores with diameters up to 25 cm), but also wood and fi nes; reworked pieces of fi ne sediment, rang- ing from small rounded pieces up to large Section (I4) from 382 – 411 m = 29 m strata. Their original stratifi cation may be (10 % sand and 90 % fi nes) preserved, including organic-rich laminae • 382 – 399 m fi nes, green silt to coloured or even peat. They were probably in a fro- clay with ichnofossils and zen state during transport. brown and red fossil soils; • White, fi ne to medium-grained sands, usu- • 399 – 402 m white sand and grey silt; ally very well sorted. They either alternate • 402 – 411 m brightly coloured fi nes, with the grey sand lithofacies, or grade into green silt to coloured clay green silt with sandy laminations, and fi - with ichnofossils and brown nally into the silt and clay cycles. and red fossil soils; • Clay-rich overbank fi nes, forming sequences of green and sandy silt grading into clay-rich Section (I3) from 411 – 451 m = 40 m silt up to almost pure clay, usually speckled (70 % sand and 30 % fi nes) with brownish (wet) and reddish (dry) colours • 411 – 421 m grey sand with reworked resembling pedogenesis. Colours are intense, wood and fi nes, grading into apart from the transition to the Kurpfalz-For- white sand; mation where they become dark and gloomy. • 421 – 425 m white sand grading into silt The sequences are rich in ichnofossils, in and clay with ichnofossils; some layers also in authigenic grains (authi- • 425 – 440 m alternation of genic siderite, Dr. Martin, Freiburg). Some • grey sand with reworked are fractured due to diagenetic compaction. wood and fi nes, and of • white sand with kaolin The sediment succession of the Iffezheim-For- matrix; mation is stratifi ed as follows (cf. Fig. 5): • 440 – 443 m brightly coloured silt and clay with ichnofossils; Section (I6) from 299 to 316 m = 17 m • 443 – 451 m alternation of (55 % sand and 45 % fi nes) • grey sand with reworked • 299 – 305 m dark fi nes, sandy silt to clay; wood and fi nes, and of • 305 – 316 m massive dark grey sand and • white sand with kaolin graded dark red sand; matrix (445 – 447); • fi nes, laminated with Section (I5) from 316 – 382 m = 66 m white sand (443 – 445); (65 % sand and 35 % fi nes) • 316 – 323 m fi nes (sandy silt to clay with Section (I2) from 451 – 467 m = 16 m organic-rich top); (almost 100 % fi nes) • 323 – 329 m brightly coloured fi nes • 451 – 467 m brightly coloured fi nes, (sandy silt to clay); green silt to coloured clay • 329 – 340 m alternation of with ichnofossils and brown • grey sand with reworked and red fossil soils; wood and fi nes, and of • white sand with kaolin; Section (I1) from 467 – 500 m = 33 m • 340 – 342 m brightly coloured silt and (80 % sand and 20 % fi nes) clay, ichnofossils; • 467 – >500 m grey sand with reworked • 342 – 351 m grey sand with reworked wood and fi nes; wood and fi nes; Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre 329

Fig. 5: The sediment succession of the Iffezheim- Formation in the Heidelberg UniNord research bore- hole (location Fig. 1). Centre: Stratigraphic succession as Lithofacies log (schematic), genetic units; Left: Lithostratigraphic interpretation (Formation and sub-units); Right: Sequence stratigraphic trends (increasing and decreasing a/s-ratio). The succession (I1 - I5) is composed of alternating fl uvial bedload sands and overbank silt and clay. The sands contain large pieces of reworked overbank fi nes, the silt and clays are frequently altered by ich- nofossils and pedogenesis. The uppermost unit (I6) includes proximal local sand insertions refl ecting the beginning of local mass fl ow as in unit K1. – Further details on the stratigraphic succession, provenance, chronostratigraphic markers and sedimentary envi- ronment see text. Legend cf. Fig. 3.

Abb. 5: Die Sedimentfolge der Iffezheim-Formation aus der Forschungsbohrung Heidelberg UniNord (Lokation Abb. 1): Mitte: Stratigraphische Abfolge als schematisches Lithfazieslog, genetische Einheiten Links: Lithostratigraphische Interpretation (Formation und Untereinheiten); Rechts: Sequenzstratigraphische Trends (zu- und abnehmendes a/s-Verhältnis). Die Abfolge (I1 - I5) besteht aus fl uvialen Sanden (bedload) und schluffi g-tonigen Overbank-Schich- ten. In den Sanden sind große Feinsedimentstücke aufgearbeitet, während die Overbanks durch Spuren- fossilien und Bodenbildung verändert sind. In der obersten Einheit (I6) sind proximale Lokalsande eingeschaltet, die zu den Massfl ows der darüber folgenden Einheit K1 überleiten. – Weitere Angaben zur Schichtenfolge, Provenienz, chronostratigra- phischen Marken und Ablagerungsmilieu im Text. Legende vgl. Abb. 3. 330 DIETRICH ELLWANGER ET AL.

Provenance: The „local“ i.e. non-alpine origin (per se indifferent, but in the succession of the sediments determines their allocation most likely Eburonian). to the Iffezheim-Formation. This is primarily At 316 m, „Pinus-dominated coniferous based on heavy mineral analysis. Many of the forest“. Interpretation: cool to cold climate, few coarser components are of Buntsandstein could match with the Eburon cold period. origin, as are several layers of red sands. – The At 358 – 359 m, reworked strata. They provenance of the other sediments remains host a pollen spectrum with > 30 % uncertain. The well sorted white sands are „tertiary taxa“ immediately overlying a probably far transported, but this may be an typical „early Pleistocene pollen spectra“ inherited feature if they are reworked from with Fagus but no Tsuga. Interpretation: nearby Neogene sands. The grey sands are reworked Reuverian (Reuverian A) over- related to various sources, including crystalline lying reworked late Tiglian. Deposition and Buntsandstein (Odenwald? Black Forest?). age: late Tiglian to early Eburon. They seem confi ned to a fl uvial system close to At 417 – 500 m (lowest sample at 499.94 m): the eastern margin of the URG. The source of several typical „early Pleistocene pol- the silt and clay is again undetermined, prob- len spectra“ with Fagus and tertiary taxa ably nearby Neogene. increasing downward, no Tsuga. Interpre- tation: Tiglian (certain) in stratigraphic Sedimentation: By alternation of the grey sand superposition. lithofacies and the silt-to-clay lithofacies, sev- At 481 m: „Pinus-dominated coniferous eral genetic units are stacked to symmetrical forest“. Interpretation: cooler climatic pe- cycles of increasing and decreasing a/s-ratios. riod within the Tiglian (possibly Tiglian B, Within the fi nes, the turning points often co- sensu ZAGWIJN 1963). incide with intensive pedogenesis i.e. almost There are no hints for in-situ sediments no input; within the sands they coincide with from the Pretiglian or Reuverian period. sections where large pieces of reworked fi nes The reworked sample at 358 m illustrates indicate a/s minima. These bedload-dominated the pollen spectra to be expected from in- units represent the greater part of the succes- situ Reuverian. sion. The preserved cycles are in the 10 to 50 m order. – The minima of accommodation space Summary and interpretation of the cored part of are likely to be related with increasing sediment the Iffezheim-Formation: According to the defi - supply, maybe due increased sediment volumes nition outlined above, the succession is not in- as a result of colder climate (some of the re- fl uenced by instable heavy minerals of the alpine worked fi nes are still stratifi ed, they may have Rhine. The above pollen markers show that the been frozen when redeposited). As opposed succession terminates well above the base of the to this the sediment input is generally much Quaternary, i.e. in a time slice when the course reduced in silt-clay sections, with ichnofos- of the alpine Rhine was already bound within sils and traces of more or less reworked fossil the URG (in the western HDB proved by WEI- soils. Preservation is primarily related to local DENFELLER & KNIPPING 2008). At the same time, subsidence of the depocentre, but differentiated maximum sedimentation rates occur on the east- uplift within and at the northern margin of the ern side at Heidelberg UniNord. All this requires URG may also be involved. a two-partition of the HDB, with a western basin hosting the alpine Rhine, and an eastern Chronostratigraphy: Some biostratigraphic basin with maximum sedimentation rates. The markers based on pollen analysis are already transition between the basins is suggested to be available. They are preliminarily interpreted. represented by the Viernheim drilling where the At 312 m, „open coniferous forest with Rhine sediments arrived latest. herbs“. Interpretation: cool to cold climate Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre 331

4.5 Below 500 m We conclude that, at UniNord, the high ratio of fi ne sediment will continue or even increase As the cored UniNord boreholes end at 500 m in the interval 500 to 700 m, estimated 50 % still within the Tiglian, the lower part of the of fi nes or more. It will then again decrease in Tiglian, the Pretiglian, and the transition into the 700 to 1000 m interval where coarse and the uppermost Neogene unit i.e. the Reuverian fi ne sediments alternate. Assuming constant remain uncored. In order to estimate compac- sedimentation rates as derived below, the tran- tion and tectonic subsidence rates, serving as sition from the Neogene Reuverian unit to the accomodation space of the cored units, some Pleistocene Pre-Tiglian stage is now predicted basic informations on the deeper subsurface close to or below 600 m. are introduced here. They rely on three avail- able data sets: (a) the sediment log of the „Ra- 5 The Heidelberg Boreholes – Synopsis, dium Sol“ borehole in downtown Heidelberg, Conclusions, Outlook approx. 1 km south of the UniNord location; (b) the „vertical seismic profi ling“ (VSP) log 5.1 Sedimentation rates, Accommodation which was recorded by the Leibniz Institute for Space and Subsidence Applied Geophysics in the UniNord 1 borehole; and (c) the sediment log of the geothermal fl ush The patterns of Lithostratigraphy and Chro- borehole from Weinheim, approx. 14 km north nostratigraphy are compared in Table 1. Ba- of UniNord. sically the lithostratigraphic boundaries are (a) The Radium Sol drilling was fi nished in the controlled by tectonics whereas Chronostrati- early 1920ies (SALOMON 1927, BARTZ 1951, graphy refers to climate. They are identical FEZER 1998). Its overall cyclicality follows where the lithostratigraphy is based on the local a coarse-fi ne-coarse pattern, with lithofacies patterns, i.e. the boundaries of the • 0 ~ 350 m coarse and fi ne grained Ladenburg-Sfm and the Mannheim-Fm. sediments; Table 1 also includes „absolute“ ages (STD • 350 ~ 700 m only fi ne grained 2002, OGG, OGG & GRADSTEIN 2008). They sediments; serve as a geochronologic frame to estimate • 700 ~ 1000 m coarse and fi ne grained average sedimentation rates for the units (Tab. sediments. 2, Fig. 6). They are, as yet, uncorrected, but (b) The VSP log was recorded as part of the may be used to calculate the non-tectonic i.e. geophysical downhole logging program compaction part of the subsidence. (data recorded down to 181 m, velocity information to 160 m). It is plotted as cor- 5.2 Input and uplift ridor stack down to 1000 m (BUNESS, pers. comm.). We do not interpret individual re- The local aspect: The relatively rapid increase fl ections but evaluate their frequency. There of sediment thickness during Eburonian time is are many strong refl ections in the upper part associated with coarse, clastic deposits. Clastic and again several though weaker refl ections fragments are derived from Triassic sedimen- in the lower part, but almost none in a tary rocks and the Heidelberg granite and as- middle interval from 350 down to 700 m. sociated crystalline rocks of the Variscan base- This is unlikely in a succession of alternat- ment. This sediment composition is interpreted ing coarse and fi ne sediments. We conclude to refl ect the synchronous uplift of the adjacent fi ne sediment dominance down to 770 m. rift shoulder and the initiation or reactivation of (c) Also at Weinheim where two boreholes faults in the Heidelberg town area, which trend were fl ushed down to ~ 1000 m, a long in- both subparallel with and at a high angle to the terval of fi ne sediment domination has been major, eastern rift bounding fault. Activities at detected down to 700 m. these faults led to the exposition of the crystal- 332 DIETRICH ELLWANGER ET AL.

Table 1: Lithostratigraphy and Chronostratigraphy of the sediment succession of the borehole Heidelberg UniNord. The lithostratigraphic boundaries are controlled by tectonics (cf. Tab. 2); the chronostratigraphic stages refer to the alpine and north European glaciations and to the pollen-based biostratigraphy of NW-Eu- rope. Sediment thicknesses are uncorrected.

Tab. 1: Lithostratigraphie und Chronostratigraphie der Sedimentfolge aus der Bohrung Heidelberg UniNord. Die lithostratigraphischen Grenzen sind tektonisch gesteuert (vgl. Tab. 2); die chronostratigraphischen Stufen beziehen sich auf die alpinen und nordeuropäischen Vergletscherungen und auf die pollenanalytisch begründete Biostratigraphie NW-Europas. Sedimentmächtigkeiten sind nicht korrigiert.

Lithostratigraphy Chronostratigraphy original Interval Formation Sub-formation Interval Pollen thickness thickness Neckar fan 12 m fluvial gravel Holocene; Mannheim-Fm Diamicton and Würm/Weichsel; 56 m 0 – 56 m fines, 44 m Riss/Saale; fossil soil Hoßkirch/Elster fluvial gravel, diamicton Ladenburg- Sfm (mass 70 m 70 m Cromerian flow, fluvial, lacustrine) Pinus, Picea Bavelian 44 m Tsuga 126 – 170 m (K3) two Tsuga, Waalian 40 m Kurpfalz-Fm fluvial pulses 111 m Pterocarya 170 – 210 m 56 – 299 m 126 – 237 m Coniferous forest 210 – 250 m (K2) lacustrine 26 m 237 – 263 m (K1) mass flow, fluvial, No pollen Eburonian 36 m 130 m lacustrine, 210 – 340 m 263 – 299 m (I6) lacustrine Open forest at 312 fines and Sand 17 m m 299 – 316 m Coniferous forest (I5) fluvial at 316 m sand 66 m 316 – 382 m

(I4) fluvial Iffezheim-Fm overbank 29 m 382 – 411 m 299 – 500 m (I3) fluvial sand 40 m 160 m early Pleistocene 411 – 451 m pollen spectra Tiglian (I2) fluvial with Fagus and 340 – >500 m overbank 16 m Tertiary taxa 451 – 467 m increasing (I1) fluvial downward sand 33 m 467 – 500 m estimated sand and fines ? 20 m Not drilled: estimated sand and fines ? Praetiglian Iffezheim-Fm 80 m 500 > 700 m estimated mainly fines ? Reuverian > 100 m Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre 333

Table 2: Average sedimentation rates of the chronostratigraphic units, according to uncorrected thickness and age data of Table 1. Cf. Fig. 6. Control of the subsidence: We suggest tectonic control only if the sedimentary environment relies on tectonic subsidence. This is, presently, only the case in the lacustrine intervals covering small areas in the Heidelberg deep (Eburonian, Cromerian). In all other cases we suggest that considerable parts of the accomodation space come up from compaction of underlying fi ne sediments. This will be considered in future studies, including correction of the sedimentation rates. - The discussion of the potential tectonic control of the input remains unaffected.

Tab. 2: Durchschnittliche Sedimentationsraten für die chronostratigraphischen Einheiten, unter Verwendung der unkorrigierten Sedimentmächtigkeiten und Altersdaten aus Tab. 1. Vgl. Abb. 6. Steuerung der Subsidenz: Wir diskutieren eine tektonische Steuerung nur dann, wenn das Ablagerungsmilieu nicht anders hergeleitet werden kann. Das ist bisher nur in den lakustrinen Abschnitten der Fall, die nur klein- räumlich im Heidelberger Loch nachgewiesen sind (Eburon, Cromer). Ansonsten gehen wir derzeit davon aus, dass ein erheblicher Teil des Akkomodationsraums auch durch Kompaktion der Feinsedimente aus dem Liegenden herzuleiten ist. Bei der weiteren Bearbeitung sind die Sedimentationsraten entsprechend nach oben zu korrigieren. - Die potentielle tektonische Steuerung des Inputs bleibt unberührt.

Sedimentation rates Suggested Chrono- Sediment Amount of fine Duration (uncorrected) major control of stratigraphy Thickness sediments Meter/ka mm/a Subsidence Würm, Riss, 56 m < 5 m 450 ka 56 / 450 0.1 Non-tectonic Hosskirch Cromerian 70 m 40 m 350 ka 70 / 350 0.2 Tectonic

Bavelian 44 m 5 m 600 ka 44 / 600 < 0.1 Non-tectonic

Waalian 40 m 15 m 200 ka 40 / 200 0.2 non-tectonic

Eburonian 130 m 70 m 200 ka 130 / 200 0.7 Tectonic

160 m Tiglian 60 m 600 ka 180 / 600 0.3 non-tectonic (180 m) line rocks, fragments of which are now found pine Rhine into the URG, prior to the Pliocene- in the basin sequence. The subsequent period Pleistocene transition at ~ 2.6 Ma (e.g. HOSEL- is characterized by thin sediments and may be MANN 2008). The redirection happens in the related to a peneplanation observed at the rift Mulhouse area where the fi rst signal of alpine shoulder. The ultimate stage, represented by heavy minerals in the URG fi ll goes along with the Mannheim Formation, with a more rapid an abrupt coarsening of the lithofacies of alpine increase in sediment thickness is lasting until and local sediment. This composition has been the present and associated with renewed uplift interpreted as to refl ect the starting uplift of parts of the rift shoulders. This uplift is accompanied of the southern Black Forest (ELLWANGER 2003), by a dissection of the peneplain surface, caused probably related to the latest folding in front of by the reactivation of pre-existing faults. the Jura mountains (GIAMBONI et al. 2004). The regional aspect: The fi rst onset of alpine Two subsequent uplift markers are identifi ed in sedimentation in the HDB, as identifi ed in the the UniNord succession. They are related to the Ludwigshafen succession (WEIDENFELLER & coarse input at the basal Kurpfalz-Formation KNIPPING 2008) reflects the redirection of the al- (Eburonian, ~ 1.7 Ma) and to the coarse input 334 DIETRICH ELLWANGER ET AL.

Fig. 6: Net accumulation of the sedimentary sequence through time of the Heidelberg UniNord borehole, using thickness and age data of Table 2.

Abb. 6: Sedimentmächtigkeiten der Bohrung Heidelberg UniNord gegen stratigraphische Zeitskala, unter Verwendung unkorrigierter Mächtigkeiten und Alter aus Tab. 2. at the basal Mannheim-Formation (post-Cro- the mechanical erosion is facilitated by climate merian, ~ 0.5 Ma). Both refl ect uplift periods changes (e.g. VANDENBERGHE 1993, 1995, BUSS- of the Odenwald. The post-Cromerian uplift CHERS 2007). In case of the middle input event is contemporaneous with the main uplift of the Tiglian to Eburonian transition is proved to the Rhenish Massif (cf. various studies of the occur well below the coarse input is recorded. lower main terrace e.g. HOSELMANN 1994). This supports the above scenario. The other All this leads to a scenario of Quaternary uplift events lack of chronostratigraphic data. = input events in cycles of ~1 Ma, proceeding from south to north: 5.3 Outlook ~0.5 Ma Rhenish Massif plus Odenwald (?plus Black The descriptions, basic data and correlative Forest); patterns presented here are all focused upon the ~1.7 Ma Odenwald (?plus Black specifi c situation of the Heidelberg deep i.e. the Forest); cores of the borehole of the UniNord location ~2.6 Ma southern Black Forest. in Heidelberg. In the interpretative steps to fol- Each uplift event potentially provides sediment low, the controlling parameters of sedimenta- supply which will more easily be activated if tion will have to be more thoroughly identifi ed, Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre 335 e.g. are increasing a/s-ratios due to tectonic BARTZ, J. (1982): Quartär und Jungtertiär II im Ober- subsidence or to compaction within the basin, rheingraben im Großraum Karlsruhe. – Geolo- or due to uplift around the basin. This can only gisches Jahrbuch, A 63: 2-237. be accomplished if the entire HDB is regarded. BLUDAU, W. (1998): Altpleistozäne Warmzeiten im Alpenvorland und im Oberrdheingraben - Ein Additional boreholes (e.g. HAIMBERGER, HOPPE Beitrag der Palynologie zum „Uhlenberg-Prob- & SCHÄFER 2005, WIRSING et al. 2007, HOSEL- lem“. – Geologica Bavarica, 99: 119-133. MANN 2008, HUNZE & WONIK 2008, SIMON 2008, BOENIGK, W. (1970): Zur Kenntnis des Altquartärs WEIDENFELLER & KNIPPING 2008) as well as bei Brüggen. – Sonderveröffentlichungen Ge- seismic and logging data (BUNESS, GABRIEL & ologisches Institut Universität Köln, 17: 141 p. ELLWANGER 2008) will have to be included BOENIGK, W. (1987): Petrographische Untersuchun- gen jungtertiärer und quartärer Sedimente am Acknowledgement linken Oberrhein. – Jahresberichte und Mit- teilungen des Oberrheinischen Geologischen Vereins, N.F., 69: 357-394. The Heidelberg drilling project was greatly BOENIGK, W. & FRECHEN, M. (2006): The Pliocene supported from many people and institutions. and Quaternary Fluvial Archives of the Rhine In fi rst place the actual and former heads of the System. – Quaternary Science Reviews, 25: involved institutions, Prof. Dr. U. Yaramanci, 550-574. Prof. Dr. H.-J. Kümpel, Prof. Dr. R. Watzel, BROST, E. & ELLWANGER, D. (1991), mit Beiträgen Ltd. Bergdirektor V. Dennert and Prof. Dr. B. von W. Bludau & C. Rolf: Einige Ergebnisse Stribrny. Dr. E. Würzner, Lord Major of the neuerer geoelektrischer und stratigraphischer city of Heidelberg, arranged contacts, whenever Untersuchungen im Gebiet zwischen Kaiserstuhl necessary. The involved members of staff of the und Kehl. – Geologisches Jahrbuch, E 48: 71-81. BUNESS, H., GABRIEL, G. & ELLWANGER, D. (2008): Stadtverwaltung Heidelberg, the Universitäts- The Heidelberg Basin drilling project: Geophysi- bauamt Heidelberg and the Amt für Vermögen cal pre-site surveys. – Quaternary Science Journal und Bau Baden-Württemberg, Mannheim gave (Eiszeitalter und Gegenwart), 57/3-4: 338-366. logistic support, provided the pieces of land for BUSSCHERS, F. (2007): Unravelling the Rhine; re- the Heidelberg boreholes and friendly helped sponse of a fl uvial system to climate change, whenever they could. All this support is grate- sea-level oscillation and glaciation. – PhD thesis fully acknowledged. Scientifi c discussions with Vrije Universiteit Amsterdam. Geology of the colleagues helped signifi cantly to become more Netherlands 1: 1-183. familiar with several topics related to this pro- CROSS, T.A., BAKER, M.R., CHAPIN, M.A., CLARK, M.S., GARDNER, M.H., HANSON, M.S., LESS- ject. Thanks to Dr. H. Buness, Dr. W. Engesser, ENGER, M.A., LITTLE, L.D., MCDONOUGH, K.J., Prof. Dr. M. Frechen, Dr. F. Fromm, Dr. C. SONNEFELD, M.D., VALASEK, D.W., WILLIAMS, Hoselmann, Dr. M. Martin, H. Meyer, Dr. Ch. M.R. & WRITTER, D.N. (1993): Application of Rolf, R. Thienel, Dr. M. Weidenfeller, Dr. T. high-resolution sequence stratigraphy to reser- Wonik and K. Worm. We very much thank Prof. voir analysis. – In: ESCHARD, R. & DOLIGEZ, B. Dr. Fiebig and an anonymous colleague for their (eds.): Subsurface Reservoir Characterization reviews and additional valuable comments. from Outcrop Observations. – Technip: 11-33. CROSS, T.A. & LESSENGER, M.A. (1998): Sediment Volume Partitioning: Rationale for Strati- References graphic Model Evaluation and High-Resolution Stratigraphic Correlation. – In: SANDVIK, K.O., BARTZ, J. (1951): Revision des Bohr-Profils der Hei- GRADSTEIN, F. & MILTON, N. (eds.): Predictive delberger Radium-Sol-Therme. – Jahresberichte high resolution sequence stratigraphy. – Nor- und Mitteilungen des Oberrheinischen Geolo- wegian Petroleum Society Special Publication: gischen Vereins, 33: 101-125. 171-196. BARTZ, J. (1974): Die Mächtigkeit des Quartärs im DEUTSCHE STRATIGRAPHISCHE KOMMISSION (2002): Oberrheingraben. – In: ILLIES, J.H. & FUCHS, K. Stratigraphische Tabelle von Deutschland 2002 (eds.): Approaches to Taphrogenesis: 78 – 87. (STD 2002). 336 DIETRICH ELLWANGER ET AL.

DÈZES, P., SCHMID, S.M. & ZIEGLER, P.A. (2004): Evo- HAGEDORN, E.-M. (2004): Sedimentpetrographie lution of the European Cenozoic Rift System: und Lithofazies der Jungtertiären und Quartären interaction of the alpine and Pyrenean orogens Sedimente im Oberrheingebiet. – PhD thesis, with their foreland lithosphere. – Tectonophys- Mathematisch-Naturwissenschaftliche Fakultät, ics, 389/1-2: 1-33. Universität zu Köln: 248 p. DURINGER, P. (1988) : Les conglomérats des bordures HAHNE, J., ELLWANGER, D. & STRITZKE, R. (2008): du rift cénozoïque rhénan. Dynamique sédi- Evidence for a Waalian thermomer pollen record mentaire et contrôle climatique. – Thèse d’Etat, from the research borehole Heidelberg UniNord, Université de Strasbourg, 278 p. Upper Rhine Graben, Baden-Württemberg. ELLWANGER, D., FIEBIG, M., GABRIEL, G., HOSELMANN, – Quaternary Science Journal (Eiszeitalter und C. & WEIDENFELLER, M. (2007): Scientifi c Deep Gegenwart), 57/3-4:403-410. Drilling - The Heidelberg Basin Project. – Geo- HAIMBERGER, R., HOPPE, A. & SCHÄFER, A. (2005): physical Research Abstracts, European Geosci- High-resolution seismic survey on the Rhine ences Union, 9: 09460-09460. River in the northern Upper Rhine Graben. ELLWANGER, D., GABRIEL, G., HOSELMANN, C., LÄM- – International Journal of Earth Sciences ⁄ Geo- MERMANN-BARTHEL, J. & WEIDENFELLER, M. logische Rundschau, 94: 657-668. (2005) : The Heidelberg Drilling Project (Upper HOSELMANN, C. (1994): Stratigraphie des Haupt- Rhine Graben, Germany). – Quaternaire, 16/3: terrassenbereichs am unteren Mittelrhein. 191-199. – Geologisches Institut der Universität zu Köln, ELLWANGER, D. (2003), unter Mitarbeit von Neeb, I. Sonderveröffentlichungen, 96: 235 p. & Lämmermann-Barthel, J.: Eine landschafts- HOSELMANN, C. (2008): The Pliocene and Pleistocene übergreifende Lockergesteinsgliederung vom fl uvial evolution in the northern Upper Rhine Alpenrand zum Oberrhein. – In: SCHIRMER, W. Graben based on results of the research borehole (ed.): Landschaftsgeschichte im europäischen at Viernheim (Hessen, Germany). – Quaternary Rheinland. – GeoArchaeoRhein, 4: 81-124. Science Journal (Eiszeitalter und Gegenwart), ENGESSER, W. & MÜNZING, K. (1991): Mollusken- 57/3-4: 286-315. faunen aus Bohrungen im Raum Philippsburg- HUNZE, S. & WONIK, T. (2008): Sediment Input Mannheim und ihre Bedeutung für die Quartär- into the Heidelberg Basin as determined from stratigraphie des Oberrheingrabens. – Jahresheft Downhole Logs. – Quaternary Science Journal Geologisches Landesamt Baden-Württemberg, (Eiszeitalter und Gegenwart), 57/3-4: 367-381. 33: 97-117. HYDROGEOLOGISCHE KARTIERUNG UND GRUNDWASSER- FEZER, F. (1998): Mittel- und Jungpleistozän im BEWIRTSCHAFTUNG RHEIN-NECKAR-RAUM (HGK), „Heidelberger Loch“, Bohrprofi l Entensee von FORTSCHREIBUNG 1983-1998 (1999). – Ministe- 285 m bis 6 m Teufe. – Jahresbericht und Mit- rium für Umwelt und Verkehr Baden-Württem- teilungen des Oberrheinischen Geologischen berg, Hessisches Ministerium für Umwelt, Vereines, Neue Folge, 80: 297-360. Landwirtschaft und Forsten, Ministerium für FIEBIG, M. (1999): Zur geologischen Aufnahme von Umwelt und Forsten Rheinland-Pfalz: 1 - 155. quartären Lockergesteinen. – Zeitschrift für geo- KEMNA, H. (2008): A revised Stratigraphy for the logische Wissenschaften, 27/1/2: 135-152. Pliocene and Lower Pleistocene deposits of the GABRIEL, G., ELLWANGER, D., HOSELMANN, C. & lower Rhine embayment. – Netherlands Journal WEIDENFELLER, M. (2008): The Heidelberg Basin of Geosciences – Geologie en Mijnbouw, 87/1: Drilling Project. – Quaternary Science Journal 91-105. (Eiszeitalter und Gegenwart), 57/3-4: 253-269. KEMNA, H. & WESTERHOFF, W. (2007): Remarks GIAMBONI, M., WETZEL, A., NIVIÈRE, B. & SCHUM- on the palynology-based chronostratigraphical ACHER, M. (2004): Plio-Pleistocene folding in the subdivision of pliocene terrestrial deposits in southern Rhinegraben recorded by the evolution NW-Europe. – Quaternary International, 164- of the drainage network (Sundgau area; north- 165: 184-196. western Switzerland and France). – Eclogae KNIPPING, M. (2002): Pollenanalytische Untersuc- Geologicae Helvetiae, 97/1: 17-31. hungen am Profi l ‚Schifferstadt BK 30c GM‘. GIDEON, G.O., LOPES CARDOZO, G. & BEHRMANN, J.H. – Arbeitsbericht Geologisches Landesamt Rhe- (2006): Kinematic analysis of the Upper Rhine inland-Pfalz, Mainz: 11 p. Graben boundary fault system. – Journal of KNIPPING, M. (2008): Early and Middle Pleistocene Structural Geology 28/6: 1028-1039. pollen assemblages of deep core drillings in Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre 337

the northern Upper Rhine Graben, Germany. i. Br. (Reg.-Präs. Freiburg - L.-Amt Geol. Rohst. – Netherlands Journal of Geosciences – Geolo- Bergb.). gie en Mijnbouw, 87/1: 51-65. VANDENBERGHE, J. (1993): Changing fluvial pro- LÖSCHER, M. (1996): Die Schotterablagerungen in cesses under changing periglacial conditions. der alten Neckarschleife von Mauer. – In: BEIN- – Zeitschrift für Geomorphologie N. F., Suppl., HAUER, K., KRAATZ, R. & WAGNER, G.A. (eds.): 88: 17-28. Homo erectus heidelbergensis von Mauer: Kol- VANDENBERGHE, J. (1995): Time scales, climate and loquium I, Neue Funde und Forschungen zur river development. – Quaternary Science Re- Frühen Menschheitsgeschichte Eurasiens mit views, 14: 631-638. einem Ausblick auf Afrika: 17-27. VILLINGER, E. (1998): Zur Flußgeschichte von Rhein MIALL, A.D. (1985): Architectural-element analyses: und Donau in Südwestdeutschland. – Jahresbe- a new method of facies analyses applied to fl uvial richte und Mitteilungen des Oberrheinischen deposits. – Earth Science Reviews, 22: 261-308. Geologischen Vereines, Neue Folge 80: 361 MIALL, A.D. (1996): The Geology of Fluvial De- – 398. posits. Sedimentary Facies, Basin Analysis and WEIDENFELLER, M. & KÄRCHER, T. (2008): Tectonic Petroleum Geology. – 582 p.; Berlin(Springer). infl uence on fl uvial preservation: Aspects of OGG, J., OGG, G. & GRADSTEIN, F. (2008): The Con- the architecture of Middle and Late Pleistocene cise Geologic Time Scale. – 184 p.; Cambridge sediments in the northern Upper Rhine Graben, et al. (Cambridge University Press). Germany. – Netherlands Journal of Geosciences PETERS, G. (2007): Active tectonics in the Upper – Geologie en Mijnbouw, 87/1: 33-40. Rhine Graben - Integration of paleoseismology, WEIDENFELLER, M. & KNIPPING, M. (2008): Correla- geomorphology, and geomechanical modelling. tion of Pleistocene sediments from boreholes in – PhD thesis, Vrije Universiteit Amsterdam: the Ludwigshafen area, western Heidelberg Ba- 270 p. sin. – Quaternary Science Journal (Eiszeitalter ROLF, C., HAMBACH, U. & WEIDENFELLER, M. (2008): und Gegenwart), 57/3-4: 270-285. Rock and palaeomagnetic evidence for the Plio- WESTERHOFF, W. (2004): Upper Pliocene and / Pleistocene palaeoclimatic change recorded lower Pleistocene Rhine-Meuse deposits in the in Upper Rhine Graben sediments (Bohrung Tegelen-Reuver type area. – In: KEMNA, H. (ed.): Ludwigshafen-Parkinsel). – Netherlands Journal DEUQUA-meeting 2004, Nijmegen Excursion of Geosciences – Geologie en Mijnbouw, 87/1: guide: 79-130. 41-50. WESTERHOFF, W. (2008): Stratigraphy and sedimen- ROTSTEIN, Y., EDEL, J.-B., GABRIEL, G., BOULANGER, tary evolution. The lower Rhine Meuse system D., SCHAMING, M. & MUNSCHY, M. (2006): In- during the Late Pliocene and Early Pleistocene sight into the structure of the Upper Rhine Gra- (southern North Sea Basin). – PhD thesis Vrije ben and its basement from a new compilation of Universiteit Amsterdam. Geology of the Neth- Bouguer Gravity. – Tectonophysics, 425: 55-70. erlands 1: 1-168. SALOMON, W. (1927): Die Erbohrung der Heidelberg- WIRSING, G., LUZ, A., ENGESSER, W. & KOCH, A. er Radium-Sol-Therme und ihre geologischen (2007,) unter Mitarbeit von Elsass, P. & Per- Verhältnisse. – Abhandlungen Heidelberger rin, J.: Hochaufl ösende Refl exionsseismik auf Akademie der Wissenschaften, 14: 1 – 105. dem Rhein und dem Rheinseitenkanal zwischen SCHUMACHER, M.E. (2002): Upper Rhine Gra- Mannheim und Rheinfelden. – Fachbericht 1/07, ben: Role of preexisting structures during rift Regierungspräsidium Freiburg, Landesamt für evolution. – Tectonics, 21/1: doi:10.1029/ Geologie, Rohstoffe und Bergbau: 60 p. 2001TC900022. ZAGWIJN, W.H. (1963): Pleistocene stratigraphy in SIMON, T. (2008): Die Bohrung Frankenbach. the Netherlands, based on changes in vegetation – Naturf. Hefte 14, Naturkundemuseum Heil- and climate. – Verhand. van het konink. Nederl. bronn /Neckar. Geol. Mijnb. Gen. Geol. Serie, 21-2: 173-197 SYMBOLSCHLÜSSEL GEOLOGIE BADEN-WÜRTTEMBERG ZIEGLER, P. (1992): European Cenozoic rift system. – (2007): Verzeichnis Geologischer Einheiten In: ZIEGLER, P.A. (Ed.): Geodynamics of Rifting, - Aktualisierte Ausgabe März 2007. – Internet- Volume I. Case History Studies on Rifts: Europe Publ.: http://www.lgrb.uni-freiburg.de; Freiburg and Asia. – Tectonophysics, 208: 91-111. Eiszeitalter und Gegenwart 57/3–4 338–366 Hannover 2008 Quaternary Science Journal

The Heidelberg Basin drilling project: Geophysical pre-site surveys

HERMANN BUNESS, GERALD GABRIEL & DIETRICH ELLWANGER*)

Abstract: Currently, the Heidelberg Basin is under investigation by new cored research boreholes to enhance the understanding concerning the control on Pliocene and Quaternary sedimentation by (neo)tectonics and climate. The Heidelberg Basin is expected to serve as a key location for an improved correlation of param- eters that characterise the climate evolution in North Europe and the Alpine region. The recovery of sedi- ment successions of high temporal resolution that are complete with respect to the deposition of Pleistocene glacials and interglacials in superposition is of special importance. Prior to the new research boreholes in Viernheim and Heidelberg geophysical pre-site surveys were performed to identify borehole locations that best achieve these requirements. In the area of the Heidelberg Basin the strongest negative gravity anomaly of the entire Upper Rhine Graben is observed (apart from the Alps), hinting at anomalously thick sediment deposits. However, especially refl ection seismic profi les contributed signifi cantly to the decision about the borehole locations. In the city of Heidelberg for the fi rst time, the depocentre of the Heidelberg Basin, as indicated by additional subsidence compared to its surroundings, was mapped. In this area, sediments dip towards the eastern margin of the Upper Rhine Graben. This is interpreted to represent a rollover structure related to the maximum subsidence of the Upper Rhine Graben in this region. At the Viernheim borehole lo- cation the seismic survey revealed several faults. Although these faults are mainly restricted to depths greater than 225 m, the borehole location was fi nally adjusted with respect to this information.

[ Das Bohrprojekt Heidelberger Becken: Geophysikalische Voruntersuchungen]

Kurzfassung: Das Heidelberger Becken wird aktuell durch neue Kernbohrungen untersucht, um das Wissen hinsichtlich der Steuerung der pliozänen und quartären Sedimentation durch Klima und (Neo)Tektonik zu erweitern. Es wird erwartet, dass das Heidelberger Becken eine Schlüsselstelle für eine verbesserte Korrelation von Parametern darstellt, welche die Klimaentwicklung in Nordeuropa und im alpinen Raum charakterisieren. Besondere Bedeutung hat daher die Gewinnung von Sedimentsukzessionen hoher zeitlicher Aufl ösung, die im Hinblick auf die Ablagerung kalt- und warmzeitlicher pleistozäner Sedimente in Superposition möglichst vollständig sind. Im Vorfeld der neuen Kernbohrungen bei Viernheim und Heidelberg wurden geophysikalische Vorerkundungen durchgeführt, um Bohrlokationen zu identifi zieren, die diesen Ansprüchen am besten genügen. Im Bereich Heidelberg wird die größte negative Schwereanomalie des gesamten Oberrheingrabens beobachtet (mit Ausnahme der Alpen), was auf ungewöhnlich mächtige Sedimentablagerungen hindeutet. Aber insbesondere refl exionsseismische Messungen haben zur Auswahl der Bohrpunkte beigetragen. Im Stadtbereich von Heidelberg ist zum ersten Mal das Depozentrum des Heidelberger Beckens kartiert worden, abgebildet durch eine zusätzliche Absenkung gegenüber der Umgebung. In diesem Gebiet fallen die Sedimente zum östlichen Grabenrand hin ein. Dies wird als ‘Rollover’ Struktur interpretiert, die in Verbindung mit der maximalen Subsidenz des Oberrheingrabens in diesem Bereich steht. An der Bohrlokation Viernheim konnten durch die Seis-

*Adresses of authors: H. Buness, Leibniz Institute for Applied Geophysics, Stilleweg 2, D-30655 Hannover, Germany. E-Mail: [email protected]; G. Gabriel, Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hannover, Germany. E-Mail: [email protected]; D. Ellwanger, Landesamt für Geologie, Rohstoffe und Bergbau im Regierungspräsidium Freiburg, Alberstraße 5, 79104 Freiburg im Breisgau, Germany. E-Mail: [email protected] The Heidelberg Basin drilling project: Geophysical pre-site surveys 339 mik zahlreiche Störungen abgebildet werden. Obwohl diese im Wesentlichen auf Tiefenbereiche größer 225 m beschränkt sind, wurde der Bohransatzpunkt schließlich aufgrund dieser Informationen gewählt.

Keywords: Heidelberg Basin, depocentre, research borehole, refl ection seismic, gravity

1 Introduction (URG; Fig. 1), bordered by the dominating master fault of the URG to the east. The bound- The Heidelberg Basin is located in the east- ary fault is assumed to extend deep into the ern part of the Northern Upper Rhine Graben crust, by 15 - 24 km according to MAUTHE,

Fig. 1:Tectonic sketch map of the Upper Rhine Graben and its surroundings (after PETERS 2007). The ap- proximate position of the Heidelberg Basin is marked by a dashed line.

Abb. 1: Tektonische Skizze des Oberrheingrabens und seiner Umgebung (nach PETERS 2007). Die Lage des Heidelberger Beckens wird durch einen gestrichelten Kreis angedeutet. 340 HERMANN BUNESS, GERALD GABRIEL & DIETRICH ELLWANGER

BRINK & BURRI (1993). The sedimentary fill boreholes in Ludwigshafen that were drilled on of the URG is characterised by synthetic and the ‘Parkinsel’ island on the western margin antithetic faults which strike parallel or sub- of the basin (Fig. 2, bottom; WEIDENFELLER & parallel to this boundary fault. The area of the KNIPPING 2008). Heidelberg Basin was subjected to continuous Prior to drilling these boreholes, a number of and strong subsidence since late Oligocene seismic profi les were carried out to facilitate (SCHUMACHER 2002). Up to 1500 m sediments a profound drilling design (Fig. 2; bottom). were deposited in early Miocene alone (com- This included an estimation of depths for the prising Cerethia, Corbicula, and Hydrobia geological targets, i.e. Pliocene and Pleistocene beds). The thickest succession of Quaternary strata as well as the detection of possible fault sediments can be found here (up to 350 m ac- zones. The latter point was important because cording to BARTZ 1974; Fig. 2, top). the boreholes were to serve as a stratigraphic The Heidelberg Basin constitutes therefore the reference for the Quaternary sediment suc- most complete sediment archive of the whole cession. Furthermore, high resolution seismic URG. Sediments of different geosystems in- profi les in general are able to reveal tectonic terfere with each other: the local system of and sedimentological events caused by the the Neckar River (Odenwald), the regional continued subsidence of the basin. Upper Rhine Graben-Highlands (Black For- This article presents the results of the pre-site est, Vosges) system, and the supra-regional surveys. However, at the present stage, as there Alps-Upper Rhine Graben system. Especially is not even a consistent and homogenous inter- the distal deposits of the system Alps – Upper pretation of all available borehole data, it is not Rhine Graben are supposed to contain informa- possible to make conclusions about the basin tion about both the alpine and north European dynamics (e.g. a seismostratigraphic interpre- climate history, which can not be observed tation). A more exhaustive analysis of the data elsewhere (e.g. ELLWANGER et al. 2005). The could be done in the framework of a project, term Heidelberg Basin stands for the Miocene which was proposed to the German Research to Quaternary depocentre of the northern URG Foundation and is currently under evaluation. with an extent of some tens of km. The term ‘Heidelberger Loch’, sometimes also found in 2 Geological setting and nomenclature literature, was introduced by SALOMON (1927) and denotes the locally, very delimited centre Knowledge about the deeper subsurface of of subsidence around the city of Heidelberg. the URG is based mainly on seismic profi ling The exploration of this sediment archive is the and evaluation of boreholes of the oil and gas aim of two new research boreholes sponsored industry, which was quite intensively done in by the Leibniz Institute of Applied Geophysics this area. According to MAUTHE, BRINK & BURRI (LIAG – former Leibniz Institute for Applied (1993), about 5000 km seismic lines were re- Geosciences, GGA-Institut) and the geological corded between 1970 and 1992. An extensive surveys of Baden-Württemberg (LGRB) and presentation of these activities is not possible Hessen (HLUG) (Fig. 2, bottom). One of the due to the lack of corresponding publications. boreholes was drilled exactly in the depocentre However, isobath maps derived from these data of the basin, close to the outlet of the Neckar were published, e.g. for the Tertiary by DOEBL River, from the Odenwald to the plain of the & OLBRECHT (1974) or for the Quaternary by Upper Rhine Graben (‘Heidelberg UniNord’, BARTZ (1974). ELLWANGER et al. 2008). The other one was Two deep-reaching refl ection seismic profi les drilled in the geographic centre of the Hei- running across the southern and northern URG delberg Basin about 17 km to the northwest, were carried out in 1988 in the framework of the near the city of Viernheim (HOSELMANN 2008). DEKORP-ECORS Project (BRUN & GUTSCHER These two locations are complemented by two 1992). The northern profi le crosses the URG The Heidelberg Basin drilling project: Geophysical pre-site surveys 341

Fig. 2: Top: Thickness of ‘Quaternary’ in the northern part of the Upper Rhine Graben, adopted from BARTZ (1974, updated by HAIMBERGER, HOPPE & SCHÄFER 2005). Bottom: Satellite view of the Heidelberg area (created with NASA World Wind, Vers. 1.3.2). White arrows: research boreholes Heidelberg UniNord (two boreholes in 2006 and 2008), Viernheim (2006), and Ludwigs- hafen-Parkinsel (two boreholes in 2002 and 2006); grey arrow: hydrocarbon well ‘Schriesheim 1’. White lines: refl ection seismic profi les 1-7 that are discussed in this paper.

Abb. 2: Oben: Mächtigkeiten des ‘Quartär’ im nördlichen Teil des Oberrheingrabens nach BARTZ (1974, aktualisiert durch HAIMBERGER, HOPPE & SCHÄFER 2005). Unten: Satellitenaufnahme des Heidelberger Raums (erstellt mit NASA World Wind, Vers. 1.3.2). Weiße Pfeile: Forschungsbohrungen Heidelberg UniNord (zwei Bohrungen in 2006 und 2008), Viernheim (2006) und Ludwigshafen-Parkinsel (zwei Bohrungen in 2002 und 2006); grauer Pfeil: Kohlenwasserstoffbohrung ‘Schriesheim 1’. Weiße Linien: refl exionsseismische Profi le 1-7, die in diesem Artikel diskutiert werden. 342 HERMANN BUNESS, GERALD GABRIEL & DIETRICH ELLWANGER about 20 km north of Heidelberg. The varying most frequently applied ‘traditional’ defi nition refl ector signature of the lower crust images the relates ‘Quaternary’ to the onset of alpine sedi- asymmetric structure of the URG. The largest ments, i.e. to a change in sediment provenance. Tertiary sediment thickness of 3400 m is ob- ‘Pliocene’ sediments come from local sedi- served close to the eastern rim of the graben, ment sources, e.g. Black Forest, Vosges, and it reduces stepwise to 300 m below the western Odenwald; ‘Quaternary’ sediments include or border. However, depths corresponding to the correlate with sediments of alpine origin. This Quaternary, the Pliocene, and down to the midd- change of provenance is, of course, a matter of le Miocene units are poorly resolved. lithostratigraphy, although chronostratigraphic The interaction between tectonic and sedimen- terms are used. tation in the northern URG was investigated This different use of the term ‘Quaternary’ by DERER by means of sequence stratigraphy is illustrated by the controversial interpre- (DERER 2003, DERER et al. 2003, DERER, SCHU- tations of the Radium-Sol Therme borehole MACHER & SCHÄFER 2005), who found the area by SALOMON (1927), BARTZ (1951) and FEZER to be divided into two halfgrabens with oppo- (1997). SALOMON and BARTZ suggest depths of sing tilt directions by a transfer zone. The study ‘382 m’ and ‘almost 400 m’, both referring to was based on seismic profi les and geophysical the lithostratigraphic version of ‘Quaternary’; borehole measurements made by the oil and FEZER suggests a depth of 650 m which is based gas industry. Seismic facies were assigned to upon a calculation of sedimentation rates i.e. he several lithostratigraphic units from Eocene to applies the term Quaternary in its proper chro- the upper Miocene. nostratigraphic sense. About 190 km of industrial seismic lines where The aim of this paper is not to solve problems shot between 1981 und 1993 in the Heidelberg of stratigraphic nomenclature but report seis- Basin. However, these lines do not extend to mic and gravimetric activities prior to the new the depocentre of the Heidelberg Basin (‘Hei- drilling activities. Our references are the old delberger Loch’). Furthermore, only little data (publications, reports, and archive data) information about the structure of Plio-Pleis- which are, at this state, not re-interpreted but tocene sediments can be derived from the hy- used as they are. Stratigraphic terms are set in drocarbon seismic lines, because these focused quotation marks where we feel the authors use only on storage or sealing horizons, and hence the lithostratigraphic version (e.g. ‘Quaterna- deep structures. The existing gap in the refl ec- ry’), and without quotation marks when used as tion seismic data, near to the city of Heidelberg, chronostratigraphic term (e.g. Quaternary). can be partly fi lled by information from bore- A refl ection seismic profi le that focused espe- holes related to hydrogeological investigations. cially on the Quaternary deposits was publis- In the Heidelberg area two fl ush boreholes are hed by HAIMBERGER, HOPPE & SCHÄFER (2005). available that reveal large thickness of Quater- This river seismic profi le - recorded along the nary sediments: the 350 m deep Entensee bore- Rhine River between Mainz and Mannheim, hole from 1973 (CONRADS & SCHNEIDER 1977), and parts of the Neckar River over a length about 1 km north, and the 1022 m deep Radi- of 150 km in total - revealed high-resolution um-Sol Therme borehole from 1918 (SALOMON information which was able to defi ne the base 1927), about 1 km south of the new borehole of ‘Pleistocene’ sediments mainly north of Heidelberg UniNord 1 (Fig. 3). Mannheim. Maximum thickness of ‘Pleisto- Interpretation of these two boreholes is con- cene’ was found in the area of Mannheim and troversially discussed. The main problem here confi rmed the map published by BARTZ (1974; are the confusing defi nitions and applications Fig. 2). This map images an increase of ‘Pleis- of the terms Quaternary and Pliocene (and tocene’ sediment thickness towards the eastern some other stratigraphic terms) in publications, boundary fault of the Upper Rhine Graben, reports and archives related to the URG. The where it amounts to more than 350 m. The Heidelberg Basin drilling project: Geophysical pre-site surveys 343

Fig. 3: Lithofacies logs from four boreholes in the Heidelberg Basin (MF: Mannheim-Formation, LH La- denburg-Horizon).

Abb. 3: Lithofazieslogs von vier Bohrungen im Heidelberger Becken (MF Mannheim-Formation, LH La- denburg-Horizont). 344 HERMANN BUNESS, GERALD GABRIEL & DIETRICH ELLWANGER

Table 1: Different classifi cations of Plio-Pleistocene sediments, as used in the Upper Rhine Graben. The terms ‘Altquartär’ and ‘Pliocene’ (senso Bartz) are defi ned by lithofacies, rather than a strict geochronologi- cal classifi cation.

Tab. 1: Gegenüberstellung verschiedener Einteilungen der plio-/pleistozänen Sedimente für den Oberrhein- graben. Die Begriffe ‘Altquartär’ und ‘Pliozän’ (nach Bartz) defi nieren eher Sedimenttypen, denn eine strikte geochronologische Einordnung. Baden-WürttembergLGRB Rheinland-PfalzLGR RP HessenHLUG Bartz 1982 Symbolschlüssel Geologie Weidenfeller & Kärcher 2008 Baden-Württemberg Weidenfeller & Knipping 2008 Aeolian sand (Pleistocene to Holocene)

Sand-gravel layers Oberes Kieslager (OKL) Mannheim-Formation Upper gravel layer (OKL)

Neckar dominated, less alpine contains coarse material (alpine and local)

Interlayer Obere Zwischenschicht (OZ) Ladenburg Horizon Upper interlayer (OZH) predominant fine-clastic sediments only fine material

Mittleres Kieslager (MKL) Middle sand-gravel layer Alternation of contains coarse material sand-(gravel) layers Untere Zwischenschicht (UZ) Lower interlayer (UZH) frequently in "Rhenish Facies" and only fine material Weinheim Beds Unteres Kieslager (UKL) Kurpfalz-Formation

fine-clastic interlayers contains coarse material Lower sand-silt layer 'Altquartär 1 and 2' (AQ1 and AQ2)

Rhine (alpine) material, less Neckar transition unit, contains the lowermost alpine material

major change of provenance

Clay-silt- and sand-layers 'Pliocene I-III' Iffezheim-Formation Clay-silt-sand-layer

material of local provenance material of local provenance

The interpretation of the river seismic data re- layers, which are regionally distributed. In vealed well the alternating sequence of coarse- the system after BARTZ (1982) this alternating grained layers (aquifers, so called ‘Kieslager’) succession is separated from the underlying and fi ne-grained layers (aquitards, so called provenance change by another unit called ‘Alt- ‘Zwischenhorizonte’) typical of the Heidelberg quartär’ (‘Early Quaternary’). This term again Basin. This hydrostratigraphic classifi cation is used as description of a sediment type rather (Table 1) is often used in the northern part of than a stringent chronostratigraphic classifi cati- the Upper Rhine Graben due to a lack of geo- on. In more recent publications and reports, the chronological data concerning Pliocene and lowest coarse-grained bed is defi ned as Early Pleistocene strata. It is based on a macroscopic Quaternary (WEIDENFELLER & KÄRCHER 2008). description of the sediments, their colours and The thickness of each layer is quite variable in carbonate content, and as complementary infor- a lateral direction. Locally, additional fi ne- or mation on gamma logs, where available. The coarse-grained layers of smaller extent can be hydrostratigraphy was broadly introduced by intercalated. The occurrence of fi ne-grained se- BARTZ (1982). It is presently much used in hy- diments was traditionally related to interglacial drogeology (HGK 1999) and was last updated periods, and the occurrence of coarse-grained by WEIDENFELLER & KÄRCHER (2008). On a layers to glacial periods (BARTZ 1982). larger scale it distinguishes between three coar- One of the aims of this drilling project is to se-grained layers separated by two fi ne-grained correlate the before mentioned hydrostratigra- The Heidelberg Basin drilling project: Geophysical pre-site surveys 345

Fig. 4: Bouguer map of the entire Upper Rhine Graben (after ROTSTEIN et al. 2006) and the Heidelberg area in more detail, with the three research borehole locations Ludwigshafen-Parkinsel, Viernheim, and Heidelberg. Contour intervals: 2 mGal (regional map) and 1 mGal (local map); black dots: gravity stations.

Abb. 4: Bouguer-Karte des gesamten Oberrheingrabens (nach ROTSTEIN et al. 2006) und des Heidelberger Raums im Detail mit den drei Lokationen der Forschungsbohrungen Ludwigshafen-Parkinsel, Viernheim und Heidelberg. Isolinienabstand 2 mGal (regionale Karte) und 1 mGal (lokale Karte); schwarze Punkte: gravimetrische Messpunkte. phy with the lithostratigraphy of the southern 3 Gravimetry part of the Upper Rhine Graben (SYMBOL- SCHLÜSSEL GEOLOGIE BADEN-WÜRTTEMBERG). Generally, gravity anomaly data is expected to The upper gravel layer can be quite well refl ect a fi rst-order pattern of the shape of the correlated with the Mannheim Formation, and Heidelberg Basin, especially varying thickness the upper interlayer (fi ne-grained layer) with of (unconsolidated) Pliocene/Pleistocene sedi- the Ladenburg Horizon. The succession of the ments. The mean density of Plio-Pleistocene middle sand-gravel layer and lower sand-silt sediments should be reduced compared to Ter- layer and the interlayer in between is only tiary or even older and more compacted sedi- roughly equivalent to the Weinheim Beds ments. Therefore the anomalous thick sedimen- (Table 1). tary fi ll of the Heidelberg Basin should cause a 346 HERMANN BUNESS, GERALD GABRIEL & DIETRICH ELLWANGER

Fig. 5: 2-D gravity profi le across the Rhine Graben in the Heidelberg area. Although the regional gravity fi eld correlates well with sediment thickness, additional density contrasts in the basement are required to explain the observed anomalies in the western part.

Abb. 5: Gravimetrisches 2-D Profi l über den Rheingraben im Raum Heidelberg. Wenngleich das regionale Schwerefeld gut mit den Sedimentmächtigkeiten korreliert, müssen Dichtekontraste im Basement angenom- men werden, um die beobachteten Anomalien des westlichsten Profi labschnitts zu erklären. The Heidelberg Basin drilling project: Geophysical pre-site surveys 347 negative gravity anomaly that can be related to some general knowledge regarding the source of the the extent of the basin and its depth. But in gravity anomalies in the Upper Rhine Graben fact the situation is more complicated. has to be considered. ROTSTEIN et al. (2006) performed some two-dimensional calculations Gravity data along profi les approximately perpendicular to the strike of the graben. Although these profi les Gravity data for the Upper Rhine Graben is avai- were restricted to the southern part of the graben lable from several sources. ROTSTEIN et al. (2006) and a two-dimensional approach is not suitable have compiled the most recent Bouguer gravity to investigate the complex graben geology in map of the Upper Rhine Graben comprising all great detail, their general result showed, that the available data from France and Germany the gravity anomalies are not only caused by the (Fig. 4; regional map). This map is based on sediment fi ll of the graben, but that they are also about 33.000 Bouguer gravity values. About one strongly affected by density inhomogeneities third of the data was provided by the Leibniz In- in the crystalline basement. One of the profi les stitute for Applied Geophysics covering the Ger- south of Karlsruhe revealed increasing sediment man part of the Rhine Graben. This dataset con- thicknesses from west to east accompanied by sists of data available from the Geophysikalische increasing Bouguer gravity values – the struc- Reichsaufnahme, but also some local surveys. ture of the sediments was well constrained by The French data is mainly based on two data refl ection seismic data and drilling information. sources, which are themselves compilations of Therefore, for this profi le the gravity effect of numerous surveys. The fi rst dataset – about fi fty the sediments must be overcompensated by den- percent of the French data - was provided by the sity contrasts in the basement. Bureau de Recherches Géologiques et Minières, Density of the basement must be assumed to be the second one by Mines de Potasse d’Alsace. of high lateral variation as that of rocks of the A complete Bouguer anomaly was recalculated adjacent graben shoulders is. Therefore, some for the entire new dataset, using a density of impact on the Bouguer anomalies observed 2670 kg/m3 and considering newly-calculated in the area of the Heidelberg Basin must also terrain reductions. The distribution of the gravity be assumed. A preliminary 2-D profi le which stations is strongly inhomogeneous; their spatial crosses the Rhine Graben close to Heidelberg coverage varies signifi cantly from about 0,25 is shown in Fig. 5. Although the structural stations/km2 in some parts of the Vosges and resolution of the sediments is rather low, the Black Forest and 40 stations/km2 in some parts necessity to introduce at least lateral density of the graben itself. Note, the complete Bouguer contrasts at the western and eastern boundary map is based on a calculated grid of 1 km. faults and within the most western part of the The area of the Heidelberg Basin (Fig. 4; local basement is obvious. map) is characterised by the strongest gravity Nevertheless, the sediments of the Heidelberg anomaly of the entire Upper Rhine Graben Basin will undoubtedly contribute to the nega- (apart from the most southern part where the tive gravity anomalies observed in this region. regional trend is strongly affected by the Alps). Confi rming the map of ‘Quaternary’ thickness It is in the order of -40 to -50 mGal, with the in the Upper Rhine Graben published by BARTZ absolute minimum close to the outlet of the (1974), the new refl ection seismic profi les re- Neckar River, from the Odenwald in the plain corded in the framework of the pre-site surveys of the Upper Rhine Graben (Fig. 4). reveal anomalously thick Neogene sediments. From the downhole logging experiments con- Preliminary Interpretation ducted in the Heidelberg Drilling Project, low densities between 2000 kg/m3 and 2300 kg/m3 When interpreting the anomaly apparently rela- can be estimated for the Pleistocene sediments ted to the sediment fi ll of the Heidelberg Basin (HUNZE & WONIK 2008), whereas Tertiary sedi- Fig. 6: First quantita- 348 tive interpretation of the horizontal gradient (in Eotvös, 1 E = 10-9 s-2 = 0.1 mGal/km) of the gravity fi eld related to the sediments of the Heidelberg Basin after H ERMANN CLOSS (1943). No density contrasts in the basement

are considered, although a B strong lateral variation of UNESS density must be assumed.

The dip of the youngest , G

sediments towards the ERALD west contradicts the new refl ection seismic data. G ABRIEL Abb. 6: Erste quantitative Interpretation des Hori- zontalgradienten (in Eot- &D vös, 1 E = 10-9 s-2 = 0.1 IETRICH mGal/km) des Schwere- feldes im Hinblick auf die

Sedimente des Heidelber- E ger Beckens nach CLOSS LLWANGER (1943). Obwohl von star- ken lateralen Dichtekon- trasten im Basement aus- zugehen ist, werden diese nicht berücksichtigt. Das Einfallen der jüngsten Sedimente nach Westen steht im Widerspruch zu den neuen refl exionsseis- mischen Ergebnissen. The Heidelberg Basin drilling project: Geophysical pre-site surveys 349 ments in the Upper Rhine Graben are known compensating the gravity effect of sediments. to have densities between 2350-2450 kg/m3, First quantitative interpretations of the gravity strongly depending on the amount of evapo- fi eld of the Heidelberg Basin were published by rates in the Early Oligocene strata, at least in CLOSS (1943). Based on torsion balance data, the southern part of the graben (ROTSTEIN et al. models were derived that explain the observed 2006). horizontal gradient (in Eotvös, 1 E = 10-9 s-2 Interpreting the observed gravity anomalies = 0.1 mGal/km) running from the Odenwald only in terms of varying sediment thickness, in the east about 5 km into the Upper Rhine two main centres of deposition can be distingu- Graben in the west (Fig. 6). Therefore, only the ished: one between Heidelberg and the Rhine local situation at the eastern graben boundary River, and the second northeast of Landau fault was investigated. The thickness of Pleis- (Fig. 4). Considering the information about tocene and youngest Plicocene sediments is Base ‘Quaternary’ (Fig. 2), the anomaly close estimated to be ~ 500 m at the Heidelberg Uni- to Landau is not related to anomalously thick Nord location. Furthermore in CLOSS’s model Quaternary deposits. The source of this ano- the uppermost sediment unit dips with about maly must be assumed to be at greater depth. 45° towards west – strongly contradicting the This source can be located either in the older result of the new refl ection seismic surveys. sediments, e.g. thick deposits of Early Miocene Density contrasts in the crystalline basement age in agreement with SCHUMACHER (2002), or of the URG in this region were not taken into in the basement, e.g. an extension of units that account, although from the adjacent Odenwald outcrop in the northern Odenwald today, to the a large variety of alkaline (high density) and southwest. Only the large negative gravity ano- acidic (lower density) rocks are known. maly east of the Rhine River can be discussed in terms of varying thickness of Quaternary 4 Seismic survey and data processing sediments, even though this interpretation is ambiguous. This anomaly is related, at least Seismic measurements in urban areas often en- to some extent, to the ‘Heidelberger Loch’. counter considerable diffi culties. Restrictions The Ludwigshafen boreholes are located on exist for seismic sources (only low-energy the western margin of this basin structure; seismic sources, services lines, endangerment the Heidelberg UniNord borehole close to the of supply lines, services pipes, traffi c restric- absolute gravity minimum. With respect to the tions, etc.) as well as for the recording side map of ‘Quaternary’ sediments (BARTZ 1974, (sealing of the surface, enhanced noise level, improved by HAIMBERGER, HOPPE & SCHÄFER etc.). The design of seismic profi les is therefore 2005), the Heidelberg Basin extends further more often dictated by logistics than by geolo- southwards, towards Karlsruhe. This extension gical reasoning. cannot be traced unequivocally in the gravity At the start of the project a borehole location map, where north and west of Karlsruhe a re- in Heidelberg was proposed at the abandoned lative gravity high occurs. The contour lines freight depot south of the Neckar River (Fig. delimiting this relative gravity high from the 7). A 1.5 km long profi le (profi le 1) was there- more distinct gravity low to the north strike fore measured, that showed strong inclinations nearly W-E, which is not in accordance with of deep refl ectors. To check the true inclination the map of Base ‘Quaternary’. But these obser- of the refl ectors, the data were supplemented vations correspond well with the quantitative by a second profi le later on (profi le 4). The interpretation of the gravity anomalies south of profi les could not be connected to existing in- Karlsruhe discussed previously and presented dustry profi les (the next one being about 1.5 km by ROTSTEIN et al. (2006). High density Early apart to the SW), but the interpretation could be Palaeozoic and Proterozoic rocks in the base- done by comparison of refl ection patterns. The ment are suggested as source for this anomaly borehole Radium Sol Therme could barely be 350 HERMANN BUNESS, GERALD GABRIEL & DIETRICH ELLWANGER

Fig. 7: Seismic refl ection profi les (red lines) measured in Heidelberg. Yellow points indicate boreholes men- tioned in this paper.

Abb. 7: In Heidelberg aufgezeichnete refl exionsseismische Profi le (rote Linien). Gelbe Punkte markieren die in diesem Artikel genannten Bohrungen. The Heidelberg Basin drilling project: Geophysical pre-site surveys 351

Fig. 8: Seismic hydraulic vibrator, constructed for near surface high resolution profi ling.

Abb. 8: Seismischer Hydraulikvibrator, der für hoch aufl ösende oberfl ächennahe Messungen entwickelt wurde. used for interpretation due to its controversial measurements. First, a profi le perpendicular to interpretation. In addition, data quality suffered the general trend of faults was shot (profi le 2). due to extreme electromagnetic disturbances of After some encouraging results, a longer north 16 2/3 Hz and its multiples up to 500 Hz. - south trending profi le (profi le 3) was registe- North of the Neckar River the building density red. However, continuation to the exploration is lower, improving the conditions for seismic

Table 2: Recording parameters used in the refl ection seismic surveys.

Tab. 2: Aufnahmeparameter der refl exionsseismischen Messungen. Profi les 1-4 profi les 5-7 Seismic source GGA-vibrator MHV 2.7 GGA-vibrator MHV 2.7

Sweep 16 s linear, 30-180 Hz 16 s linear, 30-180 Hz Recording length 20 s 20 s Source/recording point distance 10 m / 10 m 5 m / 5 m Refl exion point distance 5 m 2,5 m Geophone type SM4, 20 Hz SM4, 20 Hz Group length/geophones in group 5 / 6 - , 1 Spread fi xed spread (p. 1, 4) end on (p. 2,3) end on Recording instrument Geometrics (StrataVisor or Geodes) Geometrics (Geodes) Recording mode unstacked, uncorrelated unstacked, uncorrelated Number of channels 72 (p. 1,2), 120 (p. 3, 4) 120 Vertical stacks 4 2 Samplerate 1 ms 1 ms 352 HERMANN BUNESS, GERALD GABRIEL & DIETRICH ELLWANGER borehole ‘Schriesheim’, about 1 km further processing. The structure of the uppermost low north (Fig. 2), could not be established. After velocity layer down to a depth of 20 m could fi xing the location of the research borehole not be determined adequately, causing some ‘Heidelberg UniNord 1’, another short profi le uncertainty about the overall depth level of the (profi le 5) was shot to check for possible fault profi les. As a consequence the depth level was zones. In this area signal quality was degraded calibrated using the VSP refl ections, which have by waves originated from service pipes (called a known depth. A reference level of 100 m a.s.l. ‘pipe waves’ for simplicity further on). These was chosen for all profi les. are especially visible on profi le 2 and profi le 5. The two profi les at the Viernheim location Table 3: Typical data processing fl ow (profi les 6 and 7 in Fig. 2) were laid out per- pendicular to each other, with the proposed po- Tab. 3: Typischer Prozessingsablauf sition of the research drilling at their crossing point. The profi les were surveyed in a forested 1. correlation with fi eld sweep area without further problems. 2. quality control All profi les were shot by a small hydraulic 3. vertical stack vibrator (Fig. 8), which yields a maximum 4. automatic gain control 300 ms peak force of 30 kN and a frequency range 5. deconvolution (spiking, zero phase, of 20 - 500 Hz (for recording parameters cp. 30 ms operator) Table 2). This vibrator was developed espe- 6. bandpass 30-180 Hz, 24db/oct. cially for high-resolution shallow profi ling 7. surgical mute of surface waves and (BUNESS & WIEDERHOLD 1999, VAN DER VEEN shear waves et al. 2000). It is very appropriate for use in 8. attenuation of air-coupled waves an urban environment, due to its relatively 9. refraction static to fl oating datum low impact on the surface, compared to e.g. 10. velocity analysis and iterative weight dropping or other impulsive sources. application of residual static Data were processed using a commercial (initial step with lowpass 90 Hz) processing system (ProMAX, Landmark 11. stack to fi nal datum (100m) Corp.). Processing steps are listed in Table 12. FX deconvolution (60 – 180 Hz) 3, details regarding the single steps are dis- 13. automatic gain control 500 ms cussed e.g. in YILMAZ (2001). In addition, to 14. FD migration the processing steps listed in Table 3, waves in 15. depth conversion profi les 2 and 5 were suppressed by trace-mix- ing algorithms. Trace mixing, although a very 5 Results simple algorithm, proved to be most effective of a variety of other algorithms, including spa- Heidelberg – the region north tial 2D fi lters, f-k based fi lters and eigenvector of the Neckar River fi ltering. However, the incoherency of this kind of noise prevents elimination without damag- The profi le which is best tied to an existing ing the refl ection signal. deep borehole is the north-south trending pro- The velocity fi elds for fi nite-difference migra- fi le 3 in the area north of the Neckar River: the tion and for the subsequent depth conversion Schriesheim borehole is located about 1 km were derived from the smoothed stacking veloc- further north (Fig. 2). Although no direct con- ity fi elds. The deviations from the velocities de- nection between the newer seismic line and the rived by the VSP (vertical seismic profi le) meas- borehole exists, the geological structures can urements carried out in the UniNord 1 borehole be controlled by hydrocarbon seismic lines. down to a depth of 180 m turned out to be very Both, E-W and N-S trending profi les that cross small, hence the former were kept during later the Schriesheim borehole are available. The Heidelberg Basindrilling project:Geophysicalpre-sitesurveys

Fig. 9: Migrated seismic refl ection profi le 3. The 2650 m deep borehole ‘Schriesheim‘ is located about 1 km north of profi le 3. 353 Abb. 9: Migriertes refl exionsseismisches Profi l 3. Die 2650 m tiefe Bohrung ‘Schriesheim’ liegt etwa 1 km nördlich des Profi ls 3. 354 HERMANN BUNESS, GERALD GABRIEL & DIETRICH ELLWANGER

Fig. 10: Estimation of the interval velocity fi eld along refl ection profi le 3 derived from stacking velocities. The colour-coded interval velocities are overlain by the migrated seismic section shown in Fig. 9.

Abb. 10: Intervallgeschwindigkeiten abgeschätzt aus Stapelgeschwindigkeiten entlang des Profi ls 3. Die farbkodierten Intervallgeschwindigkeiten sind von dem in Abb. 9 dargestellten migrierten seismischen Profi l überlagert.

Fig. 9 shows the preliminary stratigraphical more continuous refl ections. Especially in the interpretation of profi le 3 that considers Base most southern part of profi le 3, some areas ‘Quaternary’ and Base Late Miocene. Only at depths between 600 and 700 m are of low based on seismic data, the separation between refl ectivity. The most distinct refl ector appears these units remains ambiguous because of mis- just below the top of the Hydrobia beds. sing continuous refl ections, e.g. Base ‘Quater- The additional subsidence in the ‘Heidelberger nary’. Furthermore, no distinct changes in the Loch’ – the depocentre of the Heidelberg Basin refl ection patterns mark these boundaries. – amounts to 160 m, with respect to the transi- Concerning deposits of Quaternary age, seg- tion Pliocene / Pleistocene and 300 m with re- ments with strong continuous refl ections that spect to Base Pliocene. This subsidence is not reveal correlation lengths in the order of 500 to linked to any faults with large displacements 1000 m alternate laterally with sections charac- but to fl exures of the beds that were probably terised by low refl ection energy and sub-parallel formed syn-sedimentarily. Faults with distinct deposition. This can be interpreted in the sense displacements are related to the upper strata of of repeating changes of the depositional en- the Hydrobia beds only. At the northern end of vironment. At the southern end of the profi le, profi le 3, normal faulting is observed. The fault where subsidence was greatest, more continuous interpreted at the southern end of the profi le refl ections become apparent in the deeper part of reveals a pattern that is typical for diffractions the Pleistocene than in the north. A throughout, although the section is migrated and therefore low-refl ective, sub-parallel bumpy to chaotic no diffraction should occur. But this holds only refl ection pattern as described by HAIMBERGER, if the fault strikes perpendicular to the seismic HOPPE & SCHÄFER (2005) for some parts of the profi le. Consequently a large fault, proximately river seismic along the Rhine was not observed south of the profi le, is assumed parallel to the in our sections. This gives some evidence for la- course of the Neckar River. teral changes of the depositional environments. Often, the seismic velocity fi eld images geo- The refl ection patterns caused by the under- logical structures by sharp vertical and late- lying Pliocene and Miocene strata consist of ral velocity changes. But for the area of the The Heidelberg Basin drilling project: Geophysical pre-site surveys 355

Fig. 11: Stacked seismic refl ection profi le 2 in time domain, unmigrated. Areas with very low refl ecti- vity in the upper 300 ms in the central part of the profi le are due to strong noise and do not refl ect geol- ogy. A wedge-shaped zone at the eastern edge of the profi le, indicated by a dotted line, maybe caused by the transition of the sedimentary infi ll of the URG to the crystalline basement of the Odenwald.

Abb. 11: Gestapeltes refl exionsseismisches Profi l 2 im Zeitbereich, unmigriert. Die stellenweise sehr geringe Refl ektivität in den oberen 300 ms in zentralen Teil des Profi ls wird nicht durch die Geologie, sondern durch starke Störungen hervorgerufen. Eine keilförmige, durch eine punktierte Linie markierte Zone am Ostrand des Profi ls kann durch den Übergang von der Sedimentfüllung der ORG zum kristallinen Grundgebirge des Odenwaldes verursacht werden.

Heidelberg Basin investigated with the new they are affected by layer dips, side refl ec- refl ection lines no distinct information is pro- tions, diffractions and other seismic particu- vided by the velocity fi elds. An estimation of larities. The reliability of stacking velocities the velocity fi eld of profi le 3 (Fig. 10) reveals decreases strongly with depth, depending on interval velocities that increase gradually the maximum offset of the seismic survey. from 1600 m/s near the surface to 3200 m/s The velocities cannot be controlled by other at a depth of 1500 m. These velocities are de- methods, e.g. VSP measurement, due to the duced from stacking velocities, which do not lack of deep VSP (vertical seismic profi le) or constitute physical seismic velocities, since sonic measurements. However, they coincide 356 HERMANN BUNESS, GERALD GABRIEL & DIETRICH ELLWANGER

Fig. 12: Migrated seismic refl ection profi le 2. Seismic signals inside the transparent triangle are not interpret- able because of geometrical reasons and migration artefacts. The strongly-bent refl ectors close to the triangle zone maybe caused by drag folding.

Abb 12: Migriertes refl exionsseismisches Profi l 2. Seismische Signale innerhalb des transparenten Dreiecks können aufgrund der geometrischen Verhältnisse sowie von Migrationsartefakten nicht interpretiert werden. Die stark gekrümmten Refl ektoren unmittelbar neben diesem Dreieck könnten auf eine Schleppfalte deuten. quite well with the regional velocity trend de- well with the lower boundary of the coarse- rived from deep boreholes in the Heidelberg grained Weinheim beds (cf. Fig. 3). Basin. A remarkable feature is a zone of low Profi le 2 is located between the Neckar River and velocity, which has a depth of approximately the eastern boundary fault of the Upper Rhine 180 – 250 m at the northern edge of the profi le Graben (see Fig. 7). The profi le approaches at its and of 300 - 450 m at its southern edge. The eastern edge the topographic border of the URG upper limit of this zone corresponds therefore and hence the master boundary fault of the URG. The Heidelberg Basin drilling project: Geophysical pre-site surveys 357

Both the unmigrated time section (Fig. 11) and the migrated depth section (Fig. 12) are presen- ted, so the reader can better judge the infl uence of the migration processing step. Generally, the refl ections dip to the east, with dips becoming greater with increasing depth. A wedge-shaped zone at the easternmost position (marked by the dotted line in Fig. 11) shows no coherent signal. This wedge is probably due to the eastern master fault which juxtaposes the sedimentary infi ll of the URG against the crystalline basement of the Odenwald. A very rough estimation of its dip yields values of approximately 80°. Adjacent to this wedge, fl at or slightly westward dipping refl ectors are displayed at travel times greater 700 ms. This feature is interpreted as a drag fold. Below 700 ms, refl ections again dip towards east. Some hints for diffractions can be seen, that could be caused by the fault zone (e.g. CMP 260 at 800 ms). Areas of apparently low refl ecti- vity as observed in the youngest Quaternary, e.g. between CMP 110 and CMP 310, are caused by strong noise due to pipe waves. After migration (Fig. 12), the bending of the sediment strata next to the assumed boundary fault becomes more obvious. However, it is diffi cult to separate real refl ections from mig- ration artefacts that always occur at the ends of a seismic profi le. Signals inside the marked triangle should not be considered as real refl ec- tors. The continuous subsidence of sediments beneath the central and western part of the pro- fi le is revealed by an increasing dip angle with Fig. 13: Migrated seismic refl ection profi le 5. No depth. The apparent dip of Base ‘Quaternary’ is seismic information is available inside the transpar- 1.5° towards east and 4.5° for Base Pliocene. A ent triangle for geometric reasons. fault with a distinct displacement is again only visible in the upper part of the Hydrobia beds. Abb. 13: Migriertes refl exionsseismisches Profi l Profi le 5 was recorded with modifi ed acquisiti- 5. Aufgrund der geometrischen Verhältnisse sind on parameters (smaller CMP spacing, smaller innerhalb des transparenten Dreiecks keine seismi- schen Informationen verfügbar. offset, cp. Table 2), which yielded a higher re- solution (Fig. 13). Again, in the eastern part the image of Quaternary deposits is signifi cantly In the ’Heidelberg UniNord 1’ borehole in 2006 affected by pipe waves. At depths between 600 (ELLWANGER et al. 2008), a vertical seismic pro- and 700 m, reduced refl ectivity is observed at fi le (VSP) was recorded (Fig. 14), as well as the western end of the profi le. The dip angles of numerous other geophysical logging methods Base ‘Quaternary’ and Base Pliocene, 2° and 6° (HUNZE & WONIK 2008). To ensure compara- respectively, are slightly increased with respect bility with the refl ection seismic profi les, the to those of profi le 2. same vibrator and the same fi eld parameters 358 HERMANN BUNESS, GERALD GABRIEL & DIETRICH ELLWANGER

Fig. 14: Detail of seismic profi le 5 (cf. Fig. 13) with corridor stack of the VSP (borehole location UniNord 1) inserted. Upper right: gamma ray log, calliper log (after HUNZE & WONIK 2008), and interval velocities deduced from the VSP. Reference level is surface level at the borehole location (107 m). Depth conversion is based on VSP-derived velocities down to 180 m depth.

Abb. 14: Ausschnitt aus dem seismischen Profi l 5 (vgl. Abb. 13) mit dem Korridor Stack des VSPs (Bohrlo- kation UniNord 1). Oben rechts: Gamma Log (nach HUNZE & WONIK 2008), Bohrlochdurchmesser sowie die aus dem VSP abgeleiteten Intervallgeschwindigkeiten. Bezugsniveau ist die Ansatzhöhe des Bohrpunktes (107 m). Die Tiefenkonvertierung basiert auf den aus dem VSP bis 180 m Tiefe abgeleiteten Geschwindig- keiten. The Heidelberg Basin drilling project: Geophysical pre-site surveys 359

Fig. 15: Migrated seismic refl ection profi le 1. No seismic information is available inside the transparent tri- angle for geometric reasons. The strongly northwest-dipping refl ectors close to the triangle zone are probably artefacts caused by migration.

Abb. 15: Migriertes refl exionsseismisches Profi l 1. Aufgrund der geometrischen Verhältnisse sind innerhalb des transparenten Dreiecks keine seismischen Informationen verfügbar. Die stark nach Nordwesten einfal- lenden Refl ektoren unmittelbar neben diesem Dreieck stellen wahrscheinlich durch die Migration verursach- te Artefakte dar. 360 HERMANN BUNESS, GERALD GABRIEL & DIETRICH ELLWANGER were used (Table 2). A depth interval from apparent dip of the sediment fi ll increases with 180 m to 32 m could be measured with a re- depth. For Base ‘Quaternary’ it amounts to 3°, cording distance of 4 m. Several surveys were for Base Pliocene it amounts to 9° (profi le 1) dependant on the accessible openhole interval. and 11° (profi le 4). Therefore, real dip is about Signal quality is very good and allows an une- 4° for the Base ‘Quaternary’ and 11° for the quivocal determination of traveltimes and the Base Pliocene, in each case towards east. This locally-refl ected wavefi eld. is about twice as much as these beds north of Interval velocities vary between 1850 m/s and the Neckar River have. 2250 m/s, beside a zone of lower velocity near Similar to profi le 3, Quaternary deposits show the surface. A correlation can be observed bet- quasi-continuous refl ections (e.g. profi le 1 in ween the seismic velocity and other petrophy- 300 m depth), alternating with weak and partly sical parameters: low values of the gamma ray sub-parallel refl ections. Within the Hydrobia log (coarse-clastic material) correlate with high beds again a strong refl ector occurs that is also velocities and high values of the gamma ray log visible on the other seismic sections. (fi ne-clastic material) with low velocities. The VSP-derived velocities resemble very closely Viernheim the smoothed stacking velocities derived from profi le 5. In contrast to the seismic profi les recorded in The VSP corridor stack represents the local- the Heidelberg area the seismic lines recorded ly-refl ected wavefi eld and corresponds with in the vicinity of the Viernheim borehole (Figs. the surface refl ection profi ling results. Small 17, 18) allow a distinct classifi cation of the discrepancies, as seen in Fig. 14, can be explai- sediment fi ll. Tops of zones of high refl ectivity ned by different fi eld geometries and recorded are visible at both depths of 220 m and 570 m, frequencies. The corridor stack was used to whereas especially the depth interval between calibrate the total static of the refl ection seis- 450 m and 570 m shows low refl ectivity. mic lines, since the depths of its refl ections are Considering the results of the research borehole determined directly. Viernheim (HOSELMANN 2008) the refl ector at a depth of 228 m can be assigned to the transition Heidelberg – the region south between the ’Quaternary’ and the underlying of the Neckar River material of local provenance (reference height of the seismic line is 100 m above sea level, The new refl ection seismic profi les 1 and 4 the drilling site is 97 m above sea level). The (Figs. 15, 16) are located south of the Neckar limnic-fl uviatile deposits of local provenance River (see Fig. 7). Therefore a tie to existing cause the observed high refl ectivity. deep wells is hardly possible. The observed Due to the high quality of the Viernheim data a refl ection patterns cannot be easily correlated complex fault pattern can be identifi ed. Espe- with those of the hydrocarbon seismic lines, as cially on the E-W oriented profi le 6 (Fig. 17), assumed prior to the surveys. Therefore, the in- a fault zone is observed that runs through all formation from the Schriesheim well was cor- prominent refl ection horizons and penetrates related along several seismic lines and trans- deep into the Rhenish facies, e.g. into ‘Pleisto- ferred to the nearest seismic profi le recorded cene’ sediments. Originally a drilling location by the hydrocarbon industry, which is about close to the intersection of profi les 6 and 7 was 1,5 km south of profi le 4. But the interpretation favoured. Based on these seismic results it was of the youngest sediments, e.g. Quaternary, re- shifted by about 500 m towards south where mains especially uncertain, because these were the sediment succession was expected to be not imaged well in the industrial seismic lines. less affected by faults. Both profi les 1 and 4 intersect each other at an Due to the acquisition parameters and the pro- angle of about 50°. Again, on both profi les the cessing of the seismic data, refl ectors above The Heidelberg Basin drilling project: Geophysical pre-site surveys 361

Fig. 16: Migrated seismic refl ection profi le 4. No seismic information is available inside the transparent triangle for geometric reasons. The strongly west-dipping refl ectors close to the triangle zone are probably artefacts caused by migration.

Abb. 16: Migriertes refl exionsseismisches Profi l 4. Aufgrund der geometrischen Verhältnisse sind innerhalb des transparenten Dreiecks sind keine seismischen Informationen verfügbar. Die stark nach Westen einfal- lenden Refl ektoren unmittelbar neben diesem Dreieck stellen wahrscheinlich durch die Migration verursach- te Artefakte dar. 362 HERMANN BUNESS, GERALD GABRIEL & DIETRICH ELLWANGER

Fig. 17: Migrated seismic refl ection profi le 6 near Viernheim. The initially-proposed borehole location (marked by a derrick) was abandoned after the seismic became available to avoid the predicted faults. The location was than shifted about 500 m to the south (see Fig. 18).

Abb. 17: Migriertes refl exionsseismisches Profi l 6 bei Viernheim. Der ursprünglich vorgeschlagene Bohr- punkt (Bohrturm) wurde aufgegeben, nachdem die Seismik verfügbar war, um ein Durchbohren der prog- nostizierten Störungen zu vermeiden. Der Bohrpunkt wurde sodann ungefähr 500 m nach Süden verschoben (vgl. Abb. 18).

35 m depth cannot be mapped. The fi rst strong 6 Discussion and Conclusion refl ection that can be correlated along the entire profi le is imaged at 40 m depth, two more are For the Heidelberg Basin thick sediment se- found at 80 m and 180 m depth. The uppermost quences are apparent, both in gravity and seis- two refl ectors are most probably related to the mic data. Quantitative interpretation remain top and the base of the Ladenburg Horizon, a preliminary, as long as no deep boreholes can prominent fi ne-grained horizon in the Upper be included and 3-D models based on gravime- Rhine Graben (in hydrostratigraphy named the tric and seismic data can be calculated, that ad- ’Oberer Zwischenhorizont’). ditionally consider data from the hydrocarbon A precise and detailed stratigraphic interpreta- industry. tion of the refl ectors below 570 m depth was The seismic data at the locations of Viernheim not possible, because these were not reached and Heidelberg show quite different images, by the research borehole. Instead we intend indicating varying sedimentological processes to achieve this by using industrial refl ection throughout the Heidelberg Basin. Confi rming seismic data, which is much denser than in the this, seismic measurements along the Rhine Heidelberg area. River (HAIMBERGER, HOPPE & SCHÄFER 2005, BERTRAND et al. 2006) show yet other seismic The Heidelberg Basindrilling project:Geophysicalpre-sitesurveys

Fig. 18: Migrated seismic refl ection profi le 7. The Viernheim borehole location is indicated. 363 Abb. 18: Migriertes refl exionsseismisches Profi l 7. Die Bohrlokation Viernheim ist eingezeichnet. 364 HERMANN BUNESS, GERALD GABRIEL & DIETRICH ELLWANGER characteristics. Therefore a consistent seismic restricted to early Miocene (Hydrobia beds or stratigraphy for the Plio-/Pleistocene sediments older) units. However, this observation does of the URG is not achievable within the limits not exclude potential hiatuses, which cannot be of the presently applied inconsistent stratigra- imaged by refl ection seismic data. phic scenarios. By tying the new refl ection lines to the Schries- Concerning the location of the Viernheim heim well, the transition Pliocene to Pleistocene boreholes, two new refl ection seismic profi les was predicted at depths between 400 and 500 m. image a sedimentary environment that is af- This statement was based on the assumption that fected by tectonics, as documented by several the extrapolation of information of the industry faults. But these faults are mainly restricted seismic lines across the gap between the nort- to older sediments, e.g. to depths greater than hern end of the seismic profi le 3 and the location about 225 m (Pliocene and older according to of the Schriesheim borehole is correct. Further- HOSELMANN 2008). In contrast, during the Qua- more using the interpretation of Base ‘Quaterna- ternary the tectonic activity seems to be quiet. ry’ from a hydrocarbon well is uncertain because Along the entire profi le these sediments are ho- information is not available on the kind of data rizontal. But on a smaller scale much more de- it is based on. Work done in the framework of tailed information is imaged by the two seismic hydrocarbon exploration was focused on deep lines indicating a complex depositional system, structures rather than on young sediments. especially during Pliocene or even older times. The seismic lines reveal more or less con- Considering the results of the Viernheim re- tinuous subsidence. The dip of sediments search borehole, the top and the base of a fi ne- towards east increases with depth, showing grained horizon, comprising the Ladenburg a classical rollover anticline structure at the Horizon (Oberer Zwischenhorizont) at about eastern URG master fault. The amount of sub- 40 and 80 m, respectively, depths can be traced sidence increases from north to south: the Base in the seismic section. Refl ections at a depth of Pliocene dips east by about 4.5 % on profi le 2, about 180 m can be correlated with a sequence 6 % on profi le 5 and 11 % on profi le 1 and 4. of regional distributed fi ne-grained sediments These values make a major fault zone beneath (Unterer Zwischenhorizont). the Neckar River plausible, of which indicati- The top of the uppermost section of high refl ec- ons can be found at the southern end of profi le tivity can be correlated with the transition from 3. Differential compaction may have played a the Rhenish facies (alpine) sediments to mate- role by increasing the dip of the Miocene and rial with local provenance at a depth of 225 m, younger strata. The rollover structure is not as revealed by heavy mineral analysis, carbo- found to the north, as well as to the south of the nate content, and petrography (HOSELMANN ‘Heidelberger Loch’, as inferred from industry 2008). Whether this seismic refl ector can be seismic profi les, which affi rms it as the area interpreted as the transition Plio-/Pleistocene with the most rapid subsidence. must be investigated by additional palynologi- Due to the thick sequences of Plio-/Pleistocene cal studies that are not yet available. sediments, the research boreholes Heidelberg The most important result derived from the UniNord reveals a unique high temporal re- seismic pre-site survey at the Heidelberg solution. From the fi rst Heidelberg borehole UniNord location is the existence of a sub- in 2006 a time marker of the Waalian stage basin in the Heidelberg Basin close to the is reported at 183 m – 210 m depth (HAHNE, eastern margin of the Upper Rhine Graben. ELLWANGER & STRITZKE 2008). As the age of the The additional subsidence adds up to some Waalian is considered to amount to 1.5 Ma, and hundred meters with respect to deeper strata, assuming continuous sedimentation, the Top of as imaged on profi le 3, e.g. about 400 m for the the Pliocene at 2.6 Ma has to be expected at top of the Hydrobia beds. All recorded profi les only 365 m depth. However, the preliminary do not show any disconformities, faults are interpretation of the new refl ection seismic The Heidelberg Basin drilling project: Geophysical pre-site surveys 365 profi les reveals Base ‘Quaternary’ fi rst at about BERTRAND, G., ELSASS, P., WIRSING, G. & LUZ, A. 430 m depth. Consequently, concerning the (2006): Quaternary faulting in the Upper Rhine early Quaternary, increased sedimentation rates Graben revealed by high resolution multi-chan- can be expected. nel refl ection seismic. – Comptes Rendus Géo- sciences, 338: 574-580. To aim on a deeper understanding of the basin BRUN, J. P. & GUTSCHER, M. A. (1992): Deep crustal genesis, a crucial point in the chronostratigra- structure of the Rhine Graben from DEKORP- phic interpretation of seismic refl ectors will be ECORS seismic refl ection data: a summary. the proper defi nition of ‘Base Quaternary’. A – Tectonophysics, 208/1-3: 139-147. major step is also expected once the new dril- BUNESS, H. & WIEDERHOLD, H. (1999): Experiences lings will be interpreted and correlated using with a Vibrator System for Shallow High-Reso- the tools of sequence stratigraphy (ELLWANGER lution Seismics. – 61st EAGE Conference & et al. 2008). We are convinced that this will Technical Exhibition, Extented Abstracts Vol. also include a consistent seismic scenario. 1: 4-42. CLOSS, H. (1943): Gravimetrische Überlegungen zum geologischen Profi l der Thermalbohrung Acknowledgement von Heidelberg. – Oel und Kohle in Gem. mit Brennstoff-Chemie, 43/44: 942-951. The seismic surveys in Viernheim and Heidel- CONRADS, H. & SCHNEIDER, E. (1977): Hydrogeolo- berg were performed by our colleagues Stefan gische und brunnentechnische Probleme bei der Cramm, Günther Druivenga, Siegfried Grüne- Wassererschließung aus dem tiefen Pleistozän berg, Eckhardt Großmann, Walter Rode, Detlef des Oberrheintalgrabens für die Stadtwerke Vogel, and Wolfgang Weitmüller. VSP measu- Heidelberg AG. – Brunnenbau, Bau von Wasser- rements were part of the geophysical logging werken, Rohrleitungsbau, Heft 1: 5-10. DERER, C. (2003): Tectono-sedimentary evolution of program and conducted by Thomas Grelle and the Northern Upper Rhine Graben (Germany), Ferdinand Hölscher. Site-specifi c logistic sup- with special regard to the early syn-rift stage. port was given by Stadtwerke Heidelberg and – PhD Thesis, University Bonn; Bonn: 99 p. Abwasserzweckverband Heidelberg. All this is DERER, C., SCHUMACHER, M. & SCHÄFER, A. (2005): gratefully acknowledged. Thanks also to our The northern Upper Rhine Graben: basin geom- colleagues from the geological surveys, Ulrike etry and early syn-rift tectono-sedimentary evo- Wielandt-Schuster, Christian Hoselmann, and lution. – International Journal of Earth Sciences, Michael Weidenfeller, for cooperation and per- 94: 640-656. manent discussion in this drilling project. An DERER, C., KOSINOWSKI, M., LUTERBACHER, H., SCHÄFER, A. & SÜß, M.P. (2003): Sedimenary anonymous reviewer is thanked for his critical response to tectonics in extensional basins: review, David Tanner for linguistic assistance. the Pechelbronn Beds (Late Eocene to Early Oligocene) in the northern Upper Rhine Graben, References Germany. – In: MCCANN, T. & SAINTOT, A. (eds.): Tracing tectonic deformation using the BARTZ, J. (1951): Revision des Bohr-Profils der Hei- sedimentary record. – Geological Society, spe- delberger Radium-Sol-Therme. – Jahresbericht cial publication, 208: 55-69. und Mitteilungen des Oberrheinischen Geologi- DOEBL, F. & OLBRECHT, W. (1974): An isobath map schen Vereins, 33: 101-125. of the Tertiary base in the Rhinegraben. – In: BARTZ, J. (1974): Die Mächtigkeit des Quartärs im J.H. ILLIES & K. FUCHS (eds.): Approaches to Oberrheingraben. – In: J.H. ILLIES & K. FUCHS Taphrogenesis, Inter-Union Commission on (eds.): Approaches to Taphrogenesis, Inter- Geodynamics, Scientifi c report No. 8: 71-72; Union Commission on Geodynamics, Scientifi c Stuttgart (Schweizerbart). report No. 8: 78-87; Stuttgart (Schweizerbart). ELLWANGER, D., GABRIEL, G., HOSELMANN, C., BARTZ, J. (1982), mit Beitr. von Brelie, G. von der LÄMMERMANN-BARTHEL, J. & WEIDENFELLER, M. und Maus, H.: Quartär und Jungtertiär II im (2005): The Heidelberg Drilling Project (Upper Oberrheingraben im Großraum Karlsruhe. – Ge- Rhine Graben, Germany). – Quaternaire 16/3: ologisches Jahrbuch, A 63: 3–237. 191-199. 366 HERMANN BUNESS, GERALD GABRIEL & DIETRICH ELLWANGER

ELLWANGER, D., GABRIEL, G., SIMON, T., WIELANDT- PETERS, G. (2007): Active tectonics in the Upper SCHUSTER, U., GREILING, R.O., HAGEDORN, E.-M., Rhine Graben – Integration of paleoseismology, HAHNE, J. & HEINZ, J. (2008): Long sequence of geomorphology, and geomechanical modelling. Quaternary Rocks in the Heidelberg Basin De- – PhD theses, Vrije Universiteit Amsterdam: pocentre. – Quaternary Science Journal (Eiszeit- 270 p. alter und Gegenwart), 57/3-4: 316-337. ROTSTEIN, Y., EDEL, J.-B., GABRIEL, G., BOULANGER, FEZER, F. (1997): 220 m Altpleistozän im ‚Heidel- D., SCHAMING, M. & MUNSCHY, M. (2006): Insight berger Loch‘. – Eiszeitalter und Gegenwart, 47: into the structure of the Upper Rhine Graben and 145-153. its basement from a new compilation of Bouguer HAHNE, J., ELLWANGER, D. & STRITZKE, R. (2008): Gravity. – Tectonophysics, 425: 55-70. Evidence for a Waalian thermomer pollen SALOMON, W. (1927): Die Erbohrung der Heidelber- record from the research borehole Heidel- ger Radium-Sol-Therme und ihre geologischen berg UniNord Upper Rhine Graben, Baden- Verhältnisse. – Abhandlungen der Heidelberger Württemberg. – Quaternary Science Journal Akademie der Wissenschaften, 14. Abhandlung: (Eiszeitalter und Gegenwart), 57/3-4: 403-410. 104 p.; Berlin, Leipzig (Walter de Gruyter & HAIMBERGER, R., HOPPE, A. & SCHÄFER, A. (2005): Co.). High-resolution seismic survey on the Rhine SCHUMACHER, M.E. (2002): Upper Rhine Graben: River in the northern Upper Rhine Graben. – In: Role of pre-existing structures during rifting BEHRMANN, J.H., ZIEGLER, P.A., SCHMID, S.M., evolution. – Tectonics, Vol. 21/1: doi:10.1029/ HECK, B. & GRANET, M. (eds.): EUCOR-UR- 2001/TC900022. GENT Upper Rhine Graben Evolution and Ne- SYMBOLSCHLÜSSEL GEOLOGIE BADEN-WÜRTTEMBERG. otectonics. – Special Issue, International Journal Verzeichnis Geologischer Einheiten - Aktual. of Earth Sciences, 94/ 4: 657-668. Ausg. März 2007. – Internet-Publ.: http:// HGK (1999): Hydrogeologische Kartierung und www.lgrb.uni-freiburg.de; Freiburg i. Br. (Reg.- Grundwasserbewirtschaftung Rhein-Neckar- Präs. Freiburg - L.-Amt Geol. Rohst. Bergb.). Raum. Fortschreibung 1983-1999. – Ministeri- VAN DER VEEN, M., BUNESS, H.A., BÜKER, F. & GREEN, um für Umwelt und Verkehr Baden-Württem- A.G. (2000): Field Comparison of High-frequen- berg, Hessisches Ministerium für Umwelt, cy Seismic Sources for Imaging Shallow (10- Landwirtschaft und Forsten, Ministerium für 250 m) Structures. – Journal of Environmental Umwelt und Forsten Rheinland-Pfalz: 155 p.; and Engineering Geophysics, 5/2: 39-56. Stuttgart, Wiesbaden, Mainz. WEIDENFELLER, M. & KÄRCHER, T. (2008): Tectonic HOSELMANN, C. (2008): The Pliocene and Pleistocene infl uence on fl uvial preservation: aspects of fl uvial evolution in the northern Upper Rhine the architecture of Middle and Late Pleistocene Graben based on results of the research borehole sediments in the Northern Upper Rhine Graben, at Viernheim (Hessen, Germany). – Quaternary Germany. – Netherlands Journal of Geosciences Science Journal (Eiszeitalter und Gegenwart), - Geologie en Mijnbouw, 87/1: 33-40. 57/3-4: 286-315. WEIDENFELLER, M. & KNIPPING, M. (2008): Correla- HUNZE, S. & WONIK, T. (2008): Sediment Input tion of Pleistocene sediments from boreholes in into the Heidelberg Basin as determined from the Ludwigshafen area, western Heidelberg Ba- Downhole Logs. – Quaternary Science Journal sin. – Quaternary Science Journal (Eiszeitalter (Eiszeitalter und Gegenwart), 57/3-4: 367-381. und Gegenwart), 57/3-4: 270-385. MAUTHE, G., BRINK, H.J. & BURRI, P. (1993): Koh- YILMAZ, Ö. (2001): Seismic data analysis: proces- lenwasserstoffvorkommen und -potential im sing, inversion and interpretation of seismic deutschen Teil des Oberrheingrabens. – Bulletin data. – In: DOHERTY, S.M. (ed.): Investigations der Vereinigung Schweizerischer Petroleum-Ge- in Geophysics, 10; Tulsa (Society of Exploration ologen und Ingenieure, 60/137: 15-29. Geophysicists): 2024 p. Eiszeitalter und Gegenwart 57/3–4 367–381 Hannover 2008 Quaternary Science Journal

Sediment Input into the Heidelberg Basin as determined from Downhole Logs

SABINE HUNZE & THOMAS WONIK*

Abstract: The Upper Rhine Graben, and the Heidelberg Basin in particular, play an important role in the investigation of climate change and tectonic activity during the Tertiary and Quaternary periods. Several re- search boreholes were recently drilled to acquire data for a new interpretation of the geology of the northern Upper Rhine Graben. This paper investigates in detail the boreholes at Heidelberg, Viernheim and Ludwigs- hafen-Parkinsel, as well as the shallower boreholes at Pfungstadt, Stadtwerke Viernheim and Hüttenfeld, in terms of their geophysical parameters. The physical properties of the lithologies described in the cores are characterised on the basis of borehole logging data. A hole-to-hole correlation between adjacent boreholes is then conducted, using the characteristic changes in the ‘natural radioactivity’ parameter to acquire infor- mation on changes in sediment provenance (Rhine, Neckar, Pfälzerwald and Odenwald). An interpretation applying the statistical method of cluster analysis allows identifi cation of sections with homogenous physical properties from downhole measurements and thus the determination of possible sediment provenance.

[Interpretation des Sedimentationsgeschehens im Heidelberger Becken anhand von Bohrlochmessun- gen]

Kurzfassung: Der Oberrheingraben und insbesondere das Heidelberger Becken spielen eine Schlüsselrolle bei der Untersuchung der Änderungen im Klima und der tektonischen Aktivitäten im Tertiär und Quartär. In den letzten Jahren wurden einige Forschungsbohrungen abgeteuft, um Daten für eine neue Interpretation der Geologie des nördlichen Oberrheingrabens zu erhalten. Im Rahmen dieser Arbeit werden die Bohrungen Heidelberg, Viernheim und Ludwigshafen-Parkinsel sowie die fl acheren Bohrungen Pfungstadt, Stadtwerke Viernheim and Hüttenfeld anhand der dort durchgeführten geophysikalischen Bohrlochmessungen näher un- tersucht. Die physikalischen Eigenschaften der einzelnen an den Kernen beschriebenen Lithologien werden mit Hilfe der Daten der Bohrlochmessungen charakterisiert. Anschließend erfolgt eine Korrelation zwischen benachbarten Bohrlöchern, um aus den charakteristischen Änderungen im Parameter ‚natürliche Radioakti- vität’ Aussagen zur Änderung der sedimentären Liefergebiete (Rhein, Neckar, Pfälzerwald und Odenwald) zu treffen. Eine Auswertung mit der statistischen Methode der Clusteranalyse ermöglicht es, aus den Bohr- lochmessungen Bereiche mit einheitlichen physikalischen Eigenschaften zu fi nden und damit die möglichen sedimentären Liefergebiete einzugrenzen.

Keywords: Heidelberg Basin, downhole logging, hole-to-hole correlation, sediment provenance

* Addresses of authors: S. Hunze, T. Wonik, Leibniz Institute for Applied Geophysics, Stilleweg 2, 30655 Hannover, Germany. E-Mail: [email protected], [email protected] 368 SABINE HUNZE & THOMAS WONIK

1 Introduction the graben margins. In the northern part of the Upper Rhine Graben the graben sediments are 1.1 Geology generally fi ner grained, better sorted and mixed with local sediment input from the graben mar- One of Europe’s largest river systems, the River gins (HAGEDORN & BOENIGK 2008). Rhine, provides a unique geoscientifi c data set with the potential of bridging the gap between 1.2 Boreholes glaciated alpine areas and the inland ice-sheet advances of Northern Europe (WESTERHOFF Recently, numerous boreholes have been sunk 2008). The Upper Rhine Graben extends ap- to acquire new data for reinterpreting the ge- proximately 300 km from Basel (Switzerland) ology of the northern Upper Rhine Graben. to Frankfurt (Germany) and is 35-45 km wide These research boreholes are at Heidelberg, on average. This graben is a north-northeast- Viernheim and Ludwigshafen-Parkinsel (her- trending rift of Tertiary age (ELLWANGER et al. einafter called Ludwigshafen for short); shal- 2005). As a subsidence structure it forms an lower local boreholes are located at Pfungstadt, element of the Oligocene and Neogene rif- Stadtwerke Viernheim and Hüttenfeld (Figure 1 ting of the Upper Rhine Graben, representing and Table 1). The borehole at Viernheim docu- 40 Ma of active graben tectonics (BEHRMANN ments the conditions at the centre of the basin et al. 2003). The Oberrhein (Upper Rhine) and those in Ludwigshafen and Heidelberg the Valley, as a graben structure, forms part of the western and eastern margins of the basin facies. rifting system that began to develop during Ludwigshafen and Viernheim represent the the mid-Tertiary (PREUSSER 2008). During the succession of Rhine sediments, but both also Quaternary, the subsiding part of the northern include signals from non-rhine sedimentation: Upper Rhine Graben acted as a distal and fi nal small rivers from Pfälzerwald in Ludwigsha- accommodation space for coarser alpine mate- fen, Neckar sediments in Viernheim. The bo- rial (ELLWANGER et al. 2005). rehole in Pfungstadt is located at the northern Rhine sediments have recorded changes in both margin of the Heidelberg Basin. climate and tectonic activity (PREUSSER, 2008). The most signifi cant parameters of the investi- During the Pliocene-Quaternary, the major sub- gated sites are given in Table 1. The geological sidence centre shifted towards the eastern part surveys of Hessen, Baden-Württemberg and of the graben (Heidelberg Basin), with a zone Rheinland Pfalz, respectively, are in charge of of maximum subsidence located in the central- the investigated boreholes. The drilling depth eastern part of the basin, around the city of varies signifi cantly between the sites: the dee- Heidelberg (ELLWANGER et al. 2005). The Plio- pest boreholes are at Viernheim and Ludwigs- cene-Quaternary infi ll of the Heidelberg Basin hafen (350 m and 300 m respectively) and the was mainly deposited by the River Rhine. The shallowest at Hüttenfeld (99 m). Overall core most distal signals of alpine climate dynamics recovery is very high (81-99 %). The only associated with the major events of alpine exception is the borehole at Hüttenfeld, where glaciation can still be identifi ed as sediment only cuttings were analysed and documented. bodies within the Pleistocene succession. They The depth reached by downhole measurements are embedded in relatively fi ne alpine material differs from the total depth due to borehole and and coarser local material. Coarser layers are technical problems. also present, which are related to sediment The position of the Pliocene/Pleistocene input from the River Neckar (ELLWANGER et boundary within these deposits, as well as the al. 2005). Towards the north, the character entire stratigraphy of the Upper Rhine Graben, of the graben sediments change as a result of is rather controversial (cf. ELLWANGER et al. sorting processes during fl uvial transport and 1995; FETZER et al. 1995; GIBBARD 2004; GIB- admixture with local material derived from BARD et al. 2005; CLAGUE 2006). The boundary Sediment inputintotheHeidelberg BasinasdeterminedfromDownholeLogs

Fig. 1: Location of drill sites in the Heidelberg Basin. The main geological areas (Upper Rhine Graben, Odenwald, Pfälzerwald) and the main rivers (Rhine and Neckar) are marked (after HOSELMANN 2008). The small rectangle (left) comprises the sediment thicknesses of Quaternary age in the northern Upper Rhine Graben (after BARTZ 1974).

Abb. 1: Lage der Bohrlokationen im Heidelberger Becken (rechts). Die wichtigsten geologischen Gebiete (Oberrheingraben, Odenwald, Pfälzerwald) und die wichtigsten Flüsse (Rhein und Neckar) sind markiert (nach HOSELMANN 2008). Das Rechteck (links) enthält eine Darstellung der Sedimentmächtigkeit im Quar- 369 tär im nördlichen Oberrheingraben (nach BARTZ 1974). 370 SABINE HUNZE & THOMAS WONIK

Table 1: Basic parameters of the investigated boreholes.

Tab. 1: Grundlegende Parameter der untersuchten Bohrungen.

Pfungstadt Hüttenfeld Viernheim Stadtwerke Heidelberg Ludwigs- Viernheim hafen Responsible Geological Geological Geological Geological Geological Geological operating Survey Survey Survey Survey Survey Survey institution (HLUG) (HLUG) (HLUG) (HLUG) (LGRB) (LGB-RLP) Hessen Hessen Hessen Hessen Baden- Rheinland- Württemberg Pfalz Drilling depth 200 m 99 m 350 m 110 m 180 m 300 m Core recovery 98 % Drill 97 % 99 % 81 % 99 % cuttings Basis of At 132 m Not At 225 m Not Not recovered At 177 m Quaternary recovered recovered Downhole To 180 m To 75 m, To 238 m To 108 m, To 180 m To 300 m, logging only GR only GR only GR between Pliocene and Quaternary strata has the Ludwigshafen, Stadtwerke Viernheim and been defi ned by the fi rst occurrence of alpine Hüttenfeld sites only gamma ray logs (GR) input into the graben as indicated by the car- were run. bonate content within the sediments, as well as The downhole logging in Heidelberg, Viern- by the changing distribution of heavy minerals. heim and Pfungstadt was conducted in seve- The Pliocene sediments in the graben zone are ral sections because of problems within these predominantly fi ne-grained. Sandy clays alter- less lithifi ed sediments during drilling. This nate with fi ne to medium sands and some peat means that up to fi ve logging campaigns were layers. Gravel layers occur only sporadically necessary to complete downhole logging. The (HAGEDORN & BOENIGK 2008). borehole diameter generally decreases in stages (e.g. from 244 mm to 200 mm to 150 mm) with 2 Methods increasing depth. The steps coincide with each logging campaign. 2.1 Downhole Logging The downhole measurements can be differenti- ated into radioactive methods (density, neutron In the majority of boreholes downhole logging porosity, spectral gamma ray including gamma was conducted by the Leibniz Institute for Ap- ray, potassium, thorium and uranium); acoustic plied Geophysics (LIAG), Hannover; an excep- methods (sonic velocity and acoustic borehole tion is Hüttenfeld, where downhole logging was televiewer); electrical methods (dual laterolog performed by the Geological Survey of Hessen resistivity, dipmeter); magnetic methods (mag- (HLUG). The number of measured geophysical netic susceptibility); and other methods (bore- parameters at each site differs signifi cantly: the hole diameter, temperature and salt content of most complete borehole measurement data sets the drilling mud). were obtained at the Heidelberg and Viernheim Only those logs yielding information on the sites, but Pfungstadt comprises a slightly re- physical properties of the sediments, in particu- duced number of downhole measurements. At lar on their grain size, were utilised for further Sediment input into the Heidelberg Basin as determined from Downhole Logs 371

Fig. 2: Crossplots of the parameters natural radioactivity vs. resistivity and vs. bulk density for the drill si- tes Heidelberg, Viernheim and Pfungstadt. The four lithologies differentiated from the cores (sandy gravel; pebbly sand; sand, silt and clayey silt; clay and silty clay) are marked.

Abb. 2: Crossplots der Parameter natürliche Radioaktivität gegen Widerstand bzw. natürliche Radioaktivi- tät gegen Dichte für die Bohrlokationen Heidelberg, Viernheim und Pfungstadt. Darin eingetragen ist die Differenzierung der vier Lithologien der Kerne (sandiger Kies und kiesiger Sand, Sand, Schluff und toniger Schluff sowie Ton und schluffi ger Ton). 372 SABINE HUNZE & THOMAS WONIK interpretation. These logs are GR, density, trends. RIDER (1996) pointed out that the GR neutron porosity, resistivity, susceptibility, and log is used for correlation, because the ‘charac- caliper (borehole diameter). The caliper refl ects ter’ of the gamma ray log is repeatable, is not the actual borehole diameter during logging as affected by compaction with depth, and gives compared to the drilling diameter. Any sections some indication of lithology. with high differences in borehole diameter must be interpreted with caution. The neutron 2.4 Cluster Analysis porosity log measures only relative porosity values; no absolute porosity values can be gi- The lithologies and resultant possible sediment ven. Therefore, the unit a.u. is used below. provenances were determined using the statisti- cal method of cluster analysis (Ward method of 2.2 Physical Properties complete hierarchical linkage, Figure 5). The WINSTAT Statistic for Windows (Version 3.1) The main objective of analysing physical pro- software application was employed for this perties is to characterise each lithology by its purpose. specifi c physical properties. For better compa- Cluster analysis is a multivariate statistical rison the mean value and the standard deviation technique, which assesses the similarities bet- for each lithology has been calculated (Table 2 ween units based on the occurrence or absence and Appendix). The log data sets were correc- of specifi c components within them. This ana- ted prior to interpretation; this includes deleting lysis creates homogeneous (members are simi- erroneous and negative values. Those sections lar to one another) groups of variables, the clus- preferably with homogeneous lithology as ters. The elements in a cluster have relatively determined by core descriptions (HOSELMANN small distances from each other and relatively 2008; WEIDENFELLER & KNIPPING 2008) are larger distances from elements outside a cluster then selected and corrected using crossplots. (DAVIS 1986; BACKHAUS et al. 1996). Cluster Cross-plotting logs is usually done to quantify analysis differentiates groups characterised by lithology and empirical relationships often be- their physical properties. The number of clus- come evident (RIDER, 1996). Finally, the physi- ters is determined using a tree-like structure, cal properties of each lithology are calculated the dendrogram, which visualises the similarity from the most prominent downhole logs, which of clusters (MOLINE et al. 1992, FRICKE & SCHÖN are GR, density, porosity, resistivity (far) and 1999). The dendrogram is cut horizontally at susceptibility. any level to create groups, which are compared to core data, and the most appropriate grouping 2.3 Hole-to-hole Correlation level is chosen (RIDER 1996). The cluster analysis is performed for four lo- Changes in sediment thickness, and therefore cations simultaneously, allowing a comparison in sediment input, can be quantifi ed by hole- of the resulting clusters between the drill sites. to-hole correlation. This method comprises The maximum number of parameters used the synoptical comparison and connection of for calculating the clusters in Heidelberg and similar characteristic peaks and downhole log Viernheim is six (Table 2). However, the num- trends from adjacent sites. The correlation was ber of logging parameters is reduced at the two performed using several logs (such as GR, other locations: in Pfungstadt four parameters susceptibility, porosity, density and resistivi- were measured and in Ludwigshafen only one. ty), but most logs, except the GR log, were Cluster analysis was not performed for the Hüt- not measured at all sites and/or data variation tenfeld and Stadtwerke Viernheim boreholes, is high. The correlation was therefore carried because of an insuffi cient number of measured out on the GR log (Figures 3, 4 and 5), because geophysical parameters. of its low data scatter and characteristic log Sediment input into the Heidelberg Basin as determined from Downhole Logs 373

Table 2: Overview of the logged parameters at each drill site. x: this parameter was logged at this site. -: this parameter was not logged.

Tab. 2: Überblick über die gemessenen Parameter an jeder Bohrlokation. x: der Parameter wurde an dieser Bohrlokation gemessen. -: der Parameter wurde nicht gemessen.

Neutron Suscepti-bility Borehole Drill site SGR Density porosity Resistivity (10-4 SI) diameter (API) (g/cm³) (a.u.) (Ωm) (mm) Pfungstadt x - x - x x Viernheim x x x x x x Ludwigshafen x - - - - - Heidelberg x x x x x x

3 Results slightly higher (1.3-2.3 Ωm) than in Viernheim (1.1-2.1 Ωm) and considerably higher than in 3.1 Physical Properties Pfungstadt (0.8-1.9 Ωm). At all sites (a) silt and clayey silt and (b) clay and silty clay are 3.1.1 Crossplots characterised by high GR values (55-130 API) and low log resistivity values (0.8-1.8 Ωm). The crossplots of the most signifi cant para- It is important to note that in Pfungstadt the meters characterising the physical properties downhole logs were measured within the liner of the cored lithologies are described (Figure and, as a result, the downhole logs, especially 2): the most useful logs for this purpose are the GR values, are signifi cantly lower. If this is GR, resistivity, and density in Heidelberg corrected, the boundary values for each litholo- and Viernheim, and GR and resistivity in gy are also corrected. However, the clay resisti- Pfungstadt. The other locations did not use vity values for Pfungstadt are much lower than these logs and, hence, crossplots cannot be at the other sites. plotted. Four groups of lithologies are dif- The crossplots GR vs. density for Heidelberg ferentiated based on the description of core and Viernheim (Figure 2, right column) are lithologies: (1) sandy gravel and pebbly sand, plotted. In Heidelberg, the density data differ (2) sand, (3) silt and clayey silt and (4) clay between the sandy gravel and pebbly sand (1.6- and silty clay. 2.2 g/cm³) and the sand, silt and clayey silt, and The natural radioactivity (GR) vs. resistivity clay and silty clay lithologies (1.8-2.4 g/cm³). crossplots from Heidelberg, Viernheim and In contrast, almost all Viernheim lithologies Pfungstadt (Figure 2, left column) are compa- display similar density data (1.8-2.4 g/cm³). red. The crossplots of the three locations show An exception is sandy gravel and pebbly sand, almost the same log trends: a strong negative which are characterised by slightly enhanced va- correlation between GR and log resistivity. lues (1.9-2.4 g/cm³). Unfortunately, no density There, (a) sandy gravel and pebbly sand and data were recorded in Pfungstadt. One possible (b) sand are characterised by low GR values reason why sandy gravel and pebbly sand dis- (0-55 API) and high log resistivity values (0.8- play lower density values in Heidelberg than in 2.3 Ωm). However, the log resistivity values Viernheim may be a lesser degree of compaction of sandy gravel and pebbly sand differ bet- in Heidelberg due to rapid sedimentation from ween boreholes: in Heidelberg the values are the River Neckar. This conclusion coincides 374 SABINE HUNZE & THOMAS WONIK

Appendix: Physical properties (mean value and standard deviation) of the six investigated boreholes within the Heidelberg basin. The boreholes are sorted according to distance from the margin towards the centre of the Heidelberg Basin. The number of data points varies as a function of the logging parameter.

Sandy gravel, Silt, Clay, Pfungstadt Sand pebbly sand clayey silt silty clay Number of data points 0 957-1000 197-522 420-428

GR (API) - 20±7 47±6 72±10 Log resistivity (Ωm) - 1.61±0.16 1.36±0.24 0.98±0.09 Log susceptibility (10-4 SI) - 0.65±0.06 0.62±0.05 0.63±0.06

Ludwigshafen Sandy gravel, Sand Silt, Clay, pebbly sand clayey silt silty clay Number of data points 828 4108 263 806

GR (API) 20±3 39±8 68±6 102±9

Hüttenfeld Sandy gravel, Sand Silt, Clay, pebbly sand clayey silt silty clay Number of data points 737 450 163 47

GR (API) 24±5 37±4 59±6 77±7

Viernheim Sandy gravel, Sand Silt, Clay, pebbly sand clayey silt silty clay Number of data points 325-466 1114-1165 261-324 38-110

GR (API) 20±3 47±7 70±8 109±15 Density (g/cm³) 2.20±0.12 2.12±0.13 2.16±0.14 2.11±0.23 Neutron porosity (a.u.) 35±11 38±11 42±12 46±14 Log resistivity (Ωm) 1.75±0.29 1.60±0.36 1.37±0.16 1.15±0.09 Log susceptibility (10-4 SI) 0.65±0.26 0.80±0.43 0.87±0.67 0.71±0.45

Stadtwerke Viernheim Sandy gravel, Sand Silt, Clay, pebbly sand clayey silt silty clay Number of data points 774 677 552 132

GR (API) 27±5 42±4 58±5 77±6

Heidelberg Sandy gravel, Sand Silt, Clay, pebbly sand clayey silt silty clay Number of data points 409-1034 1584-1661 775-808 99-110

GR (API) 15±5 38±9 78±9 102±6 Density (g/cm³) 1.90±0.17 2.16±0.13 2.14±0.11 2.06±0.09 Neutron porosity (a.u.) 41±18 33±5 38±5 43±8 Log resistivity (Ωm) 1.87±0.06 1.86±0.19 1.44±0.11 1.25±0.11 Log susceptibility (10-4 SI) 0.66±0.05 0.57±0.06 0.65±0.11 0.67±0.06 Sediment input into the Heidelberg Basin as determined from Downhole Logs 375

Fig. 3: Hole-to-hole correlation using the natural radioactivity log (smoothed) of the drill sites around Viern- heim (Viernheim, Stadtwerke Viernheim and Hüttenfeld) and the Pfungstadt borehole. The grey horizontal lines mark the sediment package, characterised by its specifi c log trends and peaks. The grey boxes mark the detailed correlation of this randomly selected sediment package.

Abb. 3: Bohrloch-Bohrloch Korrelation unter Verwendung des Logs der natürlichen Radioaktivität (geglät- tet) der Bohrlokationen um Viernheim (Viernheim, Stadtwerke Viernheim und Hüttenfeld) sowie Pfungstadt. Die graue horizontale Linie markiert das Sedimentpaket, das charakterisiert ist durch seine besonderen Log- trends und Spitzen. Die grauen Kästchen markieren die detaillierte Korrelation dieser zufällig ausgesuchten Sedimentpakete. with the highest sediment thickness at the basin are characterised by both low and high density centre. Another reason may be the mineralogy of values and the fi ner-grained ones by high den- the sediments at the different drill sites. sity values. This suggests that the high density Comparing the results of both crossplots shows values in fi ne-grained sediments may be caused that the GR vs. resistivity crossplot implies that by mineralogy and/or a higher degree of com- the fi ne-grained sediments are characterised paction. by low resistivity values, which suggests high conductivity possibly caused by high water 3.1.2 Statistics of Physical Properties content, salinity and/or porosity. In the GR vs. density crossplot the coarser-grained sediments The physical properties of the Upper Rhine 376 SABINE HUNZE & THOMAS WONIK

Fig. 4: Hole-to-hole correlation using the GR log from the drill sites within the Heidelberg Basin (Pfungstadt, Ludwigshafen, Viernheim, and Heidelberg). The lowermost blue horizontal lines mark the Pliocene-Pleisto- cene boundary as described in the cores. The red horizontal lines mark the sediment package, characterised by specifi c log trends (marked with vertical line) and peaks. The green lines mark the characteristic log trends. The grey boxes mark the detailed correlation of one randomly selected sediment package.

Abb. 4: Bohrloch-Bohrloch Korrelation unter Verwendung des GR Logs der Bohrlokationen im Heidelberger Becken (Pfungstadt, Ludwigshafen, Viernheim und Heidelberg). Die unterste blaue, horizontale Linie mar- kiert die Pliozän-Pleistozän Grenze wie sie in den Kernen beschrieben wurde. Die anderen roten, horizon- talen Linien markieren jeweils das Sedimentpaket, das charakterisiert ist durch seine besonderen Logtrends (markiert mit vertikaler Linie) und Spitzen. Die grünen Linien markieren die charakteristischen Logtrends. Die grauen Kästchen markieren die detaillierte Korrelation dieser zufällig ausgesuchten Sedimentpakete.

Graben were computed to determine both their compaction from the coarser-grained to the characteristics and their changes according to fi ner-grained sediments. The log susceptibi- location within the Heidelberg Basin (see Ap- lity values vary with grain size, because this pendix). The physical properties are described parameter mainly refl ects an overall change in using Viernheim as an example (Table 3). Prin- sediment input. cipally, natural radioactivity refl ects the grain A number of important trends are observed size: the higher the natural radioactivity values, by comparing the physical properties of all the higher the clay content of the sediment. The lithologies within the Heidelberg Basin (see density and log resistivity values decrease and Appendix). Overall, it must be kept in mind the neutron porosity values increase with incre- that the lithologies were defi ned for each asing clay content (from sandy gravel to clay). site separately. This leads to more or less Again, this may imply a decreasing degree of signifi cant differences in GR values between Sediment input into the Heidelberg Basin as determined from Downhole Logs 377

Table 3: Physical properties of the Viernheim sediments derived from logging data. The number of data points is given for quality control.

Tab. 3: Die physikalischen Eigenschaften der Sedimente in Viernheim, die aus den Bohrlochmessungen abgeleitet wurden. Die Anzahl der Messdaten wird zur Qualitätskontrolle angegeben.

Viernheim Sandy gravel, Sand Silt, Clay, pebbly sand clayey silt silty clay Number of data points 325-466 1114-1165 261-324 38-110

Natural radioactivity (API) 20±3 47±7 70±8 109±15 Density (g/cm³) 2.20±0.12 2.12±0.13 2.16±0.14 2.11±0.23 Neutron porosity (a.u.) 35±11 38±11 42±12 46±14 Log resistivity (Ωm) 1.75±0.29 1.60±0.36 1.37±0.16 1.15±0.09 Log susceptibility (10-4 SI) 0.65±0.26 0.80±0.43 0.87±0.67 0.71±0.45 the boreholes and the composition of each Odenwald is high and less infl uenced by the lithology varies among the drill sites. Sand is River Rhine due to its distance from the Rhi- taken as an example: varying GR values at the ne Graben. This borehole contains the highest different drill sites imply different amounts of amount of clay and silty clay (45 m), which fi ne-, medium- and coarse-grained sand and a may be a result of its location at the northern varying amount of clay within the sediment margin of the basin with its fi ne-grained sedi- matrix. This is valid for all four lithologies. ment input. In comparison, there are only small However, the bulk density values of all drill differences to the other drill site in the basin sites are comparable, but the GR values differ margin at Ludwigshafen. The lithology with the signifi cantly between Heidelberg and Viern- largest sediment thickness is sand (205 m), and heim. Reasons may be different mineralogical the smallest is silt and clayey silt (13 m). Final- compositions caused by different sediment ly, the borehole at Heidelberg (at the centre of provenances. the Heidelberg Basin) is characterised by very thick sandy sediments (82 m) and much lesser 3.1.3 Sediment Thickness clay and silty clay (4 m). These observations refl ect the input of coarser-grained sediments The crossplots facilitate a differentiation of li- from the River Neckar and almost no infl uence thologies. The thickness of the sediment in each by the River Rhine. lithology is determined from this (Table 4). The Overall, it must be kept in mind that the total main objective is to quantify the changes in se- drilling depth and total logging depths differ diment composition from margin to centre in locally due to borehole collapse. The most the Heidelberg Basin and from south to north signifi cant example is Hüttenfeld, where the in the Upper Rhine Graben. In Pfungstadt (at total drilling depth amounts to 99 m and, in the northern margin of the basin) the drilled contrast, the total logging depth is only 75 m. and logged sediments are mainly composed of This leads to incomplete analysis of litholo- sand (sediment thickness 100.0 m). Pfungstadt gic composition, which underestimates the is located furthest north of all boreholes in the less compacted lithologies such as sand and Upper Rhine Graben. Thus, input from the gravel. 378 SABINE HUNZE & THOMAS WONIK

Table 4: Overview of sediment thicknesses in all boreholes differentiated according to the four cored litho- logies. The boreholes are sorted according to distance from the margin to the centre of the Heidelberg Basin. The bold numbers are the highest and lowest values of each drill site, respectively.

Tab. 4: Überblick über die Sedimentmächtigkeiten an allen Bohrlokationen, die entsprechend den vier in den Kernen erbohrten Lithologien differenziert wurden. Die Bohrlokationen sind nach ihrer Entfernung vom Be- ckenrand bis zum Zentrum des Heidelberger Beckens sortiert. Die fett gedruckten Zahlen stellen die jeweils höchsten und tiefsten Werte für jede Bohrlokation dar.

Sediment thickness (m) Logging Sandy gravel and Silt and Clay and silty depth (m) pebbly sand Sand clayey silt clay

Pfungstadt 198 0 100 53 45

Ludwigshafen 300 41 205 13 40

Hüttenfeld 75 38 24 9 4

Viernheim 238 53 133 38 15 Stadtwerke Viernheim 108 39 34 28 6.9

Heidelberg 175 50 82 39 4.1

3.2 Sediment Provenance other hand, the two drill sites around Viernheim (Viernheim and Stadtwerke Viernheim) may be 3.2.1 Viernheim infl uenced by erosion or sediment compaction. The sediment thickness in Pfungstadt decreases 3.2.1.1 Hole-to-hole Correlation slightly to 2 m, due to different, possibly local sediment input from Odenwald. Although Hüttenfeld and Pfungstadt are se- parated by 21 km, the resulting correlation 3.2.1.2 Cluster Analysis between all four drill sites around Viernheim, as determined by hole-to-hole correlation, is The cluster analysis for the drill sites around good (Figure 3). The thicknesses of the line- Viernheim could not be performed due to the marked sediment sections at the drill sites absence of several geophysical parameters around Viernheim do not vary signifi cantly, but measured downhole. decrease slightly towards Pfungstadt. As an example, one randomly selected sediment 3.2.2 Heidelberg Basin package is picked and marked grey (Figure 3). Surprisingly, the thickness of this sediment sec- 3.2.2.1 Hole-to-hole Correlation tion increases from Stadtwerke Viernheim and Viernheim to Hüttenfeld and Pfungstadt. The Overall, there is good correlation between all selected sediment section is composed of sand four drill sites determined from hole-to-hole to silt and clayey silt and is about 2 m thick measurements (Figure 4), despite the large in Viernheim and Stadtwerke Viernheim. This distances between the investigated sites (36 km increases to 2.5 m in Hüttenfeld, which may be between Pfungstadt and Ludwigshafen). As an- a result of local sediment accumulation. On the ticipated, the thickness of correlated sediment Sediment input into the Heidelberg Basin as determined from Downhole Logs 379

Fig. 5: Results of the cluster analysis of the Ludwigshafen, Viernheim, Pfungstadt, and Heidelberg boreholes. The characteristic GR log and the Pliocene-Pleistocene boundary for each site are plotted.

Abb. 5: Ergebnisse der Clusteranalyse der Bohrlokationen Ludwigshafen, Viernheim, Pfungstadt und Hei- delberg. Darin sind das charakteristische GR Log und die Pliozän-Pleistozän Grenze für jede Bohrlokation dargestellt. layers is greatest in Heidelberg, which is loca- milar to the curve trends at Ludwigshafen, but ted in the subsidence centre of the Heidelberg with enhanced clay content. Sediment transport Basin, and lowest in Pfungstadt located at the to Viernheim is infl uenced by a different sedi- northern margin of the basin. ment provenance (such as the River Rhine) or Again, one sediment package is chosen at ran- is blocked by a local sediment barrier. dom to determine the changes in sediment pro- venance (Figure 4). The following description 3.2.2.2 Cluster Analysis of the sediment package is based on a profi le from the two margins of the basin (Pfungstadt The clusters are computed for each drill site, se- and Ludwigshafen) to its centre (Heidelberg). parately defi ning the number of clusters (Figu- The log trends and the thickness of the chosen re 5). Overall, this number was defi ned as two, sediment package are quite similar in Pfungstadt because the other clusters contained only a few and Ludwigshafen (sediment composition: san- data points or refl ect erroneous values (e.g., at dy gravel and pebbly sand). In Viernheim, the the top or the bottom of the borehole). The de- sediments are fi ne-grained in the upper part termined clusters were interpreted as different and coarse-grained in the lower part. Thus, lithologies refl ecting two different sediment additional fi ne-grained input did occur. Finally, provenances: The fi rst cluster (dark coloured) in Heidelberg, the sediment composition chan- with low GR (34±13 API), high log resistivi- ges again: the sediments are mainly composed ty (1.60±0.33 Ωm) and low log susceptibility of clay and only small amounts of sand occur. (0.67±0.21 10-4 SI) values refl ects sediments Surprisingly, the log characteristics are quite si- rich in sandy gravel and pebbly sand to sand, 380 SABINE HUNZE & THOMAS WONIK which probably originate from the River Neck- layer thickness from Pfungstadt (smallest ar (proximal deposition from Odenwald). The thickness) to Heidelberg (greatest thickness at second cluster (light coloured) with high GR the basin centre). Additionally, the statistical (81±20 API), low log resistivity (1.29±0.45 Ωm) method of cluster analysis confi rms two main and high log susceptibility (0.77±0.52 10-4 SI) sediment provenances interpreted as deposits values mainly contains sediments rich in clay, from the Rivers Rhine and Neckar. However, which were probably deposited from the River the results of the hole-to-hole correlation and Rhine (distal deposition from the Alps, Black the cluster analysis differ. This implies diffe- Forest and Vogues). The other parameters (den- rent contributions of a single sediment package sity, borehole diameter, and neutron porosity) to one of the two sediment provenances. The have similar values for both clusters. Transfer- problem posed here is that both methods are ring the hole-to-hole correlation to the results of based on assumptions and more interpretation the cluster analysis shows clear differences in is necessary: hole-to-hole correlation is a visu- sediment provenances. These observations lead al method, very detailed and based on the as- to the assumption that overall sediment depositi- sumption that the GR log is the most signifi cant ons are similar, but differ in detail infl uenced by log, because it mainly describes the sediment two different sediment provenances River Neck- composition. On the other hand, the cluster ar (Cluster 1) and River Rhine (Cluster 2). analysis needs a predefi ned number of clusters and must be interpreted carefully. 4 Conclusions and Discussion More investigations are required to determine absolute ages in the investigated boreholes in The interpretation of downhole logs leads to order to confi rm and/or critically test our visual the following conclusions: the physical proper- and statistics-based hole-to-hole correlation and ties of sediments derived from logs and cores the interpreted sediment provenances. Sedimen- can be quantifi ed and the results compared. tological interpretations should be incorporated Four groups of lithologies can be differenti- in our small-scale observations and expansion to ated using the natural radioactivity (GR) vs. a basin-scale analysis should follow. resistivity and GR vs. density crossplots: (1) Additionally, data acquired after deepening of sandy gravel and pebbly sand, (2) sand, (3) silt the Heidelberg drill site in spring 2008 to an and clayey silt and (4) clay and silty clay. The end depth of 500 m should be integrated in results of the GR vs. resistivity crossplots im- further studies, which are important in terms ply high conductivity possibly caused by high of the Tertiary-Quaternary boundary and the water content, salinity and/or porosity. In the changes in sediment thickness at the drill sites. GR vs. density crossplot, the coarser-grained sediments are characterised by both low and Acknowledgements high density values and the fi ner-grained se- diments (silt, clayey silt, clay and silty clay) We would like to thank Dr. C. Hoselmann, Dr. by high density values. This suggests that the M. Weidenfeller and Dr. D. Ellwanger from the high density values in fi ne-grained sediments Geological Surveys of Hessen, Rheinland Pfalz may be caused by mineralogy and/or a higher and Baden-Württemberg for intensive discus- degree of compaction. sions and general support. One anonymous Interpretation of the hole-to-hole correlation reviewer improved the paper signifi cantly displays a coincidence of sediment prove- – thanks for your effort. nances around Viernheim (close to the centre of the Heidelberg Basin) and only small chan- References ges towards Pfungstadt (located at the northern margin of the basin). Furthermore, this correla- BACKHAUS, K.,ERIKSON, B., PLINKE, W., SCHUCHARD- tion shows the anticipated changes in sediment FICHER, C. & WEIBER, R. (1996): Multivariate Sediment input into the Heidelberg Basin as determined from Downhole Logs 381

Analysemethoden: Eine anwendungsorientierte GIBBARD, P.L., SMITH, A.G., ZALASIEWICZ, J.A., BAR- Einführung. – 591 p.; Berlin (Springer). RY, T.L., CANTRILL, D., COE, A. L., COPE, J.C.W., BARTZ, J. (1974): Die Mächtigkeit des Quartärs im GALE, A.S., GREGORY, F.J., POWELL, J.H., RAWSON, Oberrheingraben. – In: ILLIES, J. H. & FUCHS, K. P.F., STONE, P. & WATERS, C.N. (2005): What sta- (eds.): Approaches to Taphrogenesis. – Inter- tus for the Quaternary? – Boreas, 34: 1-6. Union Commission on Geodynamics Scientifi c HAGEDORN, E.-M. & BOENIGK, W. (2008): The Pli- Report, 8: 78-87; Stuttgart (Schweizerbart). ocene and Quaternary sedimentary and fl uvial BEHRMANN, J. H., HERMANN, O., HORSTMANN, M., history in the Upper Rhine Graben based on TANNER, D. C. & BERTRAND, G. (2003): Anatomy heavy mineral analyses. – Netherlands Journal and kinematics of oblique continental rifting of Geosciences – Geologie en Mijnbouw, 87 revealed: A three-dimensional case study of (1): 21-32. the southeast Upper Rhine Graben (Germany). HOSELMANN, C. (2008): The Pliocene and Pleisto- – AAPG Bulletin, 87 (7): 1105-1121. cene fl uvial evolution in the northern Upper CLAGUE, J. (2006): Open letter to INQUA Executive Rhine Graben based on results of the research Committee. – Quaternary International, 154/ borehole at Viernheim (Hessen, Germany). 155: 158-159. – Eiszeitalter & Gegenwart (Quaternary Science DAVIS, J. C. (1986): Statistics and Data Analysis in Journal), 57/3-4: 286-315. Geology. – 646 p.; New York (Wiley). MOLINE, G.R., BAHR, J.M., DRZEWIECKI, P.A. & ELLWANGER, D., BIBUS, E., BLUDAU, W., KÖSEL, M. SHEPARD, L.D. (1992): Identification and cha- & MERKT, J. (1995): Baden-Württemberg. – In: racterisation of pressure seals through the use of BENDA, L. (ed.): Das Quartär Deutschlands: 255- wireline logs: a multivariate statistical approach. 295; Stuttgart (Bornträger). – Log Analyst, 33 (4): 362-372. ELLWANGER, D., GABRIEL, G., HOSELMANN, C., PREUSSER, F. (2008): Characterization and evolution LÄMMERMANN-BARTHEL, J. & WEIDENFELLER, M. of the River Rhine system. – Netherlands Jour- (2005): The Heidelberg Drilling Project (Upper nal of Geosciences – Geologie en Mijnbouw, 87 Rhine Graben, Germany). – Quaternaire, 16 (3): (1): 7-19. 191-199. RIDER, M. (1996): The Geological Interpretation of FETZER, K. D., LARRES, K., SABEL, K.-J., SPIES, E.-D. Well Logs. – 256 p.; Caithness (Whittles Pub- & WEIDENFELLER, M. (1995): Hessen, Rhein- lishing). land-Pfalz, Saarland. – In: BENDA, L. (ed.): WEIDENFELLER, M. & KNIPPING, M. (2008): Correla- Das Quartär Deutschlands, 220-254; Stuttgart tion of Pleistocene sediments from boreholes (Bornträger). in the Ludwigshafen area, western Heidelberg FRICKE, S. & SCHÖN, J. (1999): Praktische Bohrloch- Basin – Eiszeitalter & Gegenwart (Quaternary geophysik. – 254 p.; Stuttgart (Enke). Science Journal), 57/3-4: 270-285. GIBBARD, P.L. (2004): Quaternary … now you see WESTERHOFF, W.E. (2008): The Rhine – a major it, now you don’t. – Quaternary International, fl uvial record. – Netherlands Journal of Geosci- 129: 89-91. ences – Geologie en Mijnbouw, 87 (1): 3-5.

Eiszeitalter und Gegenwart 57/3–4 382–402 Hannover 2008 Quaternary Science Journal

Pleistocene molluscs from research boreholes in the Heidelberg Basin

JOACHIM WEDEL *)

Abstract: Cores cut in the research boreholes at Viernheim and Parkinsel P34 and P35 in Ludwigshafen were analysed to investigate their fossil content, and particularly the remains of molluscs. The selected material was suitable for reconstructing the palaeoclimatic conditions and simplifi es the chronostratigraphic classifi - cation of individual beds. Two mollusc species and one rodent species from the Lower Pleistocene (Lower Biharium) were identifi ed in the northern Upper Rhine Graben for the fi rst time (in the Viernheim borehole). The fossils from the Lower Pleistocene sections of the Viernheim borehole are clearly related to the Uhlen- berg fauna from Bavarian Swabia dated as Upper Villanium/Tegelen.

[Pleistozäne Mollusken aus Forschungsbohrungen im Heidelberger Becken]

Kurzfassung: Bohrkerne der Forschungsbohrungen Viernheim und Parkinsel P34 und P35 aus Ludwigsha- fen wurden auf ihren fossilen Inhalt, besonders auf Molluskenreste, untersucht. Das ausgelesene Material ist geeignet die paläoklimatischen Verhältnisse zu rekonstruieren und erleichtert die chronostratigraphische Ein- stufung einzelner Schichten. Zwei Molluskenarten und eine Nagetierart wurden erstmalig aus dem Altpleis- tozän (Altbiharium) der Bohrung Viernheim für den nördlichen Oberrheingraben nachgewiesen. Die aus den altpleistozänen Abschnitten der Bohrung Viernheim vorliegenden Fossilien weisen deutliche Beziehungen zu der in das Obere Villanium/Tegelen datierten Uhlenberg-Fauna aus Bayerisch-Schwaben auf.

Keywords: Upper Rhine Graben, Quaternary, Pleistocene, Arvicolidae, , Stylommatophora, Pupil- loidea, Gastrocoptinae

* Address of author: J. Wedel, Hessisches Landesamt für Umwelt and Geologie, Postfach 3209, D-65022 Wiesbaden. E-Mail: [email protected] Pleistocene molluscs from research boreholes in the Heidelberg Basin 383

1 Introduction are formed during glacial conditions. An excep- tion are the loess horizons which are, however, The mollusc fauna in the Upper Rhine Graben usually only found at the boundary to slope is very important for palaeoclimatology be- deposits. Loess horizons contain mollusc fauna cause most of the mollusc species are still pre- which although species poor, contain charac- sent today in the fl ood plains of large valleys, teristic high glacial species. These horizons are and their habitats and lifestyles are known. not found in the cores from the fl uviatile Rhine They provide information on hydrological and Graben. However, molluscs do occur in some climatic change, and landscape history, and sandy beds, which indicate high glacial condi- can therefore provide “valuable pieces in the tions. The work of BARTZ (1959) is recom- dating puzzle” (ENGESSER & MÜNZING 1991). mended for a short, though usually still valid Most endemic mollusc species already colo- subdivision of the Pleistocene in the northern nised our landscapes in the Upper Pliocene. In Upper Rhine Graben, and for the description of addition, the northern Upper Rhine Graben in the most important associated fossil localities – the Pleistocene lay in an optimum development although the middle sandy sequence described zone according to the description by LOŽEK in this paper is today classifi ed as Middle Pleis- (1969) of the climatically favourable zones of tocene (ENGESSER & MÜNZING 1991). the Czech Republic and Southwest Germany. During the interglacials, the climate here meant 2.1.1 Condition of preservation that the mollusc fauna was much more habitat of fossil molluscs sensitive than that of northern Central Europe. During the periods of glaciation, the glacial ice Complete gastropods and molluscs are only did not extend into the Upper Rhine Graben rarely preserved. This is possible in some of area, which meant that the area had favourable the clay lenses of the intermediate horizons conditions for the survival of , as well as well as in a few hard “Terra Rossa beds” as molluscs. Loess steppes exist in the Upper from Cromerian horizons. This also applies to Rhine area during the high glacial periods. small specimens in sand, fi ner gravel beds and fl ood sediments. In other cases, identifi cation 2 Research boreholes in the of species is based on the characteristic proper- Heidelberg basin ties of the aperture armatures and the surface structures. The shells are sometimes corroded, 2.1 Fossil material and polished or seriously fragmented by transport depositional conditions and the infl uence of water. We now know that the thickness of the shells does not provide any The thanatocoenosis of molluscs from a core information on the climatic conditions: thick- only refl ects a small piece of the overall land- shelled gastropods were also present during in- scape complex. It is therefore also important to terglacials and are therefore not necessarily an look at the sediments in more detail. Fossils are indicator of a colder climate (GEISSERT 1967a). often found in the argillaceous layers of the “Zwischenhorizonte” (intermediate horizons) 2.1.2 The Oberer Zwischenhorizont (OZH) as well as in the fi ne and medium-grained sands of the “Kieslager” (gravel beds). The grey sand The Oberer Zwischenhorizont (Upper Interme- horizons of the “Rhenish Facies” (HOSELMANN diate Horizon) is undoubtedly the most inter- 2008) in the Lower Quaternary may contain esting level in all of the investigated boreholes open steppe fauna of the glacials and intergla- because of the numerous mollusc remains and cials. The coarser the sediment, the poorer the also because it contains sensitive interglacial preservation of the mollusc shells. The coarser species whose presence can be correlated with gravels also contain few species because they palynological analysis. Exceptions are the ar- 384 JOACHIM WEDEL gillaceous peat beds from the low peat bogs of 2.1.3 The Pliocene clays the Upper Pleistocene which mostly originated in periglacial periods. They are present in thin Because of the absence of molluscs, the beds, e.g. in boreholes from around Darmstadt Pliocene samples provided no results in the and Riedstadt (SCHWEISS 1988). At the west edge Ludwigshafen boreholes or in the Viernheim of the Rhine Graben, the minor thickness of the borehole. Only a few rare shell remains were Obere Kieslager (Upper Gravel Horizon) of the found which could not be identifi ed because of OZH means that the OZH is already encountered the frequent strong corrosion of the fragments. at a depth of around 30 m. In addition, this OZH Plant residues were however frequently found. originated in the Middle Pleistocene as deduced Only very rare molluscs have been found previ- from pollen analysis (KNIPPING 2004) and from ously in boreholes within Pliocene sediments the molluscs. The further to the east one looks at of the southern Rhine Graben. (GEISSERT 1964, the Quaternary sequences, the thicker and more 1967b, 1980; NORDSIECK 1974; SCHLICKUM & detailed they become. The Viernheim research GEISSERT 1980; WEDEL unpublished). borehole therefore includes several argillaceous intermediate horizons. The Lower Pleistocene in 2.2 The Ludwigshafen boreholes Viernheim is reached in the third, lower horizon. (Rheinland-Pfalz) The Oberer Zwischenhorizont is characterised by beds of sandy, silty and argillaceous sedi- The fi lling of the Rhine Graben with Quaterna- ments. The thickness and nature of the OZH can ry sediments increases considerably to the east fl uctuate widely (ENGESSER & MÜNZING 1991). towards the edge of the Odenwald, so that the

Fig. 2: Gastrocopta moravica oligodonta (KROLOPP, Fig. 1: Perforatella bidentata (GMELIN, 1788), 1979), Viernheim research borehole, 132.6-132.7 m. Gernsheim C00-BK1 at 88.4 m. Abb. 2: Gastrocopta moravica oligodonta (KRO- Abb. 1: Perforatella bidentata (GMELIN, 1788), LOPP, 1979), Forschungsbohrung Viernheim, 132,6- Gernsheim C00-BK1 bei 88,4 m. 132,7 m. Pleistocene molluscs from research boreholes in the Heidelberg Basin 385 thickest Quaternary deposits are encountered F. MÜLLER, 1774) and Gyraulus crista (LIN- around Heidelberg. The thickness is much thin- NAEUS, 1758) indicate swampy stagnant water ner at the western margin of the Rhine Graben conditions on the fl ood plains. 98 per cent of so that in borehole P35, the Tertiary boundary the species found are water molluscs. Of the is already found at a depth of 183 m. The Qua- few terrestrial gastropods found, they are all ternary is divided up into sequences of terraces of hydrophilic species with the exception of built up by gravel horizons and intermediate Clausilia fragments transported in by water, and horizons. Similar to palynological investiga- Aegopinella sp.. The thanatocoenosis is very tions, sampling concentrates on the dark, ar- similar to that of early Holocene fl ood plains gillaceous intermediate horizons representing in which fl ood plain clay is formed and Tscher- interglacial deposits. nozems and para brown earths can develop to maturity (LOŽEK 1964). The terrestrial molluscs 2.2.1 Borehole P34 found in the samples are of climate-independent species and therefore often not very useful for Borehole P34 (Ludwigshafen-Parkinsel, Tab.1) determining the temperature fl uctuations. Ver- has much less investigatable material than the tigo substriata (JEFFREYS, 1833) and Oxyloma other boreholes. The only malacological sample elegans (RISSO, 1826) are typical swamp and with any usable material comes from the fi rst peat bog species and not necessarily restricted to sample taken from the OZH at 21 m depth. The calcareous soils, although the charophytes pre- dark beds contain numerous mollusc remains. sent (calcalgae) indicate such an environment. The high proportion of Valvata cristata (O. Pollen analysis of the pollen from the Oberer

Fig. 4: Parafossarulus crassitesta (BRÖMME, 1883), Ludwigshafen Maudach A36 borehole, 27.5-28.0 m Fig. 3: Gastrocopta n. sp. from the Viernheim OZH. research borehole, 174.3-174.4 m. Abb. 4: Parafossarulus crassitesta (BRÖMME, 1883), Abb. 3: Gastrocopta n. sp. aus der Forschungsboh- Bohrung Ludwigshafen Maudach A 36 27,5-28,0 m rung Viernheim, 174,3-174,4 m. OZH. 386 JOACHIM WEDEL

Zwischenhorizont in P34 analysed by KNIPPING folgen” (Lower sandy-silty sequences) continue (2004) confi rmed its attribution to the Crome- on to the Pliocene boundary. A sample from rian Complex (interglacial III or IV). This also 178.9m was selected from this zone. Another matches the results reported by RÄHLE (2005) sample was collected in the Pliocene clays at and the author for the boreholes in Mannheim 236.1 m in P35. Two additional samples from and Ludwigshafen described below. the Pliocene at 276.2 and 287.5-287.9 m were investigated from borehole P35a which was 2.2.2 Borehole P35 drilled directly adjacent to P35. The most concentrated mollusc remains in The Quaternary is divided up into sequences of borehole P35 are also found in the uppermost terraces built up by gravel horizons and interme- layer in the OZH at 21.9 m, and in the “Oberer diate horizons, whereby the uppermost “Oberer sandige Folge” (Upper Sandy Suite) at 50 m. Zwischenhorizont” of borehole P35 begins at Both horizons contain gastropod fauna pri- 19 m and does not end until 34 m. 5 samples marily belonging to interglacial species. The were taken from this zone. It is followed by an samples differ in the spectrum of species they 8-metre-thick “Unteres Kieslager”. This is un- contain. The sample at 21.9 m primarily con- derlain by sandy sequences containing organic tains terrestrial species pointing to the presence material (peat) at six positions. Mollusc samples of a fl ood plain forest (Perforatella bidentata). were extracted from 50-50.3 m and at 88.7 m. The fauna from the sample at 50 m is aquatic A “Unterer Zwischenhorizont” lies between 98 consisting of stagnant plant-rich waters (Gy- and 109 m. The “Unterer sandig-schluffi gen Ab- raulus crista, Lymnaea stagnalis, Bathyom-

Fig. 6: Molar 2 of Mimomys ostramosensis (JANOSSY & VAN DER MEULEN, 1975) from the Lower Biharium in the Viernheim research borehole, 182.3-182.5 m. Fig. 5: (MENKE, 1845) from the Viernheim research borehole, 164.0-164.2 m. Abb. 6: Molar 2 von Mimomys ostramosensis (JA- NOSSY & VAN DER MEULEN, 1975) aus dem unteren Abb. 5: Borysthenia naticina (MENKE, 1845) For- Biharium der Forschungsbohrung Viernheim, 182,3 schungsbohrung Viernheim, 164,0-164,2 m. -182,5 m Pleistocene molluscs from research boreholes in the Heidelberg Basin 387 phalus contortus and Planorbarius corneus) to sunk in advance of the research boreholes and slow fl owing waters. Unfortunately, the material investigated by LGB Rheinland-Pfalz. The at 50 m has been compacted within a silty-sandy boreholes contain notable fossil gastropod sediment which has become broken up as a species from the Oberer Zwischenhorizont result of elutriation. Some juvenile examples (Tab. 3). The fi rst of these is Clausilia rugosa are still preserved. The composition of the than- antiquitatis (NORDSIECK, 1990). This form has atocoenosis at 50 m indicates the Mosbacher been identifi ed in the younger Tegelen up to Sande 2 (GEISSERT 1970) by way of Borysthenia the older Middle Pleistocene. It is replaced in naticina (MENKE, 1845) (Fig. 5), because these the Middle Pleistocene by Clausilia rugosa sands also contain this species. parvula (FÉRRUSAC, 1807). The second inte- The terrestrial molluscs from the sample at resting gastropod is Parafossarulus crassitesta 21.9 m are mostly hydrophilic (e.g. Vertigo sub- (BRÖMME, 1885) (Fig. 4). striata, Vallonia enniensis, Carychium minimum Two particularly well preserved examples with as well as Carychium tridentatum). The sample numerous characteristic opercula of this species from the OZH at approx. 21 m in borehole P34 were found in the Maudach borehole between also contains a rich mollusc fauna, although 27 and 28 m depth. The genus Parafossarulus dominated in this case by freshwater species. is no longer present in Europe (GLOER 2002). In Terrestrial snails typical of warmer conditions, addition, the boreholes in Mannheim and Lud- as still found today under leaf mould in shady wigshafen-Maudach also contained remains of fl ood plain forests, are the waxy glass snails, e.g. Azeca goodalli (A. FÉRUSSAC, 1821). Aegopinella nitens (MICHAUD, 1831). According to RÄHLE (2005), this “crassi- The two completely preserved valves of the testa-horizon” is not younger than Cromerian pea clam Pisidium amnicum (O. F. MÜLLER, interglacial IV and not older than Cromarian 1774) from 27.8 – 28.0 m are very interesting. interglacial III. This investigation looked at This species occurs again at 178 m although the Oberer Zwischenhorizont in eight different it is primarily associated in the sample with boreholes in Mannheim-Lindenhof, and speci- species which tended to live in glacial, open fi cally at the depth zone between 29 and 33 m. landscapes. However, this mollusc is generally Analogous to Mannheim-Lindenhof, the Mau- more frequent in interglacial deposits. dach borehole also contained tooth remains of The molluscs in both boreholes indicate inter- early forms of the water vole Arvicola terrestris glacial conditions. There is still some doubt, (LINNE, 1758). The genus Arvicola appears in however, whether we are dealing here with Central Europe at the earliest in Cromerian the Cromerian or the Holsteinian interglacial interglacial III (OIS 15) according to KOENIGS- because important type fossils are absent. The WALD & VAN KOLFSCHOTEN (1996). The fauna situation in the other boreholes described be- encountered in Mannheim-Lindenhof is there- low is different because the molluscs in these fore of a very similar age to Mosbach 2 (Middle boreholes can be confi dently assigned to the Mosbach) and Mauer, where Arvicola is also Cromerian Complex. found (RÄHLE 2005). The results from other investigations of the OZH are also reported by 2.3 Boreholes in Mannheim-Lindenhof ENGESSER & MÜNZING (1991) from boreholes (Baden-Württemberg) and Ludwigshafen that are also from the Mannheim area. – A36 Maudach (Rheinland-Pfalz) 2.4 Viernheim research borehole (Hessen) The boreholes drilled in Mannheim-Lindenhof (RÄHLE 2005) and Ludwigshafen – A 36 Mau- The conclusions drawn from the Viernheim dach (WEDEL unpublished), are particularly borehole are that the three intermediate hori- interesting. They were drilled in the vicinity zons encountered in the well refl ect differenti- of the two boreholes described above and were ated climatic conditions. Unlike the Ludwigs- 388 JOACHIM WEDEL hafen boreholes, the Oberer Zwischenhorizont (1988) from the Gernsheim and Groß-Rohrhe- (Section Xa according to HOSELMANN 2008) is im area. The chronostratigraphic interpretation marked by climatically cooler species (Tab. 4). is based on pollen analysis which indicates the The second intermediate horizon from 89 m pre-sence of shallow peat bogs and sparse birch contains species preferring warmer conditions. and spruce growth. This may possibly be the same horizon as in The “crassitesta- intermediate horizon” must the Ludwigshafen-Mannheim area (“crassi- therefore lie much deeper because of the testa” – horizon), although the type species much thicker deposition in the eastern part of is missing. The 5 m-thick third intermediate the Upper Rhine Graben. ENGESSER & MÜNZ- horizon between 164.73 and 169.9 m (Section ING (1991) also subdivide the OZH into three Vb according to HOSELMANN 2008) and the horizons with different climatic conditions. underlying sandy-gravely beds, are assigned Investigations in the Karlsruhe and Mannheim a Lower Pleistocene age. The Lower Pleisto- areas led to a subdivision into a lower zone of cene (Tegelen) is confi rmed at 132 m be the interglacial Cromerian Complex sediments, gastropod Gastrocopta moravica oligodonta followed by a middle and upper zone both (KROLOPP, 1979) (Fig. 2), and at 174 m by marked by glacial environments, of which the the previously unknown Gastrocopta n. sp. upper is classifi ed as Rissian. (Fig. 3), and at 182,5 by the mollusc Corbicula cf fl uminalis (O. F. MÜLLER, 1774) and the 2.4.2 Lower Middle Pleistocene Arvicolidae Mimomys ostramosensis (JANOSSY & VAN DER MEULEN, 1975) (Fig. 8). The transi- The species diversity in the Kieslager increases tion to the Pliocene contains plant remains but beneath the Oberer Zwischenhorizont. A mixed no molluscs, as in all of the samples looked at. fauna is present at 70 m consisting of a Frutici- The drill site was selected to penetrate the most cola fruticum fauna, indicating a forest steppe undisturbed possible sequence of Pleistocene environment, as well as a Succinella oblonga sediments (HOSELMANN 2008). fauna with a high proportion of Pupilla musco- rum (LINNAEUS, 1758), which indicates cooler 2.4.1 Upper Middle Pleistocene steppe conditions. In addition, there is also the pea clam (Pisidium casertanum ponderosum The upper part of the borehole between 39.79 STELFOX, 1918) which is adapted to cold and and 58.55 m depth, contains an almost 20 m extreme environmental conditions. thick bed of the Oberer Zwischenhorizont. The fruticum fauna which had its optimum at Typical forest-type molluscs are not present. 89 m because it is joined by climatically more The molluscs are mainly climate-insensitive sensitive species such as Pomatias elegans species of wet fl ood plain habitats of which Vit- (O. F. MÜLLER, 1774), Ena montana (DRAPAR- rea crystallina (O. F. MÜLLER, 1774) is the most NAUD, 1801), Discus perspectives (MEGERLE VON common. This indicates that the climate was MÜHLFELD, 1816), Vertigo pygmaea (DRAPAR- rather cool (LOŽEK 1964). The picture is domi- NAUD, 1801) and Monachoides incarnatus nated by species common to periglacial, open (O. F. MÜLLER, 1774). These species here indi- landscapes and sparse forest steppes. Trochulus cate a much warmer period. This is the “crassit- hispidus (LINNAEUS, 1758) (“Trichia hispida” in esta intermediate horizon” in the Maudach and older references) as well as amber snail species Lindenhof boreholes. Seven metres deeper at Succinella oblonga (DRAPARNAUD, 1801) and 97 m, cooler steppe conditions dominate again Succinea putris (LINNAEUS, 1758) are frequent. and the molluscs are largely dominated by Pu- This thick intermediate horizon is obviously pilla muscorum, Succinella oblonga elongata not the same as that in Ludwigshafen. SANDBERGER and Trochulus hispidus (cf. Chap. These may be the pre-Eemian or Early Hol- 2.3). There are also frequent Clausilia remains. steinian interbeds described by SCHWEISS Particularly interesting are fi ve well preserved Pleistocene molluscs from research boreholes in the Heidelberg Basin 389 apertures of Neostyriaca corynodes. This is the (A. FÉRUSSAC, 1821). Kieslager with sandy ho- subspecies ornatula (ANDREAE 1884), which has rizons and silty clays form alternating interbeds been identifi ed in the Lower Pleistocene to the below the intermediate horizon and are part of Lower Middle Pleistocene in Central Europe an alternating sequence of interglacial and (NORDSIECK 2007). It is characteristic of the glacial sediments found in the section down to “Upper Biharium” (Late Biharium, cf. KOENIGS- 182 m. This is indicated by the different mol- WALD 2007) in Cromer. Associated species are lusc fauna which suggest a landscape consist- Clausilia cruciata (STUDER, 1820) and Clausilia ing of sparsely wooded forests and open steppe dubia (DRAPARNAUD, 1805). This species seems (fruticum and tridens fauna). to be indifferent to the climate, analogous to its More evidence for the Lower Pleistocene is associated species (NORDSIECK 2006). found at 174 m in the form of a previously unknown species of the genus Gastrocopta 2.4.3 The Lower Pleistocene (WOLLASTON, 1878). The special feature of the shell is the absent basal tooth in the aperture The Kieslager is underlain between 131.23 and armature. This Gastrocopta may be linked to 133.18 m (Section VIIb after HOSELMANN 2008) that described from the Lower Pleistocene by by another thin intermediate horizon with cal- Kielniki (Poland). This is found in a fauna careous loam sand. A small snail belonging to with G. serotina (LOŽEK, 1964) and is related the genus Gastrocopta, now extinct in Central by STWORZEWICZ (1981) to Gastrocopta theeli Europe, clearly indicates a Lower Pleistocene (WESTERLUND, 1877). However, the basal tooth assemblage from 132.5 m. The specimen is a found in Gastrocopta theeli is absent in the well preserved shell of Gastrocopta moravica fi gure on Table 1 (Fig. 3). The fi rst classifi ca- oligodonta (KROLOPP 1979) (Fig. 2). Whilst the tion as Gastrocopta turgida quadriplicata sediment one metre higher contains a mixed SANDBERGER was not confirmed. fauna indicative of a cooler “Chondrula tridens An approx. 2.60 m thick gravel-bearing fl u- –steppe fauna” and a cold-moist fl ood plain viatile sand horizon starts at 182.5 m and is forest fauna with a high proportion of Perfora- followed by an approx. 2 m thick intermedi- tella bidentata (Fig. 1) typical of open, glacial ate horizon (Section IVb after HOSELMANN conditions, this intermediate horizon contains 2008). The shell remains of molluscs in the more thermophilic species representative of a gravel-bearing horizon are strongly corroded fl ood plain forest. Some of the freshwater mol- or polished which indicates strong transport of luscs and a large number of amber snails indi- the sand and gravel. Half of the aquatic species cate the existence of stagnant to slowly fl owing found consist of small molluscs such as Sphae- waters with highly vegetated banks. rium corneum (LINNAEUS, 1758), Musculium A strong increase in steppe elements, par- lacustre (O. F. MÜLLER, 1774) and Corbicula ticularly Granaria frumentum (DRAPARNAUD, fl uminalis (O. F. MÜLLER, 1774). 1801), is found in an approximately 5 m The sample contained two shell remains of thick intermediate horizon between 164.7 and C. fl uminalis with the characteristic hinge. 169.9 m (Section IVb after HOSELMANN 2008). C. fluminalis is only known in Germany from This is the zone in which the bi-toothed snail the Holsteinian and the Tegelen. This species Perforatella bidentata (GMELIN, 1791) which appears in Europe in the Late Pliocene and has lives in fl ood plains reaches its greatest con- its widest distribution during the Tegelen (MEI- centration in the Viernheim research boreholes. JER & PREECE 2000). Two fragments may come from the larger, Another important stratigraphic discovery related species Perforatella dibothrion (M. is the well preserved molar (M2) of a water V. KIMAKOWICZ, 1884). There are also remains vole (Arvicolidae), found in the sample from of Clausilia rugosa antiquitatis (NORDSIECK, a depth of 182.4 m. Dr. Lutz Christian Maul 1990) and the forest species Azeca goodalli (Senckenberg Institute, Weimar) identifi ed the 390 JOACHIM WEDEL specimen as a molar from Mimomys ostra- mollusc remains are found at 223 m comprising mosensis (JANOSSY & VAN DER MEULEN, 1975) only three freshwater species and one terrestrial (Fig. 9). Although not unusual, it is fairly rare species. In contrast, the samples now contain to fi nd identifi able remains of small rodent large quantities of plant remains. fossils in material collected from boreholes (WEDEL 1999). The distribution of Arvicolidae 3 Comments on biostratigraphically species is now very well known in Europe and important species tied to chronostratigraphic tables. Analogous to Corbicula fl uminalis, this water vole lived Perforatella bidentata (GMELIN, 1791) in the “Lower Biharium” (Mimomys pusillus and Perforatella dibothrion – Mimomys savini- zone, KOENIGSWALD 2007), (M. V. KIMAKOWICZ, 1884) and the “Villanyium” approx. 1.6 to 2.0 million years ago. This species has previously only P. bidentata (fi g. 1) is often found in the Pleis- been found at a few locations in Europe (MAUL tocene sands and fi ne-clastic intermediate hori- 2002). This is only the second identifi cation of zons of the Upper Rhine Graben. It is particu- this species in the Upper Rhine area in addi- larly common in the Lower Pleistocene deposits tion to Neuleinigen near Grünstadt (MALEC & in the Viernheim research borehole. Occurrence TOBIEN 1976). HEIDTKE (1979) dated the Neulei- are known into the Late Eemian (MÜNZING nigen fauna, also on the basis of large mammal 1999). The species can be easily identifi ed on fossils, as Lower Pleistocene with a dry-warm the basis of the two teeth (basal and palatal) in to subtropical climate. The fossils were found the lower aperture area. This is a pure fl ood plain in the material fi lling a fi ssure (Neuleinigen snail (alder marsh) which requires a wet habitat. 11) in a limestone quarry. HEIDTKE climatically It is found in both interglacial as well as glacial compared Neuleinigen with the fauna from Ho- contexts. It still lives in eastern Central Europe hensülzen (STORCH et al. 1973) reporting that (Thuringia, Bavaria, Saxony, Austria, Czech the older Hohensülzen fauna represented the Republic, Slovakia, Poland and Hungary) and moist-warm river valleys, and Neuleinigen the at scattered localities in south-eastern Scandina- topographically higher dry steppe. via. The species was found far to the west in the The smaller two-metre-thick intermediate Pleistocene. This is confi rmed by specimens col- horizon in the Viernheim research borehole is lected near Paris by GEISSERT (pers. comm.) underlain by an approx. 3.80 m thick, carbo- The related species Perforatella dibothrion is nate-rich, gravely sand bed which gradually a type fossil for the interglacial habitats of the grades into the sandy-silty series of the Low- Rhine valley in the Lower Pleistocene and Low- est Quaternary. This sequence of interbedded er Middle Pleistocene. GEISSERT (1970) found rocks extends down to 224 m where they a complete example in the Mosbacher Sande are underlain by limnic-fl uviatile Pliocene 2 and reports several discoveries in gravel pits sediments (HOSELMANN 2008). This sandy-silty in the Upper Rhine (GEISSERT 1969). Two frag- suite again documents fl uctuating climatic con- ments were found in the sample from 167.35 ditions where the climate optimum at 196.5 m – 167.45 m in the Viernheim borehole, which is indicated by fewer forest-living molluscs may belong to this species. RÄHLE (2005) also (Fruticicola fruticum, Vitrinobrachium breve, mentions Perforatella remains which he assigns Discus rotundatus). Forest species are absent at to this species, from the Oberer Zwischenhori- 194 m. Open landscape species such as Pupilla zont in borehole P18 Mannheim-Lindenhof. muscorum are dominant. These molluscs may The main differences to P. bidentata are a much indicate the earliest glacial period of the Pre- higher aperture and two stronger teeth, although Tegelen in the Lower Quaternary. There is now the space between the two teeth is narrower than a signifi cant general decline downwards in the in P. bidentata. The shell has clear ribs, and the number of species and individuals. The last fi rst whorls have a surface structure with small Pleistocene molluscs from research boreholes in the Heidelberg Basin 391 scales. This species is only found alive today in Chondrula tridens (O. F. MÜLLER, 1774) and eastern Slovakia and in the Carpathians where it Granaria frumentum (DRAPARNAUD, 1801) are lives in the sub-mountainous zone in moderately possible indicators of steppe landscapes at the wet deciduous forests (KERNEY et al. 1979). Its edge of the fl ood plain forests. Both species distribution in the Late Pleistocene in Europe have recently become much rarer in Europe was continental-Atlantic, i.e. much broader than because their habitats are virtually no longer today. existent.

Gastrocopta (Vertigopsis) moravica Gastrocopta (Vertigopsis) sp. (Fig. 3) oligodonta (KROLOPP 1979) (Fig. 2) The small conical shell is 1.9 mm high and This is the fi rst confi rmation of this species in 1.0 mm wide. The fi ve arched whorls increase the Upper Rhine Graben, and comes from the uniformly in size up to the penultimate whorl Viernheim research borehole. The shell is less – the last whorl becomes smaller towards the conical than the nominate form G. moravica aperture. The apertural border with the lip is (PETRBOK, 1959). The intraparietal tooth of the well formed and slightly folded over towards the aperture is reduced to a thickening at one point. spindle. The shell is shiny, slightly stripy and has KROLOPP (1979) found it together with Gastro- a weakly developed palatine torus. It has three copta serotina (LOŽEK, 1964) in Hungary near strong teeth, one columellar, one palatal and one Szabádhidvég (comm. Feyér). Both these spe- parietal, although the adjacent palatine wall of cies had previously only been identifi ed in the the specimen is damaged and partially missing. Lower Pleistocene (Upper Villanyum – Lower The teeth are almost the same distance apart and Biharium). These two species are therefore their tips almost point towards one another. A very chronostratigraphically signifi cant as type characteristic feature is the complete absence of fossils for the Late Tegelen (KROLOPP 1986). a basal tooth. This form has not previously been The Gastrocopta genus is extinct in Europe. identifi ed in the Pleistocene. The youngest representative of the genus in the Pleistocene is the species Gastrocopta theeli 4 Conclusions (WESTERLUND, 1877). RÄHLE (1995) found G. moravica oligodonta Fossil molluscs were investigated from three in argillaceous high fl ood deposits in Uhlen- research boreholes drilled in the Heidelberg berg (Iller-Lech Plate, Bavarian Swabia). The Basin. Special attention was given to the Uhlenberg fauna contains molluscs which were Oberer Zwischenhorizont (OZH) because, also encountered in Viernheim in samples from particularly at the western margin of the Up- 131 m and 182 m, and are characteristic spe- per Rhine Graben, it stands for the Middle cies for the Lower Pleistocene. In addition to Pleistocene interglacials which are assigned G. m. oligodonta, another interesting fi nd was to the Cromerian Complex. Whilst the OZH a fragment possibly belonging to Cochlosto- is relatively thick at Ludwigshafen and already ma salomoni (GEYER, 1914). GEISSERT (1983) encountered at a depth of around 21 m, the mentions this species from Rhine sediments similar or slightly thinner horizon is fi rst en- at Gambsheim and La Wanzenau, which are countered in Viernheim at a depth of around 39 classifi ed as Tegelen. Further interesting spe- m. A lower horizon in the Viernheim borehole cies are Clausilia rugosa antiquitatis, Azeca lying at around 50 m depth contains a mol- godalli and Ena montana. All of these species lusc fauna probably derived from the earlier are assigned to the interglacial fauna elements, Holsteinian period. A much thicker interme- whereby the two Gastrocopta species were al- diate horizon is found as the deepest horizon ready part of Pliocene faunas and are unknown between 195 and 223 m at the boundary to beyond the Lower Pleistocene. the Tertiary. It is divided up by several small 392 JOACHIM WEDEL

Kieslager (gravel horizons). Evidence of Lower GEISSERT, F. (1969): Interglaziale Ablagerungen aus Pleistocene mollusc assemblages have already Kiesgruben der Rheinniederungen and ihre Be- been found above this horizon from 132 m. The ziehungen zu den Diluvialsanden. – Mitteilun- fi ndings support the assumption proposed by gen des badischen Landesvereins Naturkunde und Naturschutz, N.F.10: 19-38. ENGESSER & MÜNZING (1991), that the Oberer GEISSERT, F. (1970): Mollusken aus den pleistozänen Zwischenhorizont covers two to three climati- Mosbacher Sanden bei Wiesbaden (Hessen). cally different epochs, whereby the deepest – Mainzer naturwissenschaftliches Archiv, 9: horizon in the Rhine Graben can be assigned to 147-203. the Lower Pleistocene on the basis of its fossils, GEISSERT, F. (1980): Fossile Floren aus der Rhein- whilst the upper horizons have Pre-Eemian or ebene im Nördlichen Elsaß (Pliozän- Pleistozän- Holsteinian character. Holozän) – mit besonderer Berücksichtigung der karpologischen Fossilien and faunistischen Acknowledgements Bemerkungen. – Colloques phytosociologiques, Les Forets alluviales, 9: 453-474. GEISSERT, F. (1983): Une faune malacologique du I gratefully acknowledge my thanks to Dr. Quaternaire ancien dans les alluvions rhénanes Rähle (Tübingen) for corrections, checking d’Alsace septentrionale. – Documenta naturae, identifi cations and reprints; Dr. Maul in Wei- 27: 1-4. mar for identifying Mimomys ostramosensis; GLÖER, P. (2002): Die Süßwassergastropoden Nord- Photos of molluscs by Gerhard Weitmann und Mitteleuropas; Die Tierwelt Deutschlands, (Mainz); Dr. Hoselmann (Wiesbaden) and Dr. 73. Teil. –327 pp.; Hackenheim (Conchbooks). Weidenfeller (Mainz) for incorporation in the HEIDTKE, U. (1979): Eine Großsäuger – Fauna aus “Heidelberg Basin” project; Dr. H. Nordsieck dem älteren Pleistozän der Pfalz (Spaltenfüllung Neuleiningen 11). – Mitteilungen Pollichia, 67: for the identifi cations of the species of Clausi- 135-141. liidae; the English translation by Dr. Anthony HOSELMANN, C. (2008): The Pliocene and Pleistocene Buglass. fl uvial evolution in the northern Upper Rhine Graben based on results of the research borehole References at Viernheim (Hessen, Germany). – Eiszeitalter und Gegenwart (Quaternary Science Journal), BARTZ, J. (1959): Zur Gliederung des Pleistozäns 57/3-4: 286-315. im Oberrheingebiet. – Zeitschrift der Deutschen KERNEY, M.P., CAMERON, R.A.D. & JUNGBLUTH, J.H. Geologischen Gesellschaft, 111: 653-661. (1979): Die Landschnecken Nord- and Mitteleu- ENGESSER, W. & MÜNZING, K. (1991): Mollusken- ropas. – 384 p.; Hamburg (Paul Parey). faunen aus Bohrungen im Raum Philippsburg- KNIPPING, M. (2004): Pollenanalytische Untersu- Mannheim and ihre Bedeutung für die Quartär- chungen an einem mittelpleistozänen Interglazi- stratigraphie des Oberrheingrabens. – Jahresheft al bei Mannheim. – Tübinger Geowissenschaft- Geologisches Landesamt Baden-Württemberg, liche Arbeiten, D 10: 199-217. 33: 97-117. KOENIGSWALD, W. VON & VAN KOLFSCHOTEN, T. (1996): GEISSERT, F. (1964): Blattfossilien and Mollusken aus The Mimomys – Arvicola boundary and the ena- dem Pliozän von Sessenheim and Suffl enheim. mel thickness quotient (SDQ) of Arvicola as strat- – Etudes Haguenoviennes, (NS) 4: 357-367. graphic markers in the Middle Pleistocene. – In: GEISSERT, F. (1967a): Fossile Pflanzenreste and TURNER, C. (ed.): The Early Middle Pleistocene in Mollusken aus dem Tonlager von Jockgrim in Europe: 211-226; Rotterdam (Balkema). der Pfalz. – Mitteilungen des badischen Lan- KOENIGSWALD, W. VON (2007): Biostratigraphische desvereins Naturkunde und Naturschutz, N.F. Begriffe aus der Säugetierpaläontologie für das 9: 443-458. Pliozän and Pleistozän Deutschlands. – Eiszeit- GEISSERT, F. (1967b): Mollusques et nouvelle flore alter und Gegenwart (Quaternary Science Jour- plio-pleistocène à Sessenheim (Bas Rhin) et nal), 56(1-2): 96-115. leurs correlations villafranchiennes. – Bulletin KROLOPP, E. (1979): A magyarországi pleisztocén du Service de la Carte Géologique d` Alsace et képződmények Gastrocopta fajai. Die Gas- de Lorraine, 20(1): 83-100. trocopta- Arten der pleistozänen Bildungen Pleistocene molluscs from research boreholes in the Heidelberg Basin 393

Ungarns. – Magyar Állami Főldtani Intézet Ĕvi NORDSIECK, H. (2006): Clausiliid faunas of central Jelentése az 1977, Ĕvről: 290-312. Europe from Middle Pliocene to the end of KROLOPP, E. (1986): Gastrocopta-Arten aus den Pleistocene. – (online-publication – URL: http: Pleistozänbildungen Europas. Proceedings of //www.clausilia.de): Article 4/2006. the 8th International Malacological Congress, NORDSIECK, H. (2007): Worldwide door snails (Clau- Budapest, 1983. – Hungarian Natural History siliidae), recent and fossil. – 214 pp.; Hacken- Museum: 137-138. heim (ConchBooks). LOŽEK, V. (1964): Quartärmollusken der Tschecho- RÄHLE, W. (1995): Altpleistozäne Molluskenfauna slowakei. – Rozpravy ústředního ústavu Geolo- aus den Zusamplattenschottern and ihrer Fluss- gického, 31: 374 pp.; Praha. mergeldecke vom Uhlenberg and Lauterbrunn LOŽEK, V. (1969): Über die malakozoologische (Iller-Lech-Platte, Bayerisch Schwaben). – Ge- Charakteristik der pleistozänen Warmzeiten mit ologica Bavarica, 99: 103-117. besonderer Berücksichtigung des letzten Inter- RÄHLE, W. (2005): Eine mittelpleistozäne Mollus- glazials. - Berichte der Deutschen Gesellschaft kenfauna aus dem Oberen Zwischenhorizont für Geologische Wissenschaften, A: Geologie des nördlichen Oberrheingrabens (Bohrung und Paläontologie: 14(4): 439-469; Berlin. Mannheim – Lindenhof). – Mainzer geowissen- MALEC, F. & TOBIEN, H. (1976): Die Säugerreste- schaftliche Mitteilungen; 33: 9-20. führenden Spaltenfüllungen des älteren Pleis- SCHLICKUM, W. R, & GEISSERT, F. (1980): Die plio- tozäns von Neuleiningen bei Grünstadt (Pfalz). zäne Land- and Süßwassermolluskenfauna von – Mainzer geowissenschaftliche Mitteilungen 5: Sessenheim/Krs. Hagenau (Unterelsaß). – Ar- 129-134; Mainz. chiv für Molluskenkunde, 110(4/6): 225-259. MAUL, L. C. (2002): Bedeutende Fossilvorkommen SCHWEISS, D. (1988): Jungpleistozäne Sedimentation des Quartärs in Thüringen. Teil 4: Kleinsäuger. in der nördlichen Oberrheinebene. – In: KOE- – In: KAHLKE, R.-D. & WUNDERLICH, J. (eds.): Ter- NIGSWALD, W. VON (ed.): Zur Paläoklimatologie tiär and Quartär in Thüringen. – Beiträge zur Geo- des letzten Interglazials im Nordteil der Oberr- logie von Thüringen, Neue Folge 9: 187-205. heinebene: 19-78; Stuttgart (Fischer). MEIJER, T. & PREECE, R. C. (2000): A review of the STORCH, G., FRANZEN, J. & MALEC, F. (1973): Die occurrence of Corbicula in the Pleistocene of altpleistozäne Säugerfauna (Mammalia) von North-West Europe. – Netherlands Journal of Hohensülzen bei Worms. – Senckenbergiana Geosciences; 79(2/3): 241-255. lethaea, 54: 311-343. MÜNZING, K. (1999): Der Bötzinger Boden im Lichte STWORZEWICZ, E. (1981): Early Pleistocene Land molluskenkundlicher Befunde (Jungpleistozän, Snails from Kielniki and Kozi Grzbiet (Poland). Kaiserstuhl). – Jahresberichte und Mitteilungen – Folia Quaternaria, 54: 43-77. des Oberrheinischen Geologischen Vereins N.F. WEDEL, J. (1999): Altpleistozäne Kleinsäuger and 81: 307-323. Schnecken aus einer Bohrung bei Nordheim/ NORDSIECK, H. (1974): Fossile Clausilien, II. Clausi- Biblis. – Jahrbücher des Nassauischen Vereins lien aus dem O-Pliozän des Elsaß. – Archiv für für Naturkunde, 120: 163-165. Molluskenkunde, 104: 29-39. 394 JOACHIM WEDEL

Table 1: Research borehole Ludwigshafen Parkinsel P34.

Tab. 1: Forschungsbohrung Ludwigshafen Parkinsel P34.

Classifi cation qp(a) tpl Parkinsel P34 OZH OZH UZH UZH Reuver? 36.8-37.5 207.8-208 Art: 20.50-21.00 147.8-148.0 160.3-160.4 176.0-176.5 232.2-232.4 290.7-290.8 Aegopinella sp. 1 Clausiliidae indet. 1 Trochulus sp. 1 Vertigo sp. 3 Vertigo substriata 3 Oxyloma elegans 1 Succinea putris 1 Pisidium amnicum 1 Musculium lacustre 2 Valvata cristata 125 Planorbis planorbis 5 Lymnaeidae indet. 200 Stagnicola aff. palustris 2 Valvata macrostoma 1 Acroloxus lacustris 2 Gyraulus crista 30 Hippeutis complanatus 3 Planorbarius corneus 6 Sphaeriidae indet. 90 2 Galba truncatula 6 Bithynia tentaculata (Opercula) 85 1 Bithynia tentaculata 4 Valvata piscinalis 6 Viviparus sp. (Opercula) 1 Pisidium pulchellum 10 undetermined fragments of molluscs 2 1 1 Number: 592 Piece of plants x x x x x x x Charophyts x Small mammals x

OZH = Oberer Zwischenhorizont; UZH = Unterer Zwischenhorizont; qp(a) = Older Pleistocene; tpl = Pliocene Table 2: Research borehole of Ludwigshafen Parkinsel P35/P35a (fi rst part).

Tab. 2: Forschungsbohrung Ludwigshafen Parkinsel P35/35a (erster Teil).

Classification: qp tpl Parkinsel P35 / P35a OZH OSF USF (P35a) Pleistocene molluscsfromresearchboreholesintheHeidelberg Basin

Species: 50.3 30.3 28.0 50.0- 27.8- 27.2- 287.9 88.70 27.24 26.37 21.90 287.5- 30.26- 26.33- 178.00 236.10 276.20 Clausiliidae indet. 6 1 n. F. n. F. n. F. Vitrinobrachium breve 1 Aegopinella sp. 1 Aegopinella nitens 1 Monachoides incarnatus 1 Arianta arbustorum 4 1 Vitrea crystallina 1 2 Perforatella bidentata 8 1 Vallonia excentrica 3 Vallonia pulchella 1 Vertigo pygmaea 2 2 Pupilla muscorum 2 1 Vertigo sp. 2 3 Trochulus sp. 21 4 1 Cochlicopa lubrica Komplex 3 Punctum pygmaeum 4 Deroceras laeve 1 Vertigo angustior 3 Succinella oblonga 4 1 Vertigo substriata 1 Carychium tridentatum 4 Carychium minimum 2 Oxyloma elegans 3 Succinea sp. 2 Vallonia enniensis 1 Succinea putris 1 Unioniidae indet. 4

Pisidium amnicum 2 5 395 Borysthenia naticina 2 Table 2: Research borehole of Ludwigshafen Parkinsel P35/P35a (second part). 396

Tab. 2: Forschungsbohrung Ludwigshafen Parkinsel P35/35a (zweiter Teil).

Classification: qp tpl Parkinsel P35 / P35a OZH OSF USF (P35a)

Species: 50.3 30.3 28.0 50.0- 27.8- 27.2- 287.9 88.70 27.24 26.37 21.90 287.5- 30.26- 26.33- 178.00 236.10 276.20 Musculium lacustre 8 Segmentina nitida 1 Valvata cristata 3 8 Planorbis planorbis 7 9 1 Lymnaeidae indet. 4 5 4

Anisus spirorbis 4 5 J Gyraulus albus 1 1 OACHIM Gyraulus crista 3 17 Lymnaea stagnalis 1 Pisidium sp. 1 W Planorbarius corneus 2 3 1 EDEL Sphaeriidae indet. 2 4 Galba truncatula 4 5 Bithynia tentaculata (Opercula) 4 12 16 Bithynia tentaculata 2 Valvata piscinalis 1 Bathyomphalus contortus 2 Number: 90 1 1 6 13 102 0 23 0 0 0 Piece of plants xxxxx x xxx Ostracods x x Piece of fi shs x x Small mammals x x Piece of insects x n. F. = no Fauna; OZH = Oberer Zwischenhorizont; OSF= Obere sandige Folge; USF= Untere sandig-schluffi ge Folge pl = Pleistocene; tpl = Pliocene (only borehole P35a) Pleistocene molluscs from research boreholes in the Heidelberg Basin 397

Table 3: Borehole Ludwigshafen-Maudach A-36.

Tab. 3: Bohrung Ludwigshafen-Maudach A-36. Classification: Middle-Pleistocene Lu-Maudach A 36 OZH

Art: 23.40 26.80 28.00 26.40- 27.50- 23.10 - number: Clausiliidae indet. 7 1 7 15 Clausilia bidentata 2125 Discus ratus rude 1 1 Vitrinobrachium breve 5 5 Aegopinella la nitidu 1 1 Ena na monta 3 3 Helicodonta obvoluta 2 2 4 Macrogastra lineolata 2 1 3 Monachoides incarnatus 1 1 2 Azeca lli gooda 2 2 Arianta arbustorum 2 1 3 Vitrea crystallina 3 3 4 10 Discus rotundatus 1 2 3 Limax inereoniger c 1 1 Cepaea hortensis 2114 Clausilia pumila 3 5 6 14 Perforatella bidentata 7 8 29 44 Chondrula ns tride 3 3 Pupilla terri s 1 1 Pupilla nsegyrata de 2 2 Vallonia excentrica 3 1 4 Vallonia pulchella 6 2 9 17 Vallonia declivis 1 1 Vallonia costata 5 5 10 Pupilla muscorum 3 17 20 Columella olumella c 1 1 Vallonia tenuilabris 1 1 Cochlicopa ella lubric 1 1 Trochulus sp. 2114 Vertigo sp. 8 3 11 Clausilia rugosa antiquitatis 2 2 Cochlicopa lubrica Komplex 2349 Euconullus fulvus 1 1 2 Nesovitrea hammonis 2 11 13 Trochulus hispidus 1 3 4 Clausilia dubia 1 3 4 Helicigona lapicida 2114 Columella dentula e 3 3 Deroceras leave 2 1 3 398 JOACHIM WEDEL

Vertigo substriata 3 3 Succinella oblonga 21 26 290 337 Succinella elongata 1 3 4 Carychium um minim 1 1 Oxyloma legans e 3 3 Vallonia enniensis 1135 Vertigo genesii 1 6 44 51 Vertigo geyeri 1 1 Pseudotrichia ginosa rubi 1 1 Zonitoides nitidus 2 2 Ancylus fl uviatilis 3238 Borysthenia naticina 3 1 4 Valvata cristata 8 8 Valvata macrostoma 1 10 11 Valvata piscinalis 9 2 21 32 Bithynia sp. 26 100 126 Parafossarulus crassitesta 6 5 20 31 Bithynia tentaculata 1146 Bithynia leachii 3 2 5 Planorbis planorbis 5 4 9 18 Planorbarius corneus 2125 Planorbis arinatus c 1 1 Anisus leucostoma 1 3 9 13 Bathyomphalus contortus 1 2 3 Hippeutis complanatus 3 3 Segmentina nitida 2 2 Gyraulus albus 1 4 5 Gyraulus laevis 1 1 2 Lymnaeidae indet. 2 2 4 Stagnicola agg. palustris 2 2 Radix balthica 1 12 13 Radix balthica aff. ampla 5 5 Lymnaea stagnalis 4 4 Galba truncatula 6 8 5 19 Sphaeriidae t. inde 1 1 Sphaerium orneum c 2 2 Pisidium sp. 1 1 Pisidium amnicum 4 4 30 38 Pisidium upinum s 4 4 Pisidium obtusale lapponicum 9 9 Pisidium ssierianummoite 2 2 gesamt: 154 227 654 1035 Charophyts-Oogonie x x x Piece of fi shs x x x Small mammals x x x OZH = Oberer Zwischenhorizont

Pleistocene molluscs from research boreholes in the Heidelberg Basin 399 239.08-310.70

tpl 228.75-228.85

Tertiär 223.00-223.15

214.00-214.20

204.75-204.80

1 196.45-196.60

4 2 4 1 10 194.50-194.60

1 211

182.30-182.50 4 1

174.30-174.40 525 1 7 7 3 k.F.

qp (a)

167.35-167.45 2 2 20 14

164.00-164.20

1

155.20-155.40

132.60-132.70

8 7 8 131.25-131.45

16 115.90-116.00

3 1

12 7

108.00-108.20

104.10-104.20

1

Pleistocene 96.90-97.00

51 3 14 2 20 10

89.40-89.70

4 1 5 1 70.00-70.30 12 20

qp (m)

66.30-66.45

15 1 4 1 2 57 4 151 1

3 3 2 1 1 1 1 1 1 1 2 2 2 2 1 1

59.70-59.80

53.90-54.00

1 6 9 4

51.70-51.80

50.10-50.30

49.60-49.70

9

46.43-46.56 35.85-36.00

qp (j)

18.00-18.50

1

1 1 5 1 1 1 2 4

1 12.00-13.00 1 1 1 7 3 1 2 3 4 3 5 Species: Classifi cation: Classifi Viernheim FB 1 Viernheim Chondrula tridens Cepaea sp. Perforatella bidentata 1 7 1 1 1 4 2 7 Pomatias elegans Discus rotundatus Neostyriaca corynodes ornatula Monachoides cf. vicinus Fruticicola fruticum Azeca goodalli perspectivusDiscus Arianta arbustorum crystallina Vitrea 1 Aegopis sp. Clausiliidae indet. Clausilia cruciata Aegopinella sp. Ena montana Perforatella dibothrion Vitrinobrachium breve Vitrinobrachium Helicodonta obvoluta Monachoides incarnatus 1 Table 4: Research borehole of Viernheim (fi rst part). (fi Viernheim 4: Research borehole of Table Teil). (erster Viernheim 4: Forschungsbohrung Tab.

400 JOACHIM WEDEL 239.08-310.70

tpl 228.75-228.85

Tertiär 223.00-223.15

214.00-214.20

3

204,75-204,80

196.45-196.60

1 1 194.50-194.60

1 2 2

12

182.30-182.50 2

174.30-174.40 1 1

qp (a)

167.35-167.45 5 1 164.00-164.20

2 1 3 11 30

155.20-155.40

132.60-132.70

131.25-131.45 115,90-116,00

11 1

1

108.00-108.20

1 9 1 4 2 4 2 5 6

104.10-104.20

1 7 1 26 5 1

Pleistocene 96.90-97.00

1 2 44 10 29

89.40-89.70

8 7 70.00-70.30 12 26 21

qp (m) 66.30-66.45

4

2 3

1 1 1 1 3 2

12 13

59.70-59.80

53.90-54.00

2 1 21 312 12 41 1 3

51.70-51.80

50.10-50.30

49.60-49.70

46.43-46.56 35.85-36.00

qp (j) 18.00-18.50

3 1 5 1 7 2

3

1

1 4 2 12.00-13.00 3 7 2 3 5 3 5 Species: Classifi cation: Classifi Viernheim FB 1 Viernheim Nesovitrea hammonis hispidus Triochulus Oxychilus cellarius Oxychilus sp. Trichia sp. Trichia Cochlicopa lubrica KomplexClausilia rugosa antiquitatis 2 Limacidae Agriolimacidae / Komplex 1 Vertigo sp. Vertigo Gastrocopta moravica oligodonta Cochlicopa lubricellaCochlicopa Gastrocopta sp. 1 Pupilla muscorum Vallonia costata Vallonia Granaria frumentum Cochlostoma sp. (cf. salomoni) Vallonia tenuilabris Vallonia Columella columella Vallonia pulchella Vallonia Vallonia excentrica Vallonia Table 4: Research borehole of Viernheim (second part). Viernheim 4: Research borehole of Table Teil). (zweiter Viernheim 4: Forschungsbohrung Tab. Pleistocene molluscs from research boreholes in the Heidelberg Basin 401 3

1 8 1 7 2 1 1 5 2 1 1 1 11 1 1 1 1 2

1 1 1

1 2 11 1 1 2 1 1 1 2 16 131 22 32 1 5 246 1 2 1 11 1 5 3 11 5 2 1

2 1

6 4 5 1

17 25 2 2111 3 2 4 1 1 1 4 3 2 1 14 10 25

1 3 1 6

3 1

1

2 1 1 1 1

1 1 1 1 4 1 9 2 4 4 1 3 2 uviatilis uminalis uviatilis Stagnicola agg. palustris 1 Planorbis planorbis Valvata cristata Valvata KomplexLymnnaeidae 1Pisidium casertanum 1ponderosum 2 5 Musculium lacustre Pisidium obtusale Anisus spiorbis Corbicula fl Valvata macrostomaValvata 2 9 1 2 2 Aplexa hypnorum Anisus leucostoma Ancylus fl Borysthenia naticina Theodoxus fl Oxyloma elegans Succinea putris Columella edentula Carychium minimum Clausilia rugosa parvulaClausilia dubia lapicida Helicigona Succinea sp. declivis Vallonia Succinella oblonga Succinella oblonga elongata Pisidium supinum Lithoglyphus naticoides Unioniidae indet. Vallonia enniensis Vallonia

402 JOACHIM WEDEL 239.08-310.70

tpl 228.75-228.85

Tertiär 223.00-223.15

2

2

x

214,00-214,20

204.75-204.80

196.45-196.60

1

194.50-194.60

182.30-182.50 2 1 2

X* 174.30-174.40 22 35 30 55 17 10 8

1

qp (a)

167.35-167.45 16 135

164.00-164.20

1 1

155.20-155.40

24 3

132.60-132.70

411 131.25-131.45

10 11 115.90-116.00

1

x x

108.00-108.20

1 1 104.10-104.20

94 7 8 68 37 16 81 1 2 3 1 2 1 3 11 x x x

Pleistocene 96.90-97.00

3 196

89.40-89.70

16 50 70.00-70.30 11 180

qp (m)

66.30-66.45

1

2 1 2 2 5 2 7 3

1

59.70-59.80

1 1 1

53.90-54.00

1 1 2 2 2 1 1 9 2 51.70-51.80

9422 25 30 22 56

50.10-50.30

25 107

49.60-49.70

46.43-46.56 35.85-36.00

qp (j)

18.00-18.50

1 1 5 6 4

5 8

7 2 6

1 2 12.00-13.00 n.F.*= no fauna n.F.*= 8 number 20 38 20 2 86 charophyts Piece of plants x x x x x x x x x x x x small mammals x Species: Classifi cation: Classifi Viernheim FB 1 Viernheim Sphaeriidae indet. Sphaerium corneum Galba truncatula Radix labiata Pisidium sp. Planorbarius corneus Planorbis carinatus Physa fontinalis Gyraulus albus Gyraulus crista Hippeutis complanatus Gyraulus sp. Anisus vorticulus Bithynia tentaculata Bithynia sp. undetermined fragments of molluscs Valvata piscinalis alpestrisValvata Pisidium subtruncatum sp. Valvata piscinalis Valvata X* = Mimomys ostramosensis Eiszeitalter und Gegenwart 57/3–4 403–410 Hannover 2008 Quaternary Science Journal

Evidence for a Waalian thermomer pollen record from the research borehole Heidelberg UniNord, Upper Rhine Graben, Baden-Württemberg

JÜRGEN HAHNE, DIETRICH ELLWANGER & RÜDIGER STRITZKE *)

Abstract: A pollen record from the borehole Heidelberg UniNord, in the northern Upper Rhine Graben shows evidence for one of the rare Waalian thermomers. The record may not comprise the complete ther- momer it certainly refl ects a sort of succession, initiated by sequences with high values of pine and spruce, followed by a dominance of pine, hemlock-spruce and spruce and fi nished by a dominance of hemlock- spruce, oak and hornbeam becomes visible. Pollen percentage values for Tsuga reach 20 % indicating that this taxon is an important forest element. There is a continuous presence of Carya, Pterocarya, Eucommia, Celtis and Ostrya-type. Neighbouring pollen records reveal similar patterns. The pollen diagram is closely related with the Waalian profi les Leerdam and Eindhoven from the Netherlands.

[Nachweis der Waal-Warmzeit anhand pollenanalytischer Untersuchungen an der Forschungs- bohrung Heidelberg UniNord, Oberrheingraben, Baden-Württemberg]

Kurzfassung: Eine Pollensukzession aus der Bohrung Heidelberg UniNord im Oberrheingraben kann mit der bisher selten nachgewiesenen Waal-Warmzeit verknüpft werden. Das wohl nicht vollständig erfasste Thermomer refl ektiert eine angedeutete Sukzession, die von einer basalen Fichten-Kiefernzeit über einen Abschnitt mit Kiefer, Hemlocktanne und Fichte, hin zu einer abschließenden Waldzeit verläuft, in der Hem- locktanne (Tsuga), Eiche und Hainbuche dominieren. Tsuga erreicht im Gesamtdiagramm Werte bis zu 20 % und repräsentiert ein wichtiges Waldelement. Ständig vorhanden sind in geringen Anteilen ferner Carya, Pterocarya, Celtis, Eucommia und Ostrya-Typ. In Nachbarbohrungen deutet sich dasselbe Muster an. Das Pollendiagramm wird korreliert mit den Waal-Profi len aus Leerdam und Eindhoven (Niederlande).

Keywords: Upper Rhine Graben, pollen analysis, Waalian thermomer, biostratigraphy

* Adresses of authors: J. Hahne, Tiefenthal 3, 37586 Dassel; Germany. E-Mail: [email protected]; D. Ellwanger, Regierungspräsidium Freiburg, Landesamt für Geologie, Rohstoffe und Bergbau, Albertstr.5, D- 79104 Freiburg/i.Br., Germany. E-Mail: [email protected]; R. Stritzke, Geologischer Dienst NRW, De Greiff Str. 195, D-47707 Krefeld, Germany. E-Mail: [email protected] 404 JÜRGEN HAHNE, DIETRICH ELLWANGER & RÜDIGER STRITZKE

1 Introduction 2 Methods

In order to develop a better understanding of Peaty samples were taken at 10 cm intervals. the Pleistocene geological processes associated In total, 17 pollen samples were analysed. with the evolution of the Upper Rhine Gra- Samples were subjected to HF (70 %) treat- ben (URG), a scientifi c core drilling has been ment followed by ultrasonic sieving (mesh brought down at the campus of Heidelberg size 6 x 8 μm) then acetolysis. With the excep- University. In this location, one of the thickest tion of the two oldest samples, arboreal pollen successions of continental Quaternary deposits counts of at least 500 were attained. The basis has been expected according to various pre-site for representation on the pollen diagram was surveys (BUNESS, GABRIEL & ELLWANGER 2008). the total pollen sum (all pollen types excluding For technical reasons, a fi rst borehole (Hei- aquatics and ferns). The pollen diagram (Fig. 2) delberg UniNord1) has been cored down to was prepared using the plotting program Tilia 190 m in 2006, followed by a second borehole (GRIMM 1991). Non-arboreal taxa that were (UniNord2) down to 500 m in 2008. For a fi rst only encountered in few samples and in low summary of geological results, cf. ELLWANGER numbers are not shown on the diagram. Values et al. (2008); for an outline of the Heidelberg below 1 % are also represented (symbol “•”). project cf. GABRIEL et al. (2008). In this paper, only results from the fi rst bore- 3 Results hole (0 – 190 m; UniNord1) have been evalu- ated. According to ELLWANGER et al. (2008), The pollen diagram (Fig. 1) is divided into only about one third of the succession consists three local pollen zones (A, B and C): of fi ne-grained i.e. silt-dominated deposits. • A: 181.70 – 181.15 m: Pinus – Picea zone Out of these, only three intervals, altogether (with ferns) amounting to less than fi ve meters of sediment • B: 181.15 – 180.55 m: Pinus – Tsuga – Pi- core, turned out to be suitable for a detailed cea zone pollen analysis (57 – 58 m; 81 – 87 m and 180 • C: 180.55 – 180.00 m: Tsuga – Quercus – 181.70 m). The remaining 65 m of silt-domi- – Carpinus zone (with Alnus and Betula) nated sediments were poor in pollen-content. The local pollen assemblage zone A is cha- This may be due to oxidation and differential racterized by a dominance of Pinus and Picea, preservation of the pollen, e.g. concentration of ferns are of great importance. The arboreal taxa thick-walled grains such as conifers and Tilia, such as Tsuga, Ulmus, Corylus, Carpinus and but also of poor core quality. Eucommia are present with rates up to 2 %, The biostratigraphic review maybe summa- Quercus ranges between 2-5 %. rized as follows: In zone B Tsuga (and Alnus) is increasing and (1) At 57 – 58 m and 82 – 85 m depth a pine- represents an important forest element. spruce forest indicating cool climate; Zone C refl ects a dominance of Tsuga (10- (2) At 81 – 82 m and at 87 m depth a middle 15 %), Quercus (10-15 %) and Carpinus (10- Pleistocene pollen spectrum without Fagus 25 %) (together with Alnus and Betula). Pinus indicates an interglacial environment is in- and Picea are of less importance. Typical ele- dicated; ments of Older- and Middle Pleistocene such as (3) At 180 – 181.70 m depth some very pollen Pterocarya, Eucommia, Carya, Celtis and Os- rich samples were found in peaty sediments trya-type are continuously present in low rates. with more or less silt. The higher pollen per- Fagus is limited to sample 180,10 m where two centage values of the genus Tsuga (Hemlock pollen grains are recorded. spruce) indicates a temperate “interglacial” Altogether, the succession is clearly dominated resembling an early Pleistocene age. by arboreal taxa representing a thermomer This study is focused on the interval (3). stage i.e. warm climate. Non arboreal pollen Evidence fora Waalian thermomerpollenrecord

Fig. 1: Pollen diagram of the borehole Heidelberg UniNord, interval 180 – 181.70 m. It rep- resents a Waalian pollen assem- blage. – Values below 1 % ~ “•”.

Abb.1: Pollendiagramm der Bohrung Heidelberg UniNord, Intervall 180 – 181,70 m, inter- pretiert als Waal-zeitliche Pol- len-Vergesellschaftung. – Werte 405 unter 1 % ~ „•“. 406 JÜRGEN HAHNE, DIETRICH ELLWANGER & RÜDIGER STRITZKE

thermomers (Holsteinian, Cromerian). These characteristics are also reported from Bavelian sequences (ZAGWIJN & DE JONG 1984). Howev- er, as indicated above, this type of succession is not recorded in the Waalian thermomer, the older Pleistocene (Tiglian thermomers) and the Reuverian. The decrease of arboreal taxa during the Pleistocene is known from various studies. Pterocarya is ultimately recorded at the end of the Holsteinian (e.g. BEAULIEU & MONJUVENT 1985). Eucommia and Celtis barely occupy intergla- cial I and II of the Cromerian-Complex, e.g. HOMANN & LEPPER (1994), HAHNE (1996a,b). VAN DER HAMMEN et al. (1971) record Carya and Ostrya-type restricted to the Older Pleisto- Fig. 2: Geographic position of Waalian sequences cene thermomers Waalian and Tiglian. ZAGWIJN in middle Europe, Leerdam, Lieth, and Heidelberg. & DE JONG (1984) report from the cores from Present topography and palaeogeographical setting Bavel, Netherlands, i.e. the type region of the (GIBBARD 1988). Palaeo-shoreline uncertain, varying Bavelian stage, also Carya, Ostrya-type and according to high and low sea level. Tsuga. Tsuga was the fi rst taxon recognised as an ele- Abb. 2: Geographische Lage der Waal-Vorkommen ment of the Older Pleistocene (e.g. by VAN DER in Mitteleuropa, Leerdam, Lieth und Heidelberg. HAMMEN et al., 1971). According to ZAGWIJN Heutige Geographie und Waal-zeitliche Paläogeog- (1957, 1960) and HAHNE (1996a,b), this taxon raphie (GIBBARD 1988). Die Paläo-Küstenlinie ist unsicher, sie schwankt je nach Höhe des Meeres- is present in low levels in the Reuverian and spiegels. in the Pretiglian as well as in the Tiglian A, B and C. KNIPPING (2004) recorded single pollen types are of less importance and mostly below grains in sediments of Bavelian age, whereas 10 %, with the exception of two samples with ZAGWIJN & De JONG (1984) report values up Filipendula (up to 30 %!) and an unknown, very to 30 % in a profi le in Bavel revealing also a small Liliaceae-type. Both elements represent distinct succession of the tree species. Quite the infl uence of local swampy vegetation. recently, KNIPPING (2008) even stated a single pollen grain of Tsuga in a thermomer, which 4 Discussion she assumed to belong to the Cromerian Com- plex. According to the implied succession of the On the other hand, Pliocene elements such as signifi cant arboreal taxa, the pollen diagram Liquidamdar, Nyssa, Sciadopitys, Taxodium- (Fig.1) has been divided in three pollen assem- and Sequoia-habitus are not present in the blage zones. There are, however, no taxa, which pollen diagram (Fig. 1). All those are frequent are immigrating in the course of the sequence. in the Reuverian and, with the exception of All are present right from the beginning. Sciadopitys, very sparsely during Tiglian (ZAG- Complete sequences of the immigration of tree WIJN 1960, 1963, 1989). Some very first results species during an interglacial cycle (e.g. shrubs of the lower parts of the Heidelberg UniNord – birch - pine - broad leaf trees – climax zone borehole confi rm this trend (ELLWANGER et al. – conifers) is well known from the Holocene, 2008, Fig. 3). from the Eemian, and from middle Pleistocene Evidence for a Waalian thermomer pollen record 407

5 Conclusions After ZAGWIJN & DE JONG (1984), the Bave- lian fi lls an intermediate position between The pollen diagram (Fig. 1) refl ects a ther- Older- and Middle Pleistocene. With respect momer revealing a closed forest vegetation to partly high values of Tsuga, the presence in which pine, spruce, Hemlock-spruce, oak, of Ostrya-type, Celtis and Eucommia an Older hornbeam and elder were dominant. Records Pleistocene character is evident whereas a suc- of Older Pleistocene elements (Pterocarya, cession of the expansion of various trees due Eucommia, Celtis, Carya, and Ostrya-type) are to differences in re-immigration emphasizes a continuously present but only in low numbers. strong resemblance with thermomers younger A successive immigration is not visible. than Tiglian and Waalian. All these characteristics exclude an assignment The pollen diagram (Fig. 1) shows signifi cant of this thermomer to young or middle Pleisto- similarities with the Leerdam-Profi le (Fig. 2) cene stages. A correlation with the Reuverian which is the type locality for Waalian (ZAGWIJN is also not possible due to the missing of Plio- & DE JONG 1984). The similarity is not restrict- cene elements. For the Tiglian the presence of ed only to the spectra of the arboreal pollen Sciadopitys, Nyssa, Liquidambar, and Pinus types, but also in their values (with the excep- haploxylon-Habitus is compulsive. Therefore, tion of Picea, which in Leerdam has a smaller only the Waalian and the Bavelian stages are to representation). Different with Leerdam is also be taken on closer consideration. the missing of indications of systematic suc-

Fig. 3: Presence of important arboreal taxa in Middle European pollen sequences from the Reuverian (Plio- cene) to the Holocene. Adapted from LANG (1994), updated according to actual investigations and with regard to new results from the Heidelberg research boreholes. – Symbols: Ο = frequent, x = rare.

Abb. 3: Vorkommen wichtiger Baumpollen in mitteleuropäischen Pollensequenzen vom Reuver (Pliozän) bis ins Holozän. Nach LANG (1994), fortgeschrieben aufgrund neuer Untersuchungen, insbesondere neuen Ergebnissen aus den Forschungsbohrungen Heidelberg. – Symbole: Ο = häufi g, x = selten. 408 JÜRGEN HAHNE, DIETRICH ELLWANGER & RÜDIGER STRITZKE cession in immigration and culmination of the erlands situated in the lower Rhine area, were individual trees. an excellent sediment and pollen catching area, In Kronau, about 20 km south of Heidelberg, including reworked pollen from further south. another borehole revealed cores of peaty sedi- Their pollen records refl ect the complete upper ments at depths around 85 m. Here several pol- Rhine vegetation combined with the regional len samples reveal nearly identical Waalian elements. On the other hand, the Lieth series pollen assemblages as in Heidelberg. (MENKE 1976) refl ects the regional vegetation ZAGWIJN (1989) noted that the Waalian ge- of Holstein, maybe including input from the nerally has the character of an interglacial Baltic river system (Fig. 2). complex consisting of an interstadial situated The chronostratigraphic age of the Waalian between two thermomers. A similar sequence amounts to 1.1 -1.3 Ma (ZAGWIJN 1989) or to is recorded by MENKE (1976) for the “Torn- 1.4 – 1.6 Ma (OGG, OGG & GRADSTEIN 2008), esch thermomer” (Lieth series) situated in both with duration of approximately 200 ka. Schleswig-Holstein which is also assigned to Thus, the peaty sequence from Heidelberg the Waalian. Although it reveals a domination (Fig. 1) with a length of 1.7 m does certainly of Ericales (pointing toward Atlantic heaths) not refl ect one of the two thermomers as a apart from Tsuga all Older Pleistocene elements whole, but only a shorter period belonging to are present. Running analysis on the cores of either of them. the UniNord2 borehole at Heidelberg reveal Considering the arboreal pollen types, the cli- 26 m underneath the peaty Waalian sediments mate of the recorded sequence was probably again typical Waalian pollen sequences which not warmer than today. The present day dis- possibly could assigned to the older Waalian tribution of the most important Tsuga species thermomer. The intermediate sediments are (T.canadensis and T. diversifolia) in North- fl uvial gravels, which, unfortunately, are poor East America and East Asia refl ect mountain- of pollen so that their climatic character is still ous climates and moist habitats. uncertain. Even a separation within either the According to DE JONG (1988), many of the so- upper or the lower thermomer by fl uvial gra- called Pliocene trees that are today restricted to vels, without any difference in climate, may be North America or East Asia, actually do very considered. well in European parks or as forest elements. The question remains why there are such great Thus, the interglacial climates of the Early similarities in the forest vegetation between Pleistocene might not have been more favour- the Upper Rhine Graben and the Netherlands, able than in the middle or young Pleistocene, whereas from Lieth (Schleswig-Holstein, Fig.2) but the intermediate stadials were not as ex- a quite different forest vegetation and maritim treme as the glacial stages of that period. infl uenced different climatic conditions has Thus, for the identifi cation of a Waalian ther- been reported by MENKE (1969, 1976). In our momer in Middle Europe three conditions must view, this indicates uniform climate conditions be fulfi lled: along the Rhine, and different conditions fur- 1. no complete succession of the arboreal ge- ther east. Today the Rhenish Schist highlands nera, act as a barrier between the Netherlands and 2. Tsuga must be an important member of the the Upper Rhine Graben. In the Waalian stage, forest vegetation, and prior to their major uplift, the Rhenish Schist 3. there must be at least single records of so was an area of some low hills. In this scenario, called Older Pleistocene elements such as there was an almost fl at landscape from Hei- Eucommia and Pterocarya and in very low delberg to the Netherlands, with uniform forest rates also Carya, Celtis and Ostrya-type vegetation and climate conditions (Fig. 2). and possibly even Fagus. However, K.-E BEHRE (Wilhelmshaven) has ex- Final remark: In summer 2008, a second drill- pressed another view (pers. comm.). The Neth- ing in Heidelberg (“UniNord2”) fi nally reached Evidence for a Waalian thermomer pollen record 409 its planned depth of 500 m. First scans of pollen Drilling Project – Quaternary Science Journal content down to 499.94 m include continuous (Eiszeitalter und Gegenwart), 57/3-3: 253-269. fi ndings of Fagus and Carya as well as such of GIBBARD, P.L. (1988): The History of the Great Sciadopitys, Nyssa, Pinus haploxylon, Cupres- Northwest European Rivers during the Past Three Million Years. – Philosophical Transac- saceae, Sequoia- and Taxodium-habitus. The tions of the Royal Society of London, B318: spectra are clearly different from the Waalian 559-600. and represent most likely the Tiglian interval. GRIMM, E.C. (1991): Tilia version 2.0.B.4, Tiliagraph By now, we also know that the thickness of verdion 2.0 and Tiliagraph View Version 1.0.5.2, the Quaternary at the UniNord location will Research and Collection Section, Illinois State amount to more than 500 m (well exceeding the Museum, Illinois originally assumed thickness of ~ 400 m). The HAHNE, J. (1996a): Pollenanalytische Untersuchungen Reuverian is expected well below 500 m. an den Bohrkernen 89/4 und 89/9, südliche Nord- see. – Geologisches Jahrbuch, A 146: 163-175. HAHNE, J. (1996b): The Interglacial site of Hunt- Acknowledgements eburg, near Quakenbrück (NW Germany). – In: Turner, C. (ed.): The early Middle Pleistocene in The pollen samples were prepared at the HF-lab- Europe: 181-186; Rotterdam (Balkema). oratory of Prof. Dr. H. Behling, Göttingen. We HOMANN, M. & LEPPER, J. (1994): Das Cromer-Profi l are thankful to Prof. Dr. K.-E. Behre, Wilhelms- von Solingen (Süd-Niedersachsen) – Geolo- haven, who commented on the pollen diagram gisches Jahrbuch, A134: 211-228. and gave us useful advice. Dr. Ulrike Wielandt- KNIPPING, M. (2004): Pollenanalytische Untersuc- Schuster, Freiburg, helped with fruitful remarks hungen an einem mittelpleistozänen Interglazial and design of fi gures. Dr. Ellyn Cook, Göttin- bei Mannheim. – Tübinger Geowissenschaftli- che Arbeiten,10: 199-217. gen, reviewed the text as a native speaker. KNIPPING, M. (2008): Early and Middle Pleistocene pollen assemblages of deep core drillings in References the northern Upper Rhine Graben, Germany. – Netherlands Journal of Geosciences – Geolo- BEAULIEU, J.-L. DE & MONTJUVENT, G. (1985): Don- gie en Mijnbouw, 87/1: 51-65. nées actuelles sur la formation Interglaciaire de LANG, G. (1994): Quartäre Vegetationsgeschichte Pompillon (Pleistocène moyen), Val de Lans et Europas. Methoden und Ergebnisse. – 462p. Vercors (Isère, France). – Bull. A.F.E.Q., 2/3: Jena (Gustav Fischer Verlag). 75-83. MENKE, B. 1969: Vegetationsgeschichtliche Unter- BUNESS, H., GABRIEL, G. & ELLWANGER, D. (2008): suchungen an altpleistozänen Ablagerungen aus The Heidelberg Basin drilling project: Geo- Lieth bei Elmshorn. – Eiszeitalter und Gegen- physical pre-site surveys. – Quaternary Science wart, 20: 76-83. Journal (Eiszeitalter und Gegenwart), 57/3-4: MENKE, B. (1976): Vegetationsgeschichte und 338-366. Florenstratigraphie Nordwestdeutschlands im DE JONG, J. 1988: Climatic variability during the past Pliozän und Frühquartär. Mit einem Beitrag three million years, as indicated by vegetational zur Biostratigraphie des Weichsel-Frühglazials. evolution in northwest Europe and with empha- – Geologisches Jahrbuch, A26: 3-151. sis on data from the Netherlands. – Philosophi- OGG, J., OGG, G. & GRADSTEIN, F. (2008): The Con- cal Transactions of the Royal Society of London, cise Geologic Time Scale. – 184p.; Cambridge B318: 603-617. (Cambridge University Press). ELLWANGER, D., GABRIEL, G., SIMON, T., WIELANDT- VAN DER HAMMEN, T., WIJMSTRA, T.A. & ZAGWIJN, SCHUSTER, U., GREILING, R.O., HAGEDORN, E.-M., H.W. (1971): The Floral Record of the Late HAHNE, J. & HEINZ, J. (2008): Long sequence of Cenozoic of Europe. – In: TUREKIAN, K.K.(ed.): Quaternary Rocks in the Heidelberg Basin Depo- The Late Cenozoic Glacial Ages: 391-424; New centre. – Quaternary Science Journal (Eiszeitalter Haven, London (Yale University Press). und Gegenwart), 57/3-4: 316-337. ZAGWIJN, H.W. (1957): Vegetation, climate and time GABRIEL, G., ELLWANGER, D., HOSELMANN, C. & WEI- correlation in the Early Pleistocene of Europe. DENFELLER, M. (2008): Preface: The Heidelberg – Geologie en Mijnbouw,N.S.19: 233-244. 410 JÜRGEN HAHNE, DIETRICH ELLWANGER & RÜDIGER STRITZKE

ZAGWIJN, H.W. (1960): Aspects of the Pliocene and ZAGWIJN, H.W. (1989): The Netherlands during the early Pleistocene vegetation in the Netherlands. Tertiary and the Quaternary: A case history of – Mededelingen Geologische Stichting, Serie Coastal Lowland evolution. – Geologie en Mijn- C-III, 5: 5-78. bouw, 68: 107-120. ZAGWIJN, H.W. (1963): Pollen-analytic investigations ZAGWIJN, H.W. & DE JONG, J. (1984): Die Intergla- in the Tiglian of the Netherlands. – Mededelin- ziale von Bavel und Leerdam und ihre stratig- gen Geologische Stichting, N.S., 16: 49-72. raphische Stellung im niederländischen Früh- ZAGWIJN, H.W. (1985): An outline of the Quaternary Pleistozän. – Mededelingen Rijks geologische stratigraphy of the Netherlands. – Geologie en Dienst, 37/3: 155-169. Mijnbouw, 64: 17-24. Eiszeitalter und Gegenwart 57/3–4 411–432 Hannover 2008 Quaternary Science Journal

Timing of Medieval Fluvial Aggradation at Bremgarten in the Southern Upper Rhine Graben – a Test for Luminescence Dating

MANFRED FRECHEN, DIETRICH ELLWANGER, DANIEL RIMKUS & ASTRID TECHMER *)

Abstract: The Holocene fl ood plain of the River Rhine is a complex dynamic sedimentary system. A series of geochronological results for the Bremgarten section including optically stimulated luminescence (OSL) and radiocarbon dating was determined to improve the understanding of part of the Holocene evolution of the River Rhine. The applied single aliquot regenerative (SAR) protocols and the applied experimental studies to fi nd the best luminescence behaviour leave us with confi dence that OSL dating is a suitable method for dating fl uvial sediments from large river systems. Insuffi cient bleaching of the sediments from Bremgarten prior to deposition seems to be not as dramatic as previously thought. OSL and radiocarbon dating results give evi- dence for a short period of major erosion and re-sedimentation of fl uvial sediments from the “Tiefgestade” at the Bremgarten section between 500 and 600 years before present. This time period correlates with the begin- ning of the Little Ice Age at about AD 1450. Several severe fl oods occurred in Southern Germany between AD 1500 and 1750; all those fl oods correlate to the period of the Little Ice Age, including the destruction of the village of Neuenburg AD 1525.

[Die zeitliche Stellung einer mittelalterlichen fluvialen Sedimentakkumulation im südlichen Oberr- heingraben am Beispiel Bremgarten – ein Test für Lumineszenz-Datierungen]

Kurzfassung: Die holozäne Überfl utungsebene des Rheins ist ein komplexes sedimentäres System. Die geo- chronologischen Untersuchungen mittels Optisch Stimulierter Lumineszenz (OSL) und Radiokohlenstoff-Da- tierungsmethode verbessern das Verständnis der holozänen Entwicklung des Rheinsystems und ermöglichen quantitative Studien zu Aggradationsphasen von Flüssen. Die angewandten Single-Aliquot-Regenerierung (SAR)-Protokolle und die angewandten experimentellen Untersuchungen zur Absicherung der Messparameter lassen erkennen, dass die OSL-Datierungstechnik eine geeignete Datierungsmethode für fl uviatile Sedimente aus großen Flusssystemen ist. Eine unvollständige Bleichung der fl uviatilen Sedimente vor der Ablagerung scheint für die Sedimente aus Bremgarten nicht so dramatisch zu sein wie ursprünglich vermutet. OSL- und Radiokohlenstoff-Datierungsergebnisse bestätigen eine kurze Periode starker Erosion und Akkumulation im Bereich des Tiefgestades von Bremgarten zwischen 500 und 600 Jahren vor heute. Dieses Zeitfenster korreliert mit dem Beginn der Kleinen Eiszeit um ca. AD 1450. Mehrere schwere Flussüberschwemmungen geschahen in Süddeutschland zwischen AD 1500 und 1750. Diese Überschwemmungsereignisse korrelieren mit dem Zeit- fenster der Kleinen Eiszeit, darunter die Zerstörung von Neuenburg im Jahre 1525.

Keywords: Upper Rhine Graben, river aggradation, OSL chronology, Little Ice Age, Quaternary

* Adresses of authors: M. Frechen, Leibniz Institute for Applied Geophysics, Section S3: Geochronol- ogy and Isotope Hydrology, Stilleweg 2, 30655 Hannover, Germany. E-Mail: Manfred.Frechen@liag- hannover.de; D. Ellwanger, Regierungspräsidium Freiberg, Landesamt für Geologie, Rohstoffe und Bergbau Baden-Württemberg, Albertstr. 5, 79104 Freiburg, Germany; A. Techmer, Leibniz Institute for Applied Geophysics, Section S3: Geochronology and Isotope Hydrology, Stilleweg 2, 30655 Hannover, Germany; D. Rimkus, Freie Universität Berlin, Geographical Sciences, Physical Geography, Malteserstr. 74-100, Haus H, 12249 Berlin, Germany 412 MANFRED FRECHEN, DIETRICH ELLWANGER, DANIEL RIMKUS & ASTRID TECHMER

1 Introduction cant erosion and aggradation occurred along the Rhine. Investigating terrestrial sediment archives Little is known about the timing of the Holo- of the past is imperative to learning and un- cene fl uvial activity of the River Rhine in the derstanding the future impact of climate and southern Upper Rhine Graben (URG). His- environmental changes. The Medieval climate torical data is available for major fl ood events optimum and the Little Ice Age are two his- during Medieval times. Numerical dating of torically recorded periods during which society fl uvial sediments is problematical, as described was considerably infl uenced by climate and in detail for the Middle and Lower Rhine area environment change. Fluvial landscapes in by BOENIGK & FRECHEN (1998, 2006) and the modern fl oodplains and lower terraces are par- northern Upper Rhine Graben by ERKENS et al. ticularly sensitive to climate change. Extreme (2009) and FRECHEN et al. (2006). During the weather events such as the millenium fl ood of past 15 years, much attention has been paid on the year AD 1342 had a catastrophic impact the investigation of the timing of fl uvial activ- on Man and the society and indeed caused a ity in the Rhine system. Fluvial sediments are signifi cant alteration of landscape, such as up particularly suitable for the application of opti- to 15 m deeply incised canyons and reworking cally stimulated luminescence (OSL) dating of up to 8 m thick fl uvial sediments in southern techniques (BUSSCHERS 2008; JAIN et al. 2003; Germany (BORK 1989). The extent of the fl uvial WALLINGA 2002). In this study, OSL dating dynamics and the temporal succession of such on fi ne-sand and radiocarbon dating on wood events are not yet understood in either large or was carried out on Holocene material from the small rivers. gravel pit at Bremgarten in the southern part of Extensive research has been carried out in the the Upper Rhine Graben. catchment area of the River Rhine on Pliocene The aim of this study is to test the suitability and Pleistocene terrace formation (e.g. BOENIGK of fl uvial sediments for OSL dating and to give & FRECHEN 2006; HAGEDORN & BOENIGK 2008, a more reliable chronological interpretation for WESTERHOFF 2008; and references within) dem- the Medieval fl uvial activity in the southern onstrating the complexity of this major fl uvial part of the URG. This is part of an ongoing sediment archive. The large increase in terrige- study investigating fl uvial sediments from the nous sediment supply during the Quaternary is Rhine system in the frame of the Heidelberg a result of continuous disequilibrium between Drilling Project. weathering, erosion, sediment transport and aggradation triggered by climatic perturba- 2 Geological setting tions (HINDERER 2001). Increased aggradation in the southern Upper Rhine Graben (URG) The Upper Rhine Graben is located between postdates the fi lling up of the Lake Constance the cities of Basel and Mainz. Its extension has (Bodensee) Basin and occurred synchronous a length of about 300 km and a width of up to with periods of major ice melting (WESSELS 36 km and about 20 km in the southern part and 1998). During these highly dynamic periods, in the northern part, respectively. The altitude including the glacial overdeepening of Alpine of the River Rhine decreases from about 280 m valleys, the peri-alpine basins were deeply above sea level (asl) in the south near Basel to eroded. Late Glacial and Holocene fl uvial ag- about 80 m asl in the north near Mainz. The gradation and terrace formation are triggered River Rhine fl ows in numerous meanders by climate change and tectonic processes as northwards, which were partly regulated in the well as human-induced adjustment of river years between 1817 and 1874. systems (SCHIRMER et al. 2005; BOS et al. 2008; The maximum subsidence of the Quaternary ERKENS et al. 2009; LÄMMERMANN-BARTHEL et is located in the Heidelberg Basin near to the al. in press). During the Little Ice Age, signifi - city of Heidelberg. BARTZ (1951, 1967, 1974) Timing of Medieval Fluvial Aggradation at Bremgarten 413

Fig. 1: Map showing the location of the Bremgarten section and the thickness of Quaternary sediments and the position of boreholes of the Heidelberg Drilling Project in the Upper Rhine Graben, modifi ed after HA- GEDORN (2004) and BARTZ (1974).

Abb. 1: Geographische Lage des Aufschlusses Bremgarten und der Bohrlokalitäten des Bohrprojektes Hei- delberger Becken sowie Mächtigkeit der quartären Sedimente im Oberrheingraben modifi ziert nach HAGE- DORN (2004) und BARTZ (1974). 414 MANFRED FRECHEN, DIETRICH ELLWANGER, DANIEL RIMKUS & ASTRID TECHMER reported a thickness of more than 300 m for the cycle. The trunk has a north-south orientation, Quaternary sequence and about 680 m for the which is very likely the transport direction in Pliocene record. The Heidelberg Drilling Project the river at the time of deposition (Fig. 2). The including the up to 500 m long sediment cores lower part of the tree has still its bark, whereas from the sections at Heidelberg-UniNord, at Lud- the upper part of the trunk is bare of bark, most wigshafen-Parkinsel (WEIDENFELLER & KÄRCHER likely owing to erosion by water and sediment 2008) and at Viernheim, is currently aiming to immediately after deposition of the trunk. reconstruct in detail the sediment archive of the Sample BRE3 was taken 20 cm above the trunk basin fi ll (Fig. 1) (ELLWANGER et al. 2005). A and sample BRE4 was taken from about 20 cm zone of elevated seismic activity is evidenced by below the trunk for OSL dating. Samples BRE1 the historical earthquakes of Basel Anno Domini and BRE2 were taken from a sand lens inter- (AD) 1021 and AD 1356. In the southern URG, calated in light-greyish gravel from the eastern tectonically active faults have caused offsets of quarry wall in 2003 (Fig. 3). A piece of wood up to 20 m during the Holocene (HÜTTNER 1991) was intercalated in the sand lens, as previously resulting in a distinct terrace step east of the river described by LÄMMERMANN-BARTHEL et al. (in Rhine. The higher level is called “Hochgestade” press) and used for radiocarbon dating. and the lower part between the step and the river Massive Alpine sediment supply into the URG is called “Tiefgestade”. The difference in alti- is unlikely for Medieval times, as lake Con- tude between “Hochgestade” and “Tiefgestade” stance again formed as a sediment trap for the reaches several metres and has formed by a tec- River Rhine (WESSELS 1998). In the geological tonically active fault propagating parallel to the past, massive Alpine sediment supply probably present river course (BRAM et al. 2005). NIVIÈRE resulted in a lateral movement of the Rhine et al. (2008) calculated maximum vertical move- over the whole southern URG (LÄMMERMANN- ments along the faults not exceeding 1.0 mm/yr BARTHEL et al. in press). since the Middle Pleistocene. The current activ- ity is concentrated along the westernmost faults. 3 Luminescence dating The coordinates of the section under investiga- tion are H5309115 and R3394285 of the Gauss- Luminescence dating of aeolian and fl uvial Krüger system used in German topographic sediments has proved to be successful where maps. The gravel pit Bremgarten GmbH is radiocarbon and other dating methods are located about 150 m east of the river Rhine and not applicable (FRECHEN et al. 1997; JAIN et situated in the lowermost part of the Lower Ter- al. 2003; LIAN & ROBERTS 2006; RITTENTOUR race termed “Tiefgestade” in the vicinity of the 2008). Since the late 1980s, luminescence villages Bremgarten and Hartheim. About 7 m dating of sediments has signifi cantly been im- thick sand and gravel successions are exposed proved by the development of more light sensi- including pebbles originating from the Swiss tive techniques such as green or blue optically Alps and the Black Forest. The upper part of stimulated luminescence (OSL) or infrared the sediment succession is coarser than the optically stimulated luminescence (IRSL) for lower part. A sand lens is covered by not well- monomineralic quartz or feldspar subsamples, sorted gravel about 2 m thick sand-rich. Up to respectively (HUNTLEY et al. 1985; HÜTT et al. three horizons can be distinguished and make 1988). A recent review about the lower and up- three deposition events likely (Fig. 2, 3). Wood per dating limit is found in WINTLE (2008). was collected for radiocarbon dating from the The basic principle of luminescence dating is sol- western wall about 3 m below surface. In 2006, id state dosimetry of ionising radiation (WINTLE two further trunks were exposed in the south 1997; AITKEN 1998; PREUSSER et al. 2008). wall and sampled for radiocarbon dating. The The quartz signal saturates at lower doses than two trunks were located at the top of a sand the feldspar signal. However, the advantage is layer which correlates to the base of a fi ning up often offset by the larger dose rates for the feld- Timing of Medieval Fluvial Aggradation at Bremgarten 415

Fig. 2: Picture showing the position of the samples under study. A trunk is intercalated in sandy sediments (sand lense). The trunk was sampled for radiocarbon dating. Two samples were taken from sand about 20 cm below (LUM1220) and about 20 cm above (LUM1219) the trunk.

Abb. 2: Foto der Position der Probennahmepunkte im Aufschluss Bremgarten. Ein Baumstamm ist in die sandigen Sedimente zwischen geschaltet (Sandlinse). Das Holz wurde zur Radiokohlenstoff-Datierung be- probt. Jeweils eine Probe wurde 20 cm unterhalb (LUM1220) und oberhalb (LUM1219) des Baumstammes für OSL-Datierungen entnommen.

Fig. 3: Picture showing the position of sample BRE1. A second trunk was found 150 m in the north of the profi le under study and sampled for radiocarbon dating.

Abb. 3: Foto mit der Position der Probe BRE1. Ein weiterer Baumstamm wurde etwa 150 m nördlich dieses Profi ls für eine Radiokohlenstoff-Datierung entnommen. 416 MANFRED FRECHEN, DIETRICH ELLWANGER, DANIEL RIMKUS & ASTRID TECHMER

Fig. 4: Idealised sketch of the lithological units and the geological interpretation and position of radiocarbon and luminescence samples.

Abb. 4: Idealisierte Abbildung der Sedimentabfolge in Bremgarten mit geologischer Interpretation und Posi- tion der Radiokohlenstoff- und Lumineszenzproben. spars owing to high potassium content within mined for fl uvial deposits usually results in age the feldspar mineral grains and athermal signal overestimation, if equivalent doses are measured instability owing to anomalous fading (WINTLE for samples containing a large number of grains. 1973). FUCHS et al. (2005) reported that quartz based

An important assumption of luminescence dat- equivalent dose (De) values yielded distinctly ing techniques is that the mineral grains were lower results than feldspar based De values suffi ciently long exposed to daylight/sunlight for fl ood sediments giving evidence for better prior to deposition to reset the radiometric bleaching of quartz minerals extracted from the clock (“zeroing the luminescence signal”). sediment. However, in large river systems the The level of zeroing depends on the exposure zeroing has been found to be more complete or time of the mineral grains to light, the avail- nearly complete owing to the very likely multiple able light intensity and the light spectrum. recycling of sediment during repeated phases of These parameters are strongly affected by deposition and erosion (WALLINGA 2002). Most fl uvial sedimentary dynamics including water bleaching does occur when the grains are close depth, sediment load, turbulence and turbidity, to the water surface where the light intensity is grain-size and transportation distance (RHODES greater and the light spectrum is more complete. & POWNALL 1994; FRECHEN 1995; MURRAY et al. Sediment from overbank deposits and scour 1995; WALLINGA et al. 2000; JAIN et al. 2003). pools are more likely to be suitable for lumi- In many fl uvial environments the probability of nescence dating. Samples taken from sediment complete zeroing of all sediment grains is low. of high-energy depositional environments like JAIN et al. (2003), WALLINGA (2002) and SINGA- mass fl ow deposits or sediments from kames, RAYER et al. (2005) pointed out that in contrast to are not suitable for luminescence dating (HÜTT aeolian sediment a distribution of values deter- & JUNGNER 1992). Partial bleaching of sediments Timing of Medieval Fluvial Aggradation at Bremgarten 417 is also attributed to fl ashy seasonal river fl ow (LEPPER et al. 2000; BAILEY & ARNOLD 2006; (fl oods) associated with high-amplitude precipi- ERKENS et al. 2009). Following these studies, it tation causing input from bank erosion (JAIN et appears to be mandatory to investigate a large al. 2003). The existence of scatter in equivalent number of single grains per sample from fl uvial dose determinations is an indication for incom- environments. plete zeroing of the OSL signal. Grain-to-grain The fi rst fl uvial sediments from Germany, variations do produce scatter in single aliquot which were investigated by a dating approach equivalent dose determinations (LAMOTHE et al. combining IRSL, OSL and thermolumines- 1994; MURRAY & ROBERTS 1997; OLLEY et al. cence (TL), were taken from sand layers of the 1999). The detection of partial bleaching was Lower Terrace from the River Emscher (FRE- previously investigated by using small single CHEN 1995). TL dating results showed large aliquots or single-grain methodology (FUCHS & uncertainties most likely owing to incomplete WAGNER 2003; SINGARAYER et al. 2005; PREUSSER bleaching prior to deposition; IRSL dating et al. 2007) and different statistical approaches of potassium-rich feldspars showed a better

Fig. 5: Preheat plateau, recycling ratio and recuperation for sample BRE3 using quartz extracts and the hot bleach procedure.

Abb. 5: „Preheat plateau”, „Recycling Ratio” und „Recuperation” für Quarze der Probe BRE3 unter Anwen- dung des „Hot Bleach”-Verfahrens. 418 MANFRED FRECHEN, DIETRICH ELLWANGER, DANIEL RIMKUS & ASTRID TECHMER agreement with the geological age estimates. athermal signal loss following irradiation and FRECHEN (1995) suggested to investigate 100- refl ecting the instability of some of the electron 200 μm potassium-rich feldspar extracts to test traps. HUNTLEY & LAMOTHE (2001) pointed out the bleaching behaviour for different transmis- that it is essential to determine the fading rate sion wavelength. precisely and carried out fading experiments Recent advances in instrumentation and mea- to correct the measured IRSL age estimates. surement protocols have played a key role in However, age correction is problematic and a enabling the dating of fl uvial sediments. OSL reliable procedure is still under discussion (AU- dating of quartz has been signifi cantly improved CLAIR et al. 2003; LAMOTHE et al. 2003; HUOT by single-aliquot regenerative (SAR) protocols & LAMOTHE 2003). There is a close relation be- (MURRAY & WINTLE 2000; WALLINGA et al. tween fading rate and geological provenance. 2001). Sensitivity changes are monitored and HUNTLEY & LAMOTHE (2001) determined fading corrected in the SAR protocol. This procedure rates for North American sediments ranging allows the determination of equivalent dose by from 2 to 10 % per decade (decade means a interpolation with a precision of up to 5 %. factor of 10 in time since irradiation). These Feldspar IRSL dating can be troubled by fading corrections are restricted to the low- anomalous fading (WINTLE 1973) causing dose linear portion of the dose response and age underestimation. Anomalous fading is an are not expected to be applicable to samples

Fig. 6: Preheat plateau, recycling ratio and recuperation for sample BRE3 using feldspar extracts.

Abb. 6: „Preheat plateau”, „Recycling Ratio” und „Recuperation” für Feldspäte der Probe BRE3. Timing of Medieval Fluvial Aggradation at Bremgarten 419 older than ~20 - 50 ka. Fading corrections with burial time, like moisture, sediment thickness, a potential to be applicable over a much wider grain-size, geochemical weathering of miner- range are under discussion (LAMOTHE et al. als or salts, mobilisation of clay minerals and 2003). Parts of the time-dependent signal from radioactive equilibria/disequilibria of the decay feldspars using pulsed stimulation show less chains and internal factors like the amount of fading than others (TSUKAMOTO et al. 2006) and 40K in potassium-rich feldspars. thus possibly providing another way of dating potassium-rich feldspars. PREUSSER et al. (2007) 4 Experimental details and luminescence reported that long-term fading has apparently characteristics no effect on potassium-rich feldspar specimens from the Swiss Alpine Foreland. Four luminescence samples were taken in Natural ionising radiation includes alpha, light-tight metallic cylinders from sand lenses beta and gamma irradiation released by the intercalated in gravel-rich fl uvial deposits. The radioactive decay of the unstable isotopes of outer light-exposed part of the sediment was the 238U, 235U and 232Th decay chains, 40K and removed under subdued light at both ends of to a minor content 87Rb and cosmic radiation. the cylinder. The sample preparation included The dose rate depends on a number of external sieving to separate the 100-200 μm or the factors, some of them are even variable during 150-200 μm grain-size fractions, followed by

Fig. 7: Preheat plateau, recycling ratio and recuperation for sample BRE4 using quartz extracts.

Abb. 7: Preheat plateau”, „Recycling Ratio” und „Recuperation” für Quarze der Probe BRE4. 420 MANFRED FRECHEN, DIETRICH ELLWANGER, DANIEL RIMKUS & ASTRID TECHMER removing the carbonates in 0,1 N hydrochloric were carried out for monomineralic quartz and acid, organic matter by 30 % hydrogen peroxide feldspar extracts to determine the De values and clay particles by sodium oxalate. The sand- more precisely (MURRAY & WINTLE 2000; WALL- sized feldspar grains with densities lower than INGA et al. 2000, 2001). All growth curves were 2.58 g/cm3 were extracted using heavy liquids fi tted using a saturating exponential function. and the sand-sized quartz was extracted from the A number of tests were carried out on both remaining fraction using heavy liquids of 2.62 quartz and feldspar extracts to investigate the g/cm3 and 2.70 g/cm3 densities. The quartz ex- luminescence characteristics and to evaluate tracts were etched with 40 % hydrofl uoric acid the suitability of the applied SAR protocol for for 60 minutes to remove feldspars and sieved the samples under study. again with a 100 μm mesh or 150 μm mesh. The sand-sized quartz or feldspar grains were Preheat plateau brought onto 0,9 mm steel discs (aliquots). IR stimulation was applied at the end of the quartz To determine appropriate preheat conditions SAR protocol to test whether single aliquots for the determination of De values and to show a contamination with feldspar deriving avoid thermal transfer effects, the variation from inclusions after etching with hydrofl uoric of equivalent dose with preheat temperature acid. Single aliquot regenerative-dose protocols was measured for both feldspar and quartz

Fig. 8: Preheat plateau, recycling ratio and recuperation for sample BRE4 using quartz extracts. The hot bleach procedure was applied (MURRAY & WINTLE 2003).

Abb. 8: „Preheat plateau“, „Recycling Ratio“ und „Recuperation“ für Quarze der Probe BRE4 unter Anwen- dung des „Hot Bleach“-Verfahrens (MURRAY & WINTLE 2003). Timing of Medieval Fluvial Aggradation at Bremgarten 421

extracts. A plateau of De values against preheat the natural or regenerated signal to determine temperature for quartz and feldspar was deter- sensitivity changes. The sensitivity correction mined using 10 seconds (s) preheats at 20°C is calculated by dividing the natural or rege- intervals from 200 to 300°C (cp. MURRAY et al. nerated IRSL or OSL intensity (Lx) by the test 1997). Results were obtained from all samples. dose IRSL or OSL intensity (Tx). The recycling Examples of preheat plateau are given in Figs. ratio (Rx/R1) is a test for the effectiveness of 5-11. A preheat temperature of 210°C or 220°C the sensitivity correction and determined by for 10 seconds was used for natural and regen- repeating the fi rst dose point in the growth erative doses for quartz extracts and feldspar curve at the end of the measured cycle. The extracts. recycling ratio should be consistent with unity. MURRAY & WINTLE (2000) suggested that ali- Recycling ratio quots should be rejected if recycling ratios are outside 10 % of unity. However, MURRAY & Changes in the measured luminescence inten- WINTLE (2000) pointed out that the recycling sity with dose are known to occur in quartz ratio only tests whether sensitivity changes fol- and feldspar during single aliquot measure- lowing laboratory measurements have been ac- ment procedures. Therefore a small test dose is curately corrected for. Figures 5-11 show plots given to each aliquot after the measurement of of recycling ratios for samples BRE1-4 show-

Fig. 9: Dose recovery test, recycling ratio and recuperation for sample BRE2 using feldspar extracts.

Abb. 9: „Dose recovery test“, „Recycling Ratio“ und „Recuperation“ für Feldspäte der Probe BRE2. 422 MANFRED FRECHEN, DIETRICH ELLWANGER, DANIEL RIMKUS & ASTRID TECHMER ing that for most of the samples the aliquots col for feldspar yielded recycling ratios within fall within 10 % of unity for the temperature 10 % of unity for the preheat temperature range range 200° to 220°C indicating that the SAR between 200° and 240°C. sensitivity correction is appropriate for these samples. Furthermore, a hot bleach treatment Dose recovery test was used for the quartz extracts. After mea- surement of the response to the test dose, the A successful dose recovery test indicates that aliquots were exposed to the blue diodes for 40 the SAR protocol produces internally consistent seconds whilst holding them at 280°C in order results for a sample and evaluates the credi- to reduce any build up of slow components in tability of the equivalent dose measured from a the OSL signal (Murray & Wintle, 2003). How- natural sample and so confi rms that the applied ever, the recycling ratios concerning the hot SAR protocol enables to recover a known labo- bleach procedure for samples BRE3-quartz and ratory dose (RHODES 2000). After bleaching the BRE4-quartz fall only within 35 % of unity in- aliquots with a dr. hönle solar simulator, the ali- dicating that the sensitivity correction is prob- quots were given a known laboratory dose close lematic although the fi nal OSL age estimates to the De value. The artifi cially dosed aliquots are within 1-standard deviation in agreement were then treated as “natural” in the SAR pro- with independent age control. The SAR proto- tocol (Table 1) to determine the De value (here:

Fig. 10: Preheat plateau, recycling ratio and recuperation for sample BRE1 using quartz extracts.

Abb. 10: „Preheat plateau“, „Recycling Ratio“ und „Recuperation“ für Quarze der Probe BRE1. Timing of Medieval Fluvial Aggradation at Bremgarten 423 dose recovery). An example for dose recovery the temperature range from 200° to 300°C for is given for sample BRE2-feldspar using a test sample BRE4-quartz. dose of 1.0 Gy (Fig. 9). The dose recovery tests yielded the recovering dose values within 5 % Single-aliquot regenerative dose protocol from the given dose in the preheat temperature range 200°-220°C. The single-aliquot regenerative (SAR) dose An example for thermal transfer is given in protocol was applied to determine the De val- Figure 7. Sample BRE4-quartz seems to be ues for feldspar and quartz (MURRAY & WINTLE stable for the temperature range between 200° 2000; WALLINGA et al. 2000, 2001; WINTLE and 220°C but shows an increasing amount of & MURRAY 2000). A dose response curve thermal transfer above 220°C. Recuperation is with typically three dose points is measured insuffi cient over the whole temperature range on a single aliquot by repeated irradiations, for sample BRE4-quartz (Fig. 8), whereas preheats and IRSL/OSL measurements. Sen- recuperation is less than 10 % and even less sitivity changes occurring due to laboratory than 5 % over the temperature range between heat treatment are monitored after each OSL 200° and 240°C for sample BRE2-feldspar measurement and corrected (Table 1). The and BRE1-quartz (Fig. 9, 10). The hot bleach weighted mean De value and the standard de- procedure gives a recuperation of >20 % over viation were calculated for most of the samples

Fig. 11: Preheat plateau, recycling ratio and recuperation for sample BRE2 using quartz extracts.

Abb. 11: „Preheat plateau“, „Recycling Ratio“ und „Recuperation“ für Quarze der Probe BRE2. 424 MANFRED FRECHEN, DIETRICH ELLWANGER, DANIEL RIMKUS & ASTRID TECHMER from 24 aliquots for both feldspar and quartz Equivalent dose determination was carried out grains. In general, aliquots were taken into ac- using the software Analyst 6.0 (G.A.T. Duller, count within a 3-sigma standard deviation and Aberystwyth, unpublished). Age calculation a recycling ratio between 0.8 and 1.2. Most of was applied by the software ADELE (M. the dose points for the natural signal plotted Krbetschek, Freiburg, unpublished). between fi rst and second artifi cial dose step. The hot bleach procedure resulted in two out- Dosimetry liers (samples BRE3 and BRE4) with recycling ratios of 0.87. The IRSL signal was measured As the outer shell of the feldspar minerals was with a Schott BG39/Corning 7-59 fi lter com- not etched by hydrofl uoric acid, alpha effi ciency bination between photomultiplier and feldspar was estimated to a mean value of 0.2±0.1 for extracts. A Schott U-340 fi lter with a detection all feldspar samples (DULLER 1994). Dose rates window of 290–370 nm was placed for OSL for all samples were calculated from potassium, measurements between photomultiplier and uranium and thorium contents, as measured by quartz extracts. Blue light emitting diodes were gamma spectrometry in the laboratory, assum- used for quartz stimulation. ing radioactive equilibrium for the decay chains. The following radioisotopes were measured: Table 1: Single Aliquot Regenerative (SAR) proto- 234Th, 214Bi, 214Pb and 212Pb for uranium; 228Ac, col, as applied for quartz (Qz) (OSL stimulation) and 208Tl and 212Pb for thorium and 40K for potas- feldspar (Fsp) grains (IRSL stimulation) (after MUR- sium. An average internal potassium content of RAY & WINTLE 2000; WALLINGA et al. 2000, 2001). 12±0.5 % was applied for all feldspar samples Tab. 1. SAR-Protokoll für Quarz (Qz) (OSL-Stimu- (HUNTLEY & BARRIL 1997). Cosmic dose rate lation) - und Feldspatminerale (Fsp) (IRSL Stimula- was corrected for the altitude and sediment tion) (nach MURRAY & WINTLE 2000; WALLINGA et al. thickness, as described by PRESCOTT & HUTTON 2000, 2001). (1994). The natural moisture content of the sedi- ment was estimated between 10±2 weight % and 1. Preheat of Natural 15±5 weight % for the samples. 2. IRSL decay of naturals for 300s at 50°C / OSL decay for 40s at 125°C 5 Results 3. Test dose (10s) 4. Preheat of test dose of 210°C for 10s (Fsp), Dosimetric results, De values, IRSL and OSL and 210°C for 0s (Qz) age estimates are shown in Tables 2 and 3. Un- 5. Measurement of test dose (IRSL decay for certainties are given in 1-sigma confi dence in- 300s at 50°C for Fsp / OSL decay for 40s at terval. The total dose rates range from 2.21±0.22 125°C for Qz) to 2.53±0.11 Gy/ka and 1.60±0.05 to 1.70±0.06 6. Regenerative dose Gy/ka for feldspar and quartz, respectively. The 7. Preheat of regenerative dose for 10s at De values range from 0.6 to 1.1 Gy for quartz 290°C (Fsp), 240°C or 260°C (Qz) grains and from 1.6 to 2.0 Gray for feldspar 8. IRSL decay of regenerative dose for 300s at extracts (Table 3), as determined by the SAR 50°C / OSL decay for 40s at 125°C protocol (Table 1). Examples for the quartz and 9. Test dose for 10s feldspar De-distributions of the single aliquot 10. Preheat of test dose at 210°C for 10s (Fsp), equivalent dose estimates and the radial plots of and 160°C or 210°C for 0s (Qz) the same values are shown in fi gs. 12-15. They 11. IRSL decay for 300s at 50°C / OSL decay give an impression on the complete resetting of for 40s at 125°C the OSL- signal prior to deposition. The radial 12. Repeat step 6-11 for R2, R3, zero point and plot (Fig. 15) displays an expanded De- distri- recycling point bution for the feldspar sample BRE4 indicating etc. an insuffi cient bleaching of these minerals. In Timing of Medieval Fluvial Aggradation at Bremgarten 425

Table 2: Dosimetric results, as determined by gammaspectrometry (ppm=parts per million; H2O = moisture of sediment in weight %).

Tab. 2: Dosimetrische Ergebnisse durch Gammaspektrometrie bestimmt (ppm = part per million; H2O = moisture of sediment in weight %). Sample LUM Depth Grain Size Uranium Thorium [m] [μm] [ppm] [ppm]

BRE 1 63 3.50 150-200 0.90±0.03 3.08±0.06 BRE 2 62 3.40 150-200 1.17±0.03 3.95±0.08 BRE 3 1219 3.00 150-200 1.13±0.01 3.78±0.03 BRE 4 1220 3.20 150-200 1.03±0.01 3.49±0.03

Potassium Cosmic Dose rate1 Dose rate2 H2O [%] [μGy/a] [%] [Gy/ka] [Gy/ka]

1.29±0.02 120±12 10±2 2.39±0.10 1.60±0.05 1.28±0.03 120±12 10±2 2.53±0.11 1.70±0.06 1.18±0.01 120±12 15±5 2.23±0.22 1.62±0.16 1.21±0.01 120±12 15±5 2.21±0.22 1.61±0.16 contrast the quartz (Fig. 12) of BRE4 (Fig. 14) The hot bleach procedure yielded an OSL age shows a nearly typical Gaussian distribution in- estimate of 370±130 a, slightly age underesti- dicating that the mean equivalent dose is an ap- mated if compared with the radiocarbon ages propriate estimate for the burial dose. OSL age on wood from the same profi le. Age underes- estimates are used for chronostratigraphic inter- timation is also indicated by the dose recovery pretation only. IRSL age estimates are used for test. Sample BRE4 taken from below the trunk methodological comparison in this study only. (Fig. 2) yielded OSL age estimates of 690±160 Two samples (BRE1 and BRE2) were taken a and 600±190 a (hot bleach), which are in from a sand lens at a depth of 3.40 m and 3.50 agreement within 1-sigma standard deviation m below surface at the Bremgarten section in with the results from sample BRE3. The IRSL 2003. The IRSL age estimates gave 0.9±0.1 age estimate is 890±60 a. ka and 1.0±0.1 ka, whereas OSL age estimates A trunk of an oak tree was sampled from the yielded 1.9±0.2 ka and 1.4±0.1 ka. It is likely fl uvial deposits at a depth of 3.00 m below that the OSL age estimates for the two samples surface from the Bremgarten section and from Bremgarten are overestimated owing to the studied by radiocarbon dating. The sand most chosen preheat temperature of 260°C causing likely correlates to the top of the second fi n- thermal transfer. Further experiments were un- ing-up cycle, whereas the trunk postdates the fortunately not possible owing to the lack of ma- deposition of the second fi ning-up cycle. The terial. The samples BRE3 and BRE4 were taken wood is intercalated between the sand layers in 2006 at the eastern wall of the gravel pit. of samples BRE1 and BRE2. The wood gave Sample BRE3 taken above a trunk, which was a conventional radiocarbon age of 510±45 BP dated by radiocarbon, gave an OSL age esti- (Hv 25350) resulting in a calibrated age of AD mate of 460±170 a, whereas the IRSL age es- 1330–1440 (Table 4). The chronological results timate on feldspar extracts yielded 740±270 a. are stratigraphically consistent and in agree- 426 MANFRED FRECHEN, DIETRICH ELLWANGER, DANIEL RIMKUS & ASTRID TECHMER ment with geological estimates. Two samples of insuffi cient bleaching. IRSL dating yielded from a second trunk of the eastern wall taken very likely age overestimation for the fl uvial in the same stratigraphic position and interca- sands from the Bremgarten section, if compared lating the sand layers of samples BRE3 and with radiocarbon data and OSL dating results. BRE4 gave radiocarbon ages of 440±45 BP Radiocarbon ages and IRSL age estimates are in and 485±45 BP resulting in calibrated radiocar- agreement within 1-sigma standard deviation. bon ages of AD 1420-1480 and AD 1405-1445, From a stratigraphical point of view, the IRSL respectively. The latter trunk from the eastern dating results are also reasonable and could give wall has about 40 tree-rings. Little variation in the true deposition age. However, fading correc- the thickness of the annual tree rings made the tion was not applied for these feldspar extracts. trunk unsuitable for dendrochronology (H.H. A similar behaviour was described for samples Leuschner, pers. com. 10/03/2008). from historically deposited sediments from the Rhine-Meuse system in the Netherlands 6 Discussion and Conclusion (WALLINGA et al. 2001; ERKENS et al. 2009). The likely reason for this age overestimation is insuf- In this study, we are confi dent that most of the fi cient bleaching prior to deposition. However, quartz extracts yielded reliable results and un- the results are in stratigraphic order and small certainties for De values. The resulting OSL age offsets for the youngest samples indicate that estimates are in excellent agreement with the insuffi cient bleaching does not seem to be dra- radiocarbon ages indicating that in large fl uvial matic for the samples from Bremgarten. It is still systems the mineral grains are suffi ciently zeroed under discussion whether changes in sensitivity prior to fi nal deposition owing to several cycles during the measurement of the natural signal of remobilisation. Furthermore, the results show or contamination of the quartz fast component that OSL methods are suitable for dating fl uvial OSL signal by a less stable slow component are deposits. It is important to note that age overes- responsible for the IRSL age overestimation al- timation owing to insuffi cient bleaching prior to ternatively OSL age underestimation. It remains deposition does not seem to be dramatic for the risky to extrapolate the results of Holocene fl u- sediments under study. But OSL dating is not vial sediments to those fl uvially transported and precise enough to set up an annual or decadal deposited during the Weichselian glaciation. resolution for fl uvial sediment records owing to Heterogenous radiation fi elds including an un- the error between 5 and 10 % and the possibility equal distribution of radioisotopes in the sedi-

Table 3: Equivalent dose (De) values in Gray (Gy) and luminescence age estimates in 1000 years (ka) for quartz and feldspar extracts using SAR protocols.

Tab. 3: Äquivalentdosis (De) in Gray (Gy) und Lumineszenz-Alter in 1000 Jahren (ka) für Quarz- und Feld- spatextrakte mit einem SAR-Protokoll gemessen. Sample LUM De value in [Gy] OSL Age in [ka] SAR-Fsp SAR-Qz SAR-Fsp SAR-Qz

BRE1 62 2.1±0.1 3.0±0.3 0.88±0.06 1.9±0.2 BRE2 63 2.4±0.1 2.4±0.1 0.95±0.06 1.4±0.1 BRE3 1219 1.6±0.6 0.75±0.27 0.74±0.27 0.46±0.17 Hot bleach 1219 0.59±0.21 0.37±0.13 BRE4 1220 2.0±0.5 1.10±0.26 0.89±0.06 0.68±0.16 Hot bleach 1220 0.97±0.26 0.60±0.19 Timing of Medieval Fluvial Aggradation at Bremgarten 427

Table 4: Radiocarbon data.

Tab. 4: Radiokohlenstoff-Daten.

Hv Sample Material Depth δ13C 14C Age calibrated time interval m ‰ Years BP. cal ... 25350 BRE 1 Holz - -26.5 510 ± 45 AD 1330 – 1440 25637 BRE 2 Holz - -24.9 440 ± 45 AD 1420 – 1480 25638 BRE 3 Holz - -25.3 485 ± 45 AD 1405 – 1445 ment and the occurrence of insuffi cient bleach- ments and thus giving reason for heterogenous ing prior to deposition can cause problems microdosimetry, as previously described by for the determination of De values, if small using spatially resolved detection of lumines- aliquots or single-grain techniques are applied cence (GREILICH & WAGNER 2006). (MAYYA et al. 2006). Titanite, monazite and At about 2800 cal BP during the transition zircon are uranium- and thorium-rich minerals from Subboreal to Subatlantic, climate abruptly resulting in radioactive hot spots in the sedi- changed from a relatively warm and continental

Fig. 12: Distribution of De values in increased order for quartz extracts of sample BRE4.

Abb. 12: Verteilung der De-Werte von Probe BRE4 (Quarz) in ansteigender Richtung angeordnet. 428 MANFRED FRECHEN, DIETRICH ELLWANGER, DANIEL RIMKUS & ASTRID TECHMER

Fig. 13: Distribution of De values in increased order for feldspar extracts of sample BRE4.

Abb. 13: Verteilung der De-Werte von Probe BRE4 (Feldspat) in ansteigender Richtung angeordnet.

Fig. 14: Radial plot of De values for quartz extracts of sample BRE4. 92 % of the data points are within the 2-sigma standard deviation.

Abb. 14: Radialplot der De-Werte von Probe BRE4 (Quarz). 92 % der Datenpunkte liegen innerhalb der 2- sigma Standardabweichung. Timing of Medieval Fluvial Aggradation at Bremgarten 429 climate to cooler and wetter conditions. The wet- URG. The latest radiocarbon data make a cor- ter climate in combination with intense human relation of this major sediment mobilisation with activity caused enhanced deforestation result- the weather anomaly of AD 1342 unlikely. ing in an increased erosion and run-off. Large Based on the radiocarbon data, the serious his- amounts of waterlogged sediment were trans- torical earthquake around the city of Basel in ported into the River Rhine causing a change in the year AD 1356 seems to be also unlikely to the meandering pattern of the river (BOS et al. have triggered such a fl ood causing erosion and 2008). Luminescence and radiocarbon dating accumulation of about 3.50 m of gravel at the results give evidence for a short period of major Bremgarten section. However, the OSL age es- erosion and re-sedimentation of fl uvial sedi- timates do not clearly exclude a deposition age ments from the “Tiefgestade” at the Bremgarten around the weather anomaly of AD 1342 or the section between 500 and 600 years before pres- Basel earthquake in the year AD 1356 owing to ent. This time period correlates with the begin- the large error. ning of the Little Ice Age lasting from about AD In the Netherlands, the youngest drift sands 1450 to 1850 (BORK 1989). Several severe fl oods from the Maas River yielded a radiocarbon occurred between 1500 and 1750, all correlated age of <1000 BP and an OSL age estimate of to the Little Ice Age; e.g. destruction of the vil- 0.6±0.1 ka (BATEMAN & VAN HUISSTEDEN 1999) lage of Neuenburg AD 1525 (GLASER 2001). and so might be correlated with the remobilised Furthermore, an extreme weather event resulting fl uvial sediments from the southern URG. in a millenium fl ood is described for the year AD The present data set leaves us uncomfortably 1342. This fl ood caused a signifi cant alteration with questions about the linkage of the ag- of landscape such as up to 15 m deep incised gradation periods with climate forcing of the canyons and reworking of 6-8 m thick fl uvial Rhine system in southern Germany. The results sediments as debris fl ows in southern Germany contradict the cold climate origin of terrace (BORK 1989). The weather anomaly of AD 1342 sediments in the southern Upper Rhine Gra- could be very likely the reason for the fl uvial ben and open up new challenging questions. dynamics including the aggradation of fl uvial Methodological problems, such as the degree sediments more than 3 m thick in the southern of bleaching during fl uvial transport are still

Fig. 15: Radial plot of De values for feldspar extracts of sample BRE4. 40 % of the data points are within the 2-sigma standard deviation.

Abb. 15: Radialplot der De-Werte von Probe BRE4 (Feldspat). 40 % der Datenpunkte liegen innerhalb der 2-sigma Standardabweichung. 430 MANFRED FRECHEN, DIETRICH ELLWANGER, DANIEL RIMKUS & ASTRID TECHMER

diffi cult to determine, although age overesti- – In: ROTHE J.P. & SAUER, K. (eds): The Rhinegra- mation in large river systems seems to be not as ben Progress Report 1967. Abhandlungen Geolo- dramatical as previously described. The quartz gisches Landesamt Baden-Württemberg, 6: 1-2. SAR protocol is very likely the best method to BARTZ, J. (1974): Die Mächtigkeit des Quartärs im apply OSL dating to fl uvial deposits. However, Oberrheingraben. – In: ILLIES, J.H. & FUCHS, the IRSL age estimates, although not fading K. (eds): Approaches to Taphrogenesis; – In- corrected, are also in agreement within the ter-union Commission Geodynamics Scientifi c Report, 8: 78-87. 1-sigma standard deviation, if compared to ra- BATEMAN, M.D. & HUISSTEDEN, K. van (1999): The diocarbon dates and so give also likely true de- timing of the last-glacial periglacial and aeolian position ages. This is part of an ongoing study events, Twente, eastern Netherlands. – Journal investigating the timing of periods of increased of Quaternary Science, 14: 277-283. aggradation in the Rhine system highlighting BOENIGK, W. & FRECHEN, M. (1998): Zur Geologie the response of a Central European large river der Deckschichten von Kärlich/Mittelrhein. system situated in a tectonically active region – Eiszeitalter und Gegenwart, 48: 38-49. to environmental and climate change. BOENIGK, W. & FRECHEN, M. (2006): The Pliocene and Quaternary fl uvial archives of the Rhine system. – Quaternary Science Reviews, 25: Acknowledgment 550-574. BORK, H.R. (1989): Soil erosion during the past mil- This study was funded by the Deutsche Forsc- lennium in central Europe and its signifi cance hungsgemeinschaft (DFG) (HI 643/2-3), which within the geomorphodynamics of the Holocene. is appreciated. We thank Dr. Frank Preusser – Catena supplement, 15: 121-131. and an anonymous referee for valuable im- BOS, J.A.A., DAMBECK, R., KALIS, A.J., SCHWEIZER, A. provements of a previous version of the manu- & THIEMEYER, H. (2008): Palaeoenvironmental script. Sabine Mogwitz, Petra Posimowski and changes and vegetation history of the northern Sonja Riemenschneider are thanked for their Upper Rhine Graben (southwestern Germany) since the Lateglacial. – Netherlands Journal of excellent technical support and last but not Geosciences – Geologie en Mijnbouw, 87/1: least Juliane Herrmann for the art-work. Part of 67-90. this study was done in the frame of a Bachelor BRAM, K., WIRSING, G., BROST, E., ELSASS, P. & WONIK, thesis by Daniel Rimkus (FU Berlin). T. (2005): Kombinierte geophysikalische Erkund- ung der Aquifergeometrie und der Chloridver- References breitung im quartären Grundwasserleiter des südlichen Oberrheingrabens zwischen Breisach AITKEN, M.J. (1998): Introduction to Optical Dating. und Fessenheim. – Berichte Naturforschende – 267 p.; Oxford (Oxford University Press). Gesellschaft Freiburg i. B., 95/1: 47-69. AUCLAIR, M., LAMOTHE, M. & HUOT, S. (2003): BUSSCHERS, F. (2008): Unravelling the Rhine - Re- Measurement of anomalous fading for feldspar sponse of a fl uvial system to climate change and IRSL using SAR. – Radiation Measurements, sea-level oscillation. – PhD thesis, 183 p., Vrije 37: 487-492. Universiteit Amsterdam. BAILEY, R.M. & ARNOLD, L.J. (2006): Statistical DULLER, G.A.T. (1994): Luminescence dating of sed- modelling of single grain quartz De distributions iments using single aliquots: New procedures. and an assessment of procedures for estimating – Quaternary Science Reviews, 13: 149-156. burial dose. – Quaternary Science Reviews, 25: ELLWANGER, D., GABRIEL, G., HOSELMANN, C., LÄM- 2475-2502. MERMANN-BARTHEL, J. & WEIDENFELLER, M. BARTZ, J. (1951): Revision des Bohrprofils der (2005): The Heidelberg Drilling Project (Upper Heidelberger Radium-Sol-Therme. – Jahresb- Rhine Graben, Germany). – Quaternaire, 16/3: ericht und wissenschaftliche Mitteilungen des 191-199. Oberrheinischen Geologischen Vereins, N.F., ERKENS, G., DAMBECK, R., VOLLEBERG, K.P., BOUMAN, 33: 101-125. M.T.I.J., BOS, J.A.A., COHEN, K.M., WALLINGA, J. BARTZ, J. (1967): Recent movements in the Upper & HOEK, W.Z. (2009): Fluvial terrace formation Rheingraben, between Rastatt and Mannheim. in the northern Upper Rhine Graben during the Timing of Medieval Fluvial Aggradation at Bremgarten 431

last 20000 years as a result of allogenic controls HUOT, S. & LAMOTHE, M. (2003): Variability of in- and autogenic evolution. – Geomorphology, doi: frared stimulated luminescence properties from 10.1016/j.geomorph.2008.07.021. fractured feldspar grains. – Radiation Measure- FRECHEN, M. (1995): Lumineszenz-Datierungen der ments, 37: 499-503. pleistozänen Tierfährten von Bottrop-Welheim. HÜTT, G., JAEK, I. & TCHONKA, Y. (1988): Optical dat- – Münchner Geowissenschaftliche Abhandlun- ing: K-feldspars optical response stimulation spec- gen, 27: 63-80. tra. – Quaternary Science Reviews, 7: 381-386. FRECHEN, M., HORVÁTH, E. & GÁBRIS, G. (1997): HÜTT, G. & JUNGNER, H. (1992): Optical and TL Geochronology of Middle and Upper Pleisto- dating on glaciofl uvial sediments. – Quaternary cene loess sections in Hungary. – Quaternary Science Reviews, 11: 161-163. Research, 48: 291-312. HÜTTNER, R. (1991): Bau und Entwicklung des FRECHEN, M., SIERRALTA, M., OEZEN, D. & URBAN, Oberrheingrabens – Ein Überblick mit histo- B. (2006): Uranium-series dating of peat from rischer Rückschau. – Geologisches Jahrbuch, Central and Northern Europe. – In: SIROCKO, F., E48: 17-42. CLAUSSEN, M., SANCHEZ-GONI, M.F. & LITT, T. JAIN, M., MURRAY, A.S. & BÖTTER-JENSEN, L. (2003): (eds.): The climate of past interglacials. – Qua- Optically stimulated luminescence dating: How ternary Sciences, 7: 93-117. signifi cant is incomplete bleaching in fl uvial en- FUCHS, M. & WAGNER, G.A. (2003): Recognition of vironments. – Quatenaire, 15: 143-157. insuffi cient bleaching by small aliquots of quartz LÄMMERMANN-BARTHEL, J., HINDERER, M., NEEB, I. for reconstructing soil erosion in Greece. – Qua- & FRECHEN, M. (accepted): Late glacial to Ho- ternary Science Reviews, 22: 1161-1167. locene fl uvial aggradation and incision in the FUCHS, M., STRAUB, J. & ZÖLLER, L. (2005): Re- southern Upper Rhine Graben – climatic and sidual luminescence signals of recent river fl ood tectonic controls. – Quatenaire. sediments: a comparison between quartz and LAMOTHE, M., BALESCU, S., AUCLAIR, M. (1994): feldspar of fi ne- and coarse-grain sediments. Natural IRSL intensities and apparent lumines- – Ancient TL, 23: 25-30. cence ages of single feldspar grains extracted GLASER, R. (2001): Klimageschichte Mitteleuropas from partially bleached sediments. – Radiation – 1000 Jahre Wetter, Klima und Katastrophen. Measurements, 23: 555-561. – 227 p.; Darmstadt (Wissenschaftliche Buch- LAMOTHE, M., AUCLAIR, M., HANAZAOUI, C. & HUOT, gesellschaft). S. (2003): Towards a prediction of long-term GREILICH, S. & WAGNER, G.A. (2006): Development anomalous fading of feldspar IRSL. – Radiation of spatially resolved dating technique using HR- Measurements, 37: 493-498. OSL. – Radiation Measurements, 41: 738-743. LEPPER, K., AGERSNAP, N., LARSEN, S. & MCKEEVER, HAGEDORN, E.-M. & BOENIGK, W. (2008): The Pliocene S.W.S. (2000): Equivalent dose distribution and Quaternary sedimentary and fl uvial history of analysis of Holocene aeolian and fl uvial quartz the Upper Rhine Graben based on heavy mineral sands from Central Oklahoma. – Radiation Mea- analyses. – Netherlands Journal of Geosciences surements, 32: 603-608. – Geologie en Mijnbouw, 87: 21-32. LIAN, O.B. & ROBERTS, R.G. (2006): Dating the HINDERER, M. (2001): Late Quaternary denudation Quaternary: progress in luminescence dating of of the Alps, valley and lake fi llings and modern sediments. – Quaternary Science Reviews, 25: river loads. – Geodinamica Acta, 14: 231-263. 2449-2468. HUNTLEY, D.J., GODFREY-SMITH, D.I. & THEWALT, MAYYA, Y.S., MORTHEKAI, P., MURARIB, M.K. & M.L.W. (1985): Optical dating of sediments. SINGHVI, A.K. (2006): Towards quantifying beta – Nature, 313: 105-107. microdosimetric effects in single-grain quartz HUNTLEY, D.J. & BARRIL, M.R. (1997): The K con- dose distribution. – Radiation Measurements, tent of the K-feldspars being measured in optical 41: 1032-1039. dating or in thermoluminescence dating. – An- MURRAY, A.S., OLLEY, J.M. & CAITCHEON, G.G. cient TL, 15: 11-13. (1995): Measurement of equivalent doses in HUNTLEY, D.J. & LAMOTHE, M. (2001): Ubiquity of quartz from contemporary water-lain sediments anomalous fading in K-feldspars and the mea- using optically stimulated luminescence. – Qua- surement and correction for it in optical dating. ternary Science Reviews, 14: 365-371. – Canadian Journal of Earth Sciences, 38: 1093- MURRAY, A.S. & ROBERTS, R.G. (1997): Determining 1106. the burial time of single grains of quartz using 432 MANFRED FRECHEN, DIETRICH ELLWANGER, DANIEL RIMKUS & ASTRID TECHMER

optically stimulated luminescence. – Earth Pla- WESSELS, M. (2005): Holocene fluviatile pro- netary Science Letters, 152: 163-180. cesses and valley history in the River Rhine ERGET IKAU MURRAY, A.S., ROBERTS, R.G. & WINTLE, A.G. catchment. – In: H , J. & D , R. (eds.): (1997): Equivalent dose measurement using a Natural and Human Impacts in the River Rhine single aliquot of quartz. – Radiation Measure- Catchment. – Erdkunde, 59: 199-215. ments, 27: 171-184. SINGARAYER, J.S., BAILEY, R.M., WARD, S. & STOKES, MURRAY, A.S. & WINTLE, A.G. (2000): Lumines- S. (2005): Assessing the completeness of optical cence dating of quartz using an improved single- resetting of quartz OSL in the natural environ- aliquot regenerative-dose protocol. – Radiation ment. – Radiation Measurements, 40: 13-25. Measurements, 32: 57-73. TSUKAMOTO, S., DENBY, P.M., MURRAY, A.S. & BÖT- TER ENSEN MURRAY, A.S. & WINTLE, A.G. (2003): The single -J , L. (2006): Time-resolved lumines- aliquot regenerative dose protocol potential for cence from feldspars: New insight into fading. improvements in reliability. – Radiation Mea- – Radiation Measurements, 41: 790-795. surements, 37: 377-381. WALLINGA, J. (2002): Optical dating of fluvial depos- NIVIÈRE, B., BRÜSTLE, A., BERTRAND, G., CARRETIER, its: a review. – Boreas, 31: 302-323. ALLINGA URRAY INTLE S., BEHRMANN, J. & GOURRY, J.C. (2008): Active W , J., M , A.S. & W , A.G. (2000): tectonics of the southern Upper Rhine Graben, The single-aliquot regenerative-dose (SAR) pro- Freiburg area (Germany). – Quaternary Science tocol applied to coarse-grain feldspar. – Radia- Reviews, 27: 541-555. tion Measurements, 32: 529-533. ALLINGA ULLER URRAY OLLEY, J.M., CATCHEON, G.G., ROBERTS, R.G. (1999): W , J., D , G.A.T., M , A.S. & The origin of dose distributions in fl uvial sedi- TÖRNQUIST, T.E. (2001): Testing optically stimu- ments, and the prospect of dating single grains lated luminescence dating of sand-sized quartz from fl uvial sediments using optically stimu- and feldspar from fl uvial deposits. – Earth and lated luminescence. – Radiation Measurements, Planetary Science Letters, 193: 617-630. 20: 207-217. WEIDENFELLER, M. & KÄRCHER, T. (2008): Tectonic PRESCOTT, J.R. & HUTTON, J.T. (1994): Cosmic ray infl uence on fl uvial preservation: aspects of contributions to dose rates for luminescence and the architecture of Middle and Late Pleistocene ESR dating: large depths and long-term time vari- sediments in the northern Upper Rhine Graben, ations. – Radiation Measurements, 23: 497-500. Germany. – Netherlands Journal of Geosciences PREUSSER, F., BLEI, A., GRAF, H. & SCHLÜCHTER, – Geologie en Mijnbouw, 87: 33-40. C. (2007): Luminescence dating of Würmian WESTERHOFF, W. (2008): Stratigraphy and sedimen- (Weichselian) proglacial sediments from Swit- tary evolution. The lower Rhine-Meuse system zerland: methodological aspects and stratigraph- during the Late Pliocene and Early Pleistocene ical conclusions. – Boreas, 36: 130-142. (southern North Sea Basin). – PhD thesis, Vrije PREUSSER, F., DEGERING, D., FUCHS, M., HILGERS, Universiteit Amsterdam: 1-168. ESSELS A., KADEREIT, A., KLASEN, N., KRBETSCHEK, M., W , M. (1998): Natural environmental change RICHTER, D. & SPENCER; J.Q.G. (2008): Lumi- indicated by Late Glacial and Holocene sedi- nescnce dating: basics, methods and applica- ments from Lake Constance, Germany. – Pal- tions. – Eiszeitalter und Gegenwart (Quaternary aeoclimatology, Palaeogeography, Palaeoeco- Science Journal), 57/1-2: 95-149. logy, 140: 421-430. INTLE RHODES, E.J. (2000): Observations of thermal trans- W , A.G. (1973): Anomalous fading of thermo- fer OSL signals in glacigenic quartz. – Radiation luminescence in mineral samples. – Nature, 245: Measurements, 32: 595-602. 143-144. INTLE RHODES, E.J. &, POWNALL, L. (1994): Zeroing of the W , A.G. (1997): Luminescence dating: labora- OSL signal in quartz from young glaciofl uvial tory procedures and protocols. – Radiation Mea- sediments. – Nuclear Tracks and Radiation Mea- surements, 27: 769-817. surements, 23: 581-585. WINTLE, A.G. (2008): Luminescence dating: where RITTENTOUR, T.M. (2008): Luminescence dating of it has been and where it is going. – Boreas, 37: fl uvial deposits: application to geomorphic, 471-482. palaeoseismic and archaeological research. WINTLE, A.G. & MURRAY, A.S. (2000): Quartz OSL: – Boreas, 37: 613-635. effects of thermal treatment and their relevance SCHIRMER; W., BOS, J.A.A., DAMBECK, D., HINDERER, to laboratory dating procedures. – Radiation M., PRESTON, N., SCHULTE, A., SCHWALB, A. & Measurements, 32: 387-400. Hinweise für Autoren

Manuskript Übermittlung: Das Manuskript ist der Schriftleitung in dreifacher Ausfertigung zuzusenden. Manuskriptfor- mat DIN A4, einseitig bedruckt, durchnummeriert und mit Namen und Adresse des Erstautoren versehen. Bitte benutzen Sie eine Standard-Textverarbeitung im .rtf oder .doc-Format. Als Zeichensatz verwenden Sie bitte die Standard-Fonts Ti- mes Roman, Helvetica oder Courier mit einem 1,5-fachen Zeilenabstand. Bitte das eingereichte Manuskript nicht heften. Manuskripte, die nach der Begutachtung zum Druck angenommen sind, werden nur auf Anforderung an die Autoren zu- rückgesendet. Dies gilt auch für beigefügte Originale (Zeichnungen, Fotos etc.). Die überarbeitete Endversion des Manus- kriptes ist abschließend auf einer CD/Diskette und als Ausdruck bei der Schriftleitung einzureichen. Eine Übermittlung via E-Mail ist ebenso möglich. Ausdruck und elektronische Fassung müssen identisch sein, etwaige notwendige Änderungen können den Autoren in Rechnung gestellt werden. Manuskriptform: Als Publikationssprachen sind Englisch und Deutsch zugelassen. Manuskripte in deutscher Sprache müssen einen englischen Untertitel tragen sowie eine englische Kurzfassung und englische keywords beinhalten. Es gelten die Regeln der neuen Rechtschreibreform. Die Manuskripte sollen folgendem Aufbau entsprechen: I. Kurze, aber prägnante Überschrift II. Ausgeschriebener Vor- und Nachname mit akademischem Grad, Post- und E-Mail-Adresse III. Bis zu fünf englische keywords, die den Inhalt des Manuskriptes widerspiegeln. IV. Deutsche und englische Kurzfassung des Textes mit einer Länge von bis zu 200 Wörtern. Der englische Untertitel des Manuskriptes ist der englischen Kurzfassung in eckigen Klammern voranzustellen. V. Klar gegliederter Text. Kapitelnummerierungen sind mit arabischen Ziffern zu versehen. VI. Alphabetisch geordnete Literatur- liste. Die Zitierweise muss der unten angegebenen Form entsprechen.

Im fortlaufenden Text sind Literaturhinweise als Kurzzitate einzufügen, der oder die Autorennamen sind in KAPITÄLCHEN- Schrift zu setzen, das Erscheinungsjahr in Klammern, z. B. MÜLLER (2006). Werden von einem Autor mehrere Arbeiten aus einem Jahr zitiert, so sind diese durch Buchstaben zu unterscheiden: MÜLLER (2006a, 2006b). Bei mehr als drei Autoren kann et al. verwendet werden: MÜLLER et al. (2006). Arbeiten mit bis zu drei Autoren werden folgendermaßen zitiert: MÜL- LER & MEYER (2006) oder MÜLLER, MEYER & SCHULZ (2006). Sind mit der Zitierung bestimmte Seiten oder Abbildungen gemeint, müssen diese genau angegeben werden: MÜLLER (2006: 14) oder MÜLLER (2006: Fig. 14). Die wissenschaftlichen Namen von Pflanzen und Tieren (Gattungen, Untergattungen, Arten, Unterarten) sind kursiv zu schreiben. Die den biologischen Namen folgenden Autoren werden in KAPITÄLCHEN gesetzt. (Armeria maritima WILLD.) Bitte keinen Blocksatz verwenden, sondern einen rechtsseitigen Flatterrand. Bitte keine automatische Silbentrennung verwenden. Bitte alle automatischen Formatierungen in ihrer Textarbeitung deaktivieren. Bitte keine Seitenzählung Abbildungen, Tabellen und Fotos nicht in den Text einbauen, sondern separat als Ausdruck beifügen. Abbildungsunter- schriften am Ende des Manuskripttextes platzieren. Abbildungen: Bitte fügen sie jede Abbildung als separaten Ausdruck bei und versehen sie den Ausdruck mit dem Namen des Autors, der Abbildungsnummer und der Ausrichtung der Abbildung. Alle Grafiken müssen eine Verkleinerung auf Spaltenbreite (= 7 cm) oder Satzspiegel (= 14,5 x 21 cm) zulassen. Die Beschriftung muss nach der Verkleinerung noch gut lesbar sein. Sollte eine Legende nötig sein, so binden sie diese in die Abbildung ein. Bitte vermeiden sie Haarlinien oder Grauwerte. Für die Drucklegung müssen alle Abbildungen in elektronischer Form eingereicht werden. Bitte verwenden sie hoch aufgelöste Dateien im .tif- oder .eps-Format (600 dpi). Stark reduzierte .jpg oder .pdf-Dateien oder in Word-Dokumente eingebundene Abbildungen werden nicht akzeptiert. Farbige Abbildungen sind kostenfrei möglich, wobei der Autor die Notwendigkeit farbiger Abbildung mit Einreichen des Manuskriptes begründen sollte. Zitierweise (Beispiele): Aufsätze: SCHWARZBACH, M. (1968): Neue Eiszeithypothesen. – Eiszeitalter und Gegenwart, 19: 250-261. EISSMANN, L. & MÜLLER, A. (1979): Leitlinien der Quartärentwicklung im norddeutschen Tiefland. – Zeitschrift für Geo- logische Wissenschaften, 7: 451-462. ZAGWIJN, W.H. (1996): The Cromerian Complex Stage of the Netherlands and correlation with other areas in Europe. – In: TURNER, C. (ed.): The Middle Pleistocene in Europe: 145-172; Rotterdam (Balkema). MAGNY, M. & HAAS, J.N. (2004): A major widespread climatic change around 5300 cal. yr BP at the time of the Alpine Iceman. – Journal of Quaternary Science, 19: 423-430. DOI: 10-1002/jqs.850 Monographische Werke, Bücher: EHLERS, J. (1994): Allgemeine und historische Quartärgeologie. – 358 S.; Stuttgart (Enke). Bitte keine Abkürzungen der Zeitschriftentitel verwenden. Sonderdrucke: Autoren erhalten 20 Sonderdrucke kostenfrei, Weitere auf Kosten des Verfassers. Instruction to Authors Manuscript submission: Please send your manuscript in triplicate to the Editor, printed on one side of standard sized pa- per (DIN A4) with the author’s permanent and temporary addresses. Microsoft Word files are preferred (.rtf or .doc-files). Use 12pt type in one of the standard fonts: Times Roman, Helvetiva, or Courier is preferred. It is not necessary to double space your manuscript. Do not use staples to fix your manuscript. Manuscripts accepted for publication, including original artwork will not be returned to the author unless requested. The final revised and accepted manuscript should be submitted on CD/diskette along with a copy of the printout or via E-mail. The CD/diskette should be labelled with the author’s name and the version of the word processing system used. The elec- tronic files and the printout must be identical. Changes to the electronic files may be charged to the author(s). Manuscript style: The languages of the journal are English and German. Manuscripts in German must contain an English subtitle, an abstract and English keywords. Manuscripts should be arranged in the following order: I. Informative but brief title II. Full names, full address, E-mail and academic position of all authors. III. Include up to five keywords that describe your paper. I V. A short abstract of up to 200 words. Papers in German should additionally contain a summary in German language; the English abstract should carry the translated title of the paper in square brackets. V. The main text, if necessary subdivided by headings, which should be numbered with arabic numerals. VI. Reference list, the references should be arranged alphabetically and should be conform to the examples given below. References should be quoted in the text as name and year within brackets and listed at the end of the text alphabetically. Use small CAPITALS for the author e.g. MÜLLER (2006). Where reference is made to more than one work by the same author published in the same year, identify each citation as follows: MÜLLER (2006a, 2006b). Where three or more authors are listed in the reference list, please cite in the text as MÜLLER et al. (2006). Papers with up to three authors should be cited as MÜLLER & MEYER (2006) or MÜLLER, MEYER & SCHULZ (2006). If a special page, figure, table etc. of a paper should be cited use following citation style: MÜLLER (2006: 14) or MÜLLER (2006: Fig. 14).

Scientific names of flora and fauna (gender, sub-gender, species, sub-species) are to be written in italics. Use small CAPI- TALS for the author (Armeria maritima WILLD.) Do not justify your text, use a ragged right hand margin. Do not break words at the end of lines. Do not use any automatic formatting. Do not page numbers Graphic elements, tables and images should be kept as separate files. Figures and tables captions should be placed at the end of the manuscript. Illustrations: Supply each figure as a separate print-out, with the author’s name, the figure number and the top of the figure indicated. Illustrations should be reducible to a column width of 7 cm or a maximum size of 14,5 x 21 cm. Lettering must be of reasonable size that would be clearly readable after reduction. Where a key of symbols is required, include this in the artwork itself, not in the figure caption. Avoid fine lines and grey-shading/halftones. For the final version all illustrations must be supplied electronically as files at a sufficient resolution (600 dpi). Please use a tiff or eps format. Pdf-files or figures in word-documents are not acceptable. Colour illustrations are available free of charge. It is the responsibility of the author to clarify whether or not the colour figures are required in print when submitting the manuscript for review. References (examples): Papers: SCHWARZBACH, M. (1968): Neue Eiszeithypothesen. – Eiszeitalter und Gegenwart, 19: 250-261. EISSMANN, L. & MÜLLER, A. (1979): Leitlinien der Quartärentwicklung im norddeutschen Tiefland. – Zeitschrift für Geolo- gische Wissenschaften, 7: 451-462. ZAGWIJN, W.H. (1996): The Cromerian Complex Stage of the Netherlands and correlation with other areas in Europe. – In: TURNER, C. (ed.): The Middle Pleistocene in Europe: 145-172; Rotterdam (Balkema). MAGNY, M. & HAAS, J.N. (2004): A major widespread climatic change around 5300 cal. yr BP at the time of the Alpine Iceman. – Journal of Quaternary Science, 19: 423-430. DOI: 10-1002/jqs.850 Books: EHLERS, J. (1994): Allgemeine und historische Quartärgeologie. – 358 S.; Stuttgart (Enke). Do not abbreviate the name of Journals. Offprints: Authors will receive 20 offprints free of charge. Further offprints can be ordered. CONTENTS Volume 56, Issues Nos. 1–4 (2007)

Volume 56 Number 1-2

1 Vorwort Preface T. LITT 3 Das Quartär als chronostratigraphische Einheit The Quaternary as a chronostratigraphical unit T. LITT 7 Stratigraphische Begriffe für das Quartär des norddeutschen Vereisungsgebietes Stratigraphical Terms for the Quaternary of the North German Glaciation Area T. LITT, K.-E. BEHRE, K.-D. MEYER, H.-J. STEPHAN & S. WANSA 66 Stratigraphische Begriffe für das Quartär des süddeutschen Alpenvorlandes Stratigraphical Terms for the Quarternary of the south German Alpine Foreland K. HABBE, D. ELLWANGER & R. BECKER-HAUMANN 84 Stratigraphische Begriffe für das Quartär des Periglazialraums in Deutschland Stratigraphical Terms for the Quaternary of the Periglacial Area in Germany B. URBAN 96 Biostratigraphische Begriffe aus der Säugetierpaläontologie für das Pliozän und Pleistozän Deutschlands Biostratigraphical Terms from Mammal Palaeontology for the Pliocene and Pleistocene in Germany W. VON KOENIGSWALD & W.-D. HEINRICH 116 Literaturverzeichnis Reference list

Volume 56 Number 3

139 Zur spätholozänen Vegetationsgeschichte des Pfälzerwaldes – Neue pollenanalytische Untersuchungen im Pfälzischen Berg- und Hügelland Late Holocene vegetation development in the Palatinate Forest S. WOLTERS 162 The difference between pollen types and plant taxa – a plea for clarity and scientific freedom Der Unterschied zwischen Pollentypen und Pfl anzentaxa – Ein Plädoyer für Deutlichkeit und wissenschaftliche Freiheit P. DE KLERK & H. JOOSTEN 172 Korrelation von mittelpleistozänen Löss-/Paläobodensequenzen in Oberösterreich mit einer marinen Sauerstoffisotopenkurve Correlation between Middle Pleistocene loess/paleosol sequences in Upper Austria and marine Oxygenium Isotope Stages (OIS) B. TERHORST 186 Sedimentuntersuchungen an unterpleistozänen Schmelzwasserablagerungen und Periglazialschottern im Riß-Iller-Gebiet, deutsches Alpenvorland Sedimentological research on Lower Pleistocen meltwater deposits and periglacial sediments of the Rhine-Iller area; German Alpine Foreland A. GERTH & R. BECKER-HAUMANN 212 The Upper Pleistocene loess/paleosol sequence from Schatthausen in North Baden-Württemberg Die oberpleistozäne Löss-/Paläobodenabfolge von Schatthausen im nördlichen Baden-Württemberg M. FRECHEN, B. TERHORST & W. RÄHLE

Volume 56 Number 4

227 Das jungpleistozäne Lößprofil von Nußloch (SW-Wand) im Aufschluss der Heidelberger Zement AG The Late Pleistocene loess profi le Nussloch (SW wall) E. BIBUS, M. FRECHEN, M. KÖSEL & W. RÄHLE 256 Neubewertung der geomorphologischen Entwicklung der Umgebung des Rangsdorfer Sees Reassessment of the geological development of the Rangsdorf lake area C. LÜTHGENS & M. BÖSE 283 Zur Struktur und Entstehung von Eiskeil-Großformen in Lieth/Elmshorn (Schleswig-Holstein) Structure and development of ice-wedge pseudomorphs in the Lieth lime quarry/Elmshorn (Schleswig-Holstein) A. GRUBE 295 Weichselian red tills in the Gardno Phase End moraine (Debina Cliff) – criteria for distinction, origin and stratigraphical position, and implication for the origin and course of the Baltic Ice Stream Weichselzeitliche rote Moränen in der Gardno Endmoräne (Debina Kliff) – Besonderheiten, Herkunft und Chronostratigraphie, unter besonderer Berücksichtigung des Verlaufs und der Quelle des Baltischen Eisstroms J. JASIEWICZ Deutsche Quartärvereinigung e.V. German Quaternary Association Available volumes of Founded 1948 Eiszeitalter und Gegenwart (status quo 4/2009) Office: www.deuqua.de D-30655 Hannover, Stilleweg 2, P.O. 510153 E-Mail: [email protected] Web: www.deuqua.de

Bank accounts: Volume Year Price Volume Year Price Postbank Hannover: Konto 45303 308, BLZ 250 100 30, BIC: PBNKDEFF, IBAN: DE84 2501 0030 0045 3033 08 Sparkasse Hannover: Konto 2000 806 311, BLZ 250 501 80, BIC: HANSDE2HXXX, IBAN: DE10 2505 0180 2000 8063 11 6 1955 38,00 € 36 1986 42,00 € 7 1956 38,00 € 37 1987 44,00 € 11 1960 38,00 € 38 1988 44,00 € Executive board 12 1962 38,00 € 39 1989 44,00 € 13 1962 38,00 € 40 1990 48,00 € (2006-2010) 14 1963 38,00 € 41 1991 48,00 € 15 1964 38,00 € President: MARGOT BÖSE, Berlin 42 1992 49,90 € 16 1965 38,00 € 43 1993 49,90 € Vice-President: MARKUS FIEBIG, Wien 17 1966 38,00 € 44 1994 49,90 € REINHARD LAMPE, Greifswald 18 1967 vergriffen/sold out 45 1995 49,90 € 19 1968 38,00 € Editor E&G: HOLGER FREUND, Wilhelmshaven 46 1996 49,90 € 20 1969 38,00 € 47 1997 49,90 € Assistant Editor E&G: DANIELA SAUER, Stuttgart 21 1970 38,00 € 48 1998 49,90 € Editor GMit Newsletter: CHRISTIAN HOSELMANN, Wiesbaden 22 1971 38,00 € 49 1999 49,90 € BIRGIT TERHORST, Würzburg 23/24 1973 Doppelband/double feature 57,00 € 50 2000 49,90 € 25 1974 38,00 € Treasurer: JÖRG ELBRACHT, Hannover 51 2002 49,90 € 26 1975 38,00 € 52 2003 54,00 € Academic library: STEFAN WANSA, Halle 27 1976 38,00 € 53 2003 54,00 € Homepage: JÜRGEN REITNER, Wien 28 1978 38,00 € 54 2004 54,00 € 29 1979 38,00 € Public relation FRANK PREUSSER, Bern 55 2005 54,00 € 30 1980 38,00 € 56/1-2 2007 54,00 € 31 1981 38,00 € Editorial Board E&G – Quaternary Science Journal: HOLGER FREUND, Wilhelmshaven, Editor 56/3 2007 27,00 € 32 1982 38,00 € 56/4 2007 27,00 € KARL-ERNST BEHRE, Wilhelmshaven ELSE KOLSTRUP, Uppsala (Sweden) 33 1983 38,00 € 57/1-2 2008 54,00 € 34 1984 40,00 € 57/3-4 2008 54,00 € HANS-RUDOLF BORK, Kiel JAN PIOTROWSKI, Aarhus (Denmark) 35 1985 40,00 € ARNT BRONGER, Kiel LUDWIG REISCH, Erlangen JÜRGEN EHLERS, Hamburg JEF VANDENBERGHE, Amsterdam (The Netherlands) ETIENNE JUVIGNÉ, Liège (Belgium) BERND ZOLITSCHKA, Bremen WIGHART VON KOENIGSWALD, Bonn A list of all published volumes is also shown under http://www.schweizerbart.de/j/eiszeitalter-und-gegenwart. The subscription rates for DEUQUA mempership are as follows: Ordinary Members 45,- € For members of the DEUQUA volumes 11-50 (exclusive of Vol. 17-18, 29) are available for 10,- € per volume. The price for other volumes is 25,- € for DEUQUA-members. Student, retired and unwaged members 20,- € Institutions 55,- € Volume 6-7, 17, and 29 are exclusively offered by E. Schweizerbart’sche Verlagsbuchandlung (Nägele u. Obermiller), Johannesstr. 3A, D-70176 Stuttgart.

In Germany subscription rates are paid by standing order. For all other members, subscription rates should be paid by bank transfer Also available: st into one of the two accounts listed above prior to 1 March each year. If you would like to join DEUQUA or have questions regard- EISSMANN L. & LITT, T. (Hrsg.) (1994): Das Quartär Mitteldeutschlands. – Altenburger Naturwiss. Forsch., 7; Altenburg. ing missing or past volumes of Eiszeitalter und Gegenwart – Quaternary Science Journal, please contact the DEUQUA office. The price is 43,- € Manuscript Submission: Manuscripts for E&G – Quaternary Science Journal must be submitted to the editor: PD Dr. Holger Freund, ICBM – Geoecology, Schleusenstr. 1, D-26382 Wilhelmshaven; E-Mail: [email protected] If you are interested please contact: E. Schweizerbart’sche Verlagsbuchandlung, Johannesstr. 3A, D-70176 Stuttgart (www.schweizerbart.de) Titelbild: Collage „Bohrprojekt Heidelberger Becken” (Gestaltung: Juliane Herrmann, Leibniz-Institut für Angewandte Geo- physik) Bohranlage an der Lokation Viernheim (Foto: Christian Hoselmann, Hessisches Landesamt für Umwelt und Geologie) – Mächtigkeitskarte der quartären Sedimente im Oberrheingraben (Hessisches Landesamt für Umwelt und Geologie) – reflexi- Volumes 1-5, 8 and 10 are available as reprints: onsseismisches Profil in der Umgebung der Forschungsbohrungen Heidelberg UniNord (Hermann Buness, Leibniz-Institut für Firma Zwerts und Zeltinger, Heereweg 347, P.O. Box 80, NL-2160 SZ Lisse (price for DEUQUA-members is 28,- €). Angewandte Geophysik) – Bohrkerndetails (Fotos: Christian Hoselmann, Hessisches Landesamt für Umwelt und Geologie) Front cover: collage „Heidelberg Basin Drilling Project“ (design: Juliane Herrmann, Leibniz Institute for Applied Geophysics) drill- ing rig at the Viernheim location (photo: Christian Hoselmann, Geological Survey of Hessen) – thickness map of Quaternary sedi- ments in the Upper Rhine Graben (Geological Survey of Hessen) – reflection seismic profile in the vicinity of the research boreholes Heidelberg UniNord (Hermann Buness, Leibniz Institute for Applied Geophysics) – core details (photos: Christian Hoselmann, Geological Survey of Hessen) Volume 57 Eiszeitalter und Gegenwart Eiszeitalter und Gegenwart No. 3/4 2008 Quaternary Science Journal E & G Published for the Deutsche Quartärvereinigung e. V.

Contents Vol. 57 No. 3/4 (2008) Quaternary Science Journal

Preface: The Heidelberg Basin Drilling Project ...... 253 Volume 57 Number 3/4 Volume Vorwort: Das Bohrprojekt „Heidelberger Becken“ Gerald Gabriel, Dietrich Ellwanger, Christian Hoselmann & Michael Weidenfeller

Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area, western Heidelberg Basin...... 270 Korrelation pleistozäner Sedimente aus Bohrungen im Raum Ludwigshafen, westliches Heidelberger Becken Michael Weidenfeller & Maria Knipping

The Pliocene and Pleistocene fl uvial evolution in the northern Upper Rhine Graben based on results of the research borehole at Viernheim (Hessen, Germany)...... 286 Die pliozäne und pleistozäne fl uviatile Entwicklung im nördlichen Oberrheingraben unter besonderer Berücksichtigung der Forschungsbohrung Viernheim (Hessen, Deutschland) Christian Hoselmann

Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre...... 316 Mächtige Abfolge quartärer Sedimente im Depozentrum des Heidelberger Beckens Dietrich Ellwanger, Gerald Gabriel, Theo Simon, Ulrike Wielandt-Schuster, Reinhard O. Greiling, Eva-Marie Hagedorn, Jürgen Hahne & Jürgen Heinz

The Heidelberg Basin drilling project: Geophysical pre-site surveys ...... 338 Das Bohrprojekt Heidelberger Becken: Geophysikalische Voruntersuchungen

Hermann Buness, Gerald Gabriel & Dietrich Ellwanger · Eiszeitalter und Gegenwart 2008

Sediment Input into the Heidelberg Basin as determined from Downhole Logs ...... 367 Interpretation des Sedimentationsgeschehens im Heidelberger Becken anhand von Bohrlochmessungen Sabine Hunze & Thomas Wonik

Pleistocene molluscs from research boreholes in the Heidelberg Basin...... 382 Pleistozäne Mollusken aus Forschungsbohrungen im Heidelberger Becken Joachim Wedel

Evidence for a Waalian thermomer pollen record from the research borehole Heidelberg UniNord, Upper Rhine Graben, Baden-Württemberg ...... 403 Nachweis der Waal-Warmzeit anhand pollenanalytischer Untersuchungen an der Forschungsbohrung Heidelberg UniNord, Oberrheingraben, Baden-Württemberg Special issue: Jürgen Hahne, Dietrich Ellwanger & Rüdiger Stritzke The Heidelberg Basin Drilling Project Timing of Medieval Fluvial Aggradation at Bremgarten in the Southern Upper Guest editors: Gerald Gabriel, Dietrich Ellwanger, Rhine Graben – a Test for Luminescence Dating ...... 411 Christian Hoselmann and Michael Weidenfeller Die zeitliche Stellung einer mittelalterlichen fl uvialen Sedimentakkumulation im südlichen Oberrheingraben am Beispiel Bremgarten - ein Test für Lumineszenz-Datierungen Manfred Frechen, Dietrich Ellwanger, Daniel Rimkus & Astrid Techmer

E. Schweizerbart´sche Verlagsbuchhandlung (Nägele u. Obermiller) – Stuttgart ISSN 0424 -7116