Relativity Theory, We Often Use the Convention That the Greek6 Indices Run from 0 to 3, Whereas the Latin Indices Take the Values 1, 2, 3

Total Page:16

File Type:pdf, Size:1020Kb

Relativity Theory, We Often Use the Convention That the Greek6 Indices Run from 0 to 3, Whereas the Latin Indices Take the Values 1, 2, 3 Relativity Theory Jouko Mickelsson with Tommy Ohlsson and H˚akan Snellman Mathematical Physics, KTH Physics Royal Institute of Technology Stockholm 2005 Typeset in LATEX Written by Jouko Mickelsson, 1996. Revised by Tommy Ohlsson, 1998. Revised and extended by Jouko Mickelsson, Tommy Ohlsson, and H˚akan Snellman, 1999. Revised by Jouko Mickelsson, Tommy Ohlsson, and H˚akan Snellman, 2000. Revised by Tommy Ohlsson, 2001. Revised by Tommy Ohlsson, 2003. Revised by Mattias Blennow, 2005. Solutions to the problems are written by Tommy Ohlsson and H˚akan Snellman, 1999. Updated by Tommy Ohlsson, 2000. Updated by Tommy Ohlsson, 2001. Updated by Tommy Ohlsson, 2003. Updated by Mattias Blennow, 2005. c Mathematical Physics, KTH Physics, KTH, 2005 Printed in Sweden by US–AB, Stockholm, 2005. Contents Contents i 1 Special Relativity 1 1.1 Geometry of the Minkowski Space . 2 1.2 LorentzTransformations. 4 1.3 Physical Interpretations . 5 1.3.1 LorentzContraction ............................ 7 1.3.2 TimeDilation................................ 7 1.3.3 Relativistic Addition of Velocities . 7 1.3.4 The Michelson–Morley Experiment . 8 1.3.5 The Relativistic Doppler Effect . 10 1.4 The Proper Time and the Twin Paradox . 11 1.5 Transformations of Velocities and Accelerations . 12 1.6 Energy, Momentum, and Mass in Relativity Theory . 13 1.7 The Spinorial Representation of Lorentz Transformations . 16 1.8 Lorentz Invariance of Maxwell’s Equations . 17 1.8.1 Physical Consequences of Lorentz Transformations . 20 1.8.2 TheLorentzForce ............................. 22 1.8.3 The Energy-Momentum Tensor . 24 1.9 Problems ...................................... 27 2 Some Differential Geometry 39 2.1 Manifolds ...................................... 39 2.2 Vector Fields and Tangent Vectors . 42 2.2.1 TensorFields ................................ 45 2.3 Geodesics ...................................... 46 2.3.1 Affine Connection and Christoffel Symbols . 46 2.3.2 ParallelTransport ............................. 48 2.4 TorsionandCurvature............................... 50 2.5 Metric and Pseudo-Metric . 53 2.6 Problems ...................................... 59 3 General Relativity 63 3.1 The Einstein Field Equations . 63 3.2 TheNewtonianLimit ............................... 66 3.3 The Schwarzschild Metric . 68 i 3.4 Experimental Tests of General Relativity . 70 3.4.1 The Gravitational Redshift . 71 3.4.2 The Perihelion Precession of Mercury . 72 3.4.3 TheBendingofLight ........................... 74 3.4.4 Radar(Laser)EchoDelay. 74 3.4.5 Black Holes, Binary Star Systems, and Star Evolution . 75 3.5 CosmologicalModels................................ 75 3.5.1 The Large Scale Structure of the Universe . 75 3.5.2 The Robertson–Walker Metric . 76 3.6 Problems ...................................... 79 4 Solutions to Problems 85 4.1 Solutions to Problems in Chapter 1 . 85 4.2 Solutions to Problems in Chapter 2 . 121 4.3 Solutions to Problems in Chapter 3 . 131 Useful Formulas in Relativity Theory 147 Hyperbolic Functions . 147 The Electromagnetic Field . 147 Metric, Connection, Curvature, and Torsion . 147 GeneralRelativity ....................................148 ii Chapter 1 Special Relativity Relativity theory has at least two independent roots. One is the independence of the state of motion of the observer for the description of physics, which goes at least back to Galilei, and an other the long cherished dream of physicists, since the days of Archimedes, of getting rid of motion by introducing geometry. The first line of thought says that the physics should not depend on the observers frame of reference, whether it is in a state of motion or not. Galilei seems to have realized this, and suggested that an experiment of free fall performed on a boat moving with constant velocity or at rest, should give the same result. In other words: free fall experiments cannot tell whether we are in a coordinate system moving with constant speed v or in a coordinate system at rest. This leads, (together with the invariance under translation and rotations), to the so called Galilei invariance of the equations of motion of Newton. In one space dimension the Galilei transformation is: x x′ = x vt, (1.1) → − t t′ = t, (1.2) → where v is the constant velocity of the observer. In Newton’s equation F = ma for a body of mass m acted upon by a force F , this invariance is immediately obvious, since the acceleration a is the second derivative of position with respect to time, i.e., a =x ¨(t), and the velocity v is independent of time. The second root, the geometrization of motion, was discussed already by the presocratic philosophers, and was especially promoted by Archimedes. This geometrization is not the same as that discussed later by Kepler and Galilei, who thought of motion in terms of orbits with geometrical shape: ellipses, parabolas and hyperbolas. These conical sections are geometrical, but the particles still move along these curves in space. The idea of the fourth dimension became prominent during the 19th century, especially by the German scientist Gustav Fechner, who wrote about the fourth dimension although with a slightly different aim than ours. Later the English science fiction written H. G. Wells introduced time as the fourth dimension in his novel “The time machine” from 1895. Even with Einstein’s relativity paper in 1905, the four-dimensional formulation was not part of his ideas. His discussion is focused on the relation between electricity and magnetism, and describes there mainly the notion of relative time and the concept of simultaneity. 1 2 CHAPTER 1. SPECIAL RELATIVITY Soon after Einstein’s formulation of the theory of relativity, his former teacher Hermann Minkowski at ETH in Z¨urich realized that the (special) theory of relativity could be formu- lated very elegantly in a four-dimensional space-time continuum: the Minkowski space. He published his formulation in 1908, just a short time before he untimely died. To follow Minkowski, we should first transform time to have the same dimension as the three other space coordinates. Fortunately this can readily be done, since the speed of light, c, by Einstein’s postulate is a universal constant of nature, the same for all observers related via Lorentz transformations to each other. (The Lorentz transformations leave Maxwell’s equations invariant.) The fourth coordinate is therefore to be chosen as x0 = ct. The motion of an object with constant velocity will then be represented by a straight line in this space, and all theorems about straight lines in four dimensions will have something to say about motions of a free particle. In a similar vein, curved lines will represent particles acted upon by forces, i e. accelerating or retarding particles. Thus motions can be described by geometry, and the old dream of Archimedes is, in a sense, fulfilled. In the four dimensions of Minkowski space the particles are not described by orbits, but by world-lines. These represent the space-time history of the particles. If a particle moves regularly in a Keplerian circular orbit in tree-dimensional space, its total motion, or world-line, will be a (hyper) spiral in Minkowski space, etc. The two roots are now possible to connect to each other, as we think of all transforma- tions that leave the geometrical forms invariant, or of all transformations that are able to superimpose one (four-dimensional) geometrical object onto another one. Below, we start out by studying the mathematical tools relevant to the description of special relativity in Minkowski space. 1.1 Geometry of the Minkowski Space Let M = R4 be the four dimensional real vector space consisting of all 4-tuples x = (x0,x1,x2,x3) of real numbers. Addition of vectors is defined as usual as x + y = (x0 + y0,x1 +y1,x2 +y2,x3 +y3) and multiplication by real scalars λ as λx = (λx0,λx1,λx2,λx3). Normally, in Euclidean geometry, the length of a vector x M is defined by the formula ∈ x 2 = (x0)2 + (x1)2 + (x2)2 + (x3)2. (1.3) | | The Euclidean inner product is x,y = xiyi, where i = 0, 1, 2, 3. From now on, we shall use the Einstein summation convention:h i Sum over repeated indices (on the same side of an equation). Minkowskian geometry differs from Euclidean geometry: The ‘length’ of a vector x M is defined by the formula ∈ x2 = (x0)2 (x1)2 (x2)2 (x3)2. (1.4) − − − Note that the right-hand side is indefinite; it can be either positive, zero, or negative. For this reason, we shall speak only about the length squared x2 and we are not taking the square root of this expression (which could be imaginary). We introduce the Minkowskian inner product as x y = x0y0 x1y1 x2y2 x3y3. (1.5) · − − − The Minkowskian inner product is obviously commutative, i.e., x y = y x. We shall also introduce the metric tensor η = (η ), where η = 0 if µ = ν,· η =· 1, and η = 1 µν µν 6 00 ii − 1.1. GEOMETRY OF THE MINKOWSKI SPACE 3 (no summation here!) when i = 1, 2, 3. This metric tensor is usually called the Minkowski 1 µν µν 1 metric. The inverse of the Minkowski metric is given by η− = (η ), where η = ηµν . The Minkowski metric and its inverse fulfill the relation λν ν ν ηµλη = ηµ = δµ, (1.6) ν ν ν where δµ is the Kronecker delta, δµ = 1 if µ = ν and δµ = 0 if µ = ν. In relativity theory, we often use the convention that the Greek6 indices run from 0 to 3, whereas the Latin indices take the values 1, 2, 3. With this convention, we can write µ ν µ ν x y = x ηµν y = ηµν x y . · Another often used notational convention: We lower and raise the vector and tensor indices according to the rules ν ν λν λω xµ = ηµν x , Aµ = ηµλA , Aµν = ηµληνωA , µ µν µ µλ µν µλ νω x = η xν , A ν = η Aλν , A = η η Aλω.
Recommended publications
  • A Mathematical Derivation of the General Relativistic Schwarzschild
    A Mathematical Derivation of the General Relativistic Schwarzschild Metric An Honors thesis presented to the faculty of the Departments of Physics and Mathematics East Tennessee State University In partial fulfillment of the requirements for the Honors Scholar and Honors-in-Discipline Programs for a Bachelor of Science in Physics and Mathematics by David Simpson April 2007 Robert Gardner, Ph.D. Mark Giroux, Ph.D. Keywords: differential geometry, general relativity, Schwarzschild metric, black holes ABSTRACT The Mathematical Derivation of the General Relativistic Schwarzschild Metric by David Simpson We briefly discuss some underlying principles of special and general relativity with the focus on a more geometric interpretation. We outline Einstein’s Equations which describes the geometry of spacetime due to the influence of mass, and from there derive the Schwarzschild metric. The metric relies on the curvature of spacetime to provide a means of measuring invariant spacetime intervals around an isolated, static, and spherically symmetric mass M, which could represent a star or a black hole. In the derivation, we suggest a concise mathematical line of reasoning to evaluate the large number of cumbersome equations involved which was not found elsewhere in our survey of the literature. 2 CONTENTS ABSTRACT ................................. 2 1 Introduction to Relativity ...................... 4 1.1 Minkowski Space ....................... 6 1.2 What is a black hole? ..................... 11 1.3 Geodesics and Christoffel Symbols ............. 14 2 Einstein’s Field Equations and Requirements for a Solution .17 2.1 Einstein’s Field Equations .................. 20 3 Derivation of the Schwarzschild Metric .............. 21 3.1 Evaluation of the Christoffel Symbols .......... 25 3.2 Ricci Tensor Components .................
    [Show full text]
  • Einstein's Mistakes
    Einstein’s Mistakes Einstein was the greatest genius of the Twentieth Century, but his discoveries were blighted with mistakes. The Human Failing of Genius. 1 PART 1 An evaluation of the man Here, Einstein grows up, his thinking evolves, and many quotations from him are listed. Albert Einstein (1879-1955) Einstein at 14 Einstein at 26 Einstein at 42 3 Albert Einstein (1879-1955) Einstein at age 61 (1940) 4 Albert Einstein (1879-1955) Born in Ulm, Swabian region of Southern Germany. From a Jewish merchant family. Had a sister Maja. Family rejected Jewish customs. Did not inherit any mathematical talent. Inherited stubbornness, Inherited a roguish sense of humor, An inclination to mysticism, And a habit of grüblen or protracted, agonizing “brooding” over whatever was on its mind. Leading to the thought experiment. 5 Portrait in 1947 – age 68, and his habit of agonizing brooding over whatever was on its mind. He was in Princeton, NJ, USA. 6 Einstein the mystic •“Everyone who is seriously involved in pursuit of science becomes convinced that a spirit is manifest in the laws of the universe, one that is vastly superior to that of man..” •“When I assess a theory, I ask myself, if I was God, would I have arranged the universe that way?” •His roguish sense of humor was always there. •When asked what will be his reactions to observational evidence against the bending of light predicted by his general theory of relativity, he said: •”Then I would feel sorry for the Good Lord. The theory is correct anyway.” 7 Einstein: Mathematics •More quotations from Einstein: •“How it is possible that mathematics, a product of human thought that is independent of experience, fits so excellently the objects of physical reality?” •Questions asked by many people and Einstein: •“Is God a mathematician?” •His conclusion: •“ The Lord is cunning, but not malicious.” 8 Einstein the Stubborn Mystic “What interests me is whether God had any choice in the creation of the world” Some broadcasters expunged the comment from the soundtrack because they thought it was blasphemous.
    [Show full text]
  • Linearized Einstein Field Equations
    General Relativity Fall 2019 Lecture 15: Linearized Einstein field equations Yacine Ali-Ha¨ımoud October 17th 2019 SUMMARY FROM PREVIOUS LECTURE We are considering nearly flat spacetimes with nearly globally Minkowski coordinates: gµν = ηµν + hµν , with jhµν j 1. Such coordinates are not unique. First, we can make Lorentz transformations and keep a µ ν globally-Minkowski coordinate system, with hµ0ν0 = Λ µ0 Λ ν0 hµν , so that hµν can be seen as a Lorentz tensor µ µ µ ν field on flat spacetime. Second, if we make small changes of coordinates, x ! x − ξ , with j@µξ j 1, the metric perturbation remains small and changes as hµν ! hµν + 2ξ(µ,ν). By analogy with electromagnetism, we can see these small coordinate changes as gauge transformations, leaving the Riemann tensor unchanged at linear order. Since we will linearize the relevant equations, we may work in Fourier space: each Fourier mode satisfies an independent equation. We denote by ~k the wavenumber and by k^ its direction and k its norm. We have decomposed the 10 independent components of the metric perturbation according to their transformation properties under spatial rotations: there are 4 independent \scalar" components, which can be taken, for instance, ^i ^i^j to be h00; k h0i; hii, and k k hij { or any 4 linearly independent combinations thereof. There are 2 independent ilm^ ilm^ ^j transverse \vector" components, each with 2 independent components: klh0m and klhmjk { these are proportional to the curl of h0i and to the curl of the divergence of hij, and are divergenceless (transverse to the ~ TT Fourier wavenumber k).
    [Show full text]
  • Equivalence Principle (WEP) of General Relativity Using a New Quantum Gravity Theory Proposed by the Authors Called Electro-Magnetic Quantum Gravity Or EMQG (Ref
    WHAT ARE THE HIDDEN QUANTUM PROCESSES IN EINSTEIN’S WEAK PRINCIPLE OF EQUIVALENCE? Tom Ostoma and Mike Trushyk 48 O’HARA PLACE, Brampton, Ontario, L6Y 3R8 [email protected] Monday April 12, 2000 ACKNOWLEDGMENTS We wish to thank R. Mongrain (P.Eng) for our lengthy conversations on the nature of space, time, light, matter, and CA theory. ABSTRACT We provide a quantum derivation of Einstein’s Weak Equivalence Principle (WEP) of general relativity using a new quantum gravity theory proposed by the authors called Electro-Magnetic Quantum Gravity or EMQG (ref. 1). EMQG is manifestly compatible with Cellular Automata (CA) theory (ref. 2 and 4), and is also based on a new theory of inertia (ref. 5) proposed by R. Haisch, A. Rueda, and H. Puthoff (which we modified and called Quantum Inertia, QI). QI states that classical Newtonian Inertia is a property of matter due to the strictly local electrical force interactions contributed by each of the (electrically charged) elementary particles of the mass with the surrounding (electrically charged) virtual particles (virtual masseons) of the quantum vacuum. The sum of all the tiny electrical forces (photon exchanges with the vacuum particles) originating in each charged elementary particle of the accelerated mass is the source of the total inertial force of a mass which opposes accelerated motion in Newton’s law ‘F = MA’. The well known paradoxes that arise from considerations of accelerated motion (Mach’s principle) are resolved, and Newton’s laws of motion are now understood at the deeper quantum level. We found that gravity also involves the same ‘inertial’ electromagnetic force component that exists in inertial mass.
    [Show full text]
  • Derivation of Generalized Einstein's Equations of Gravitation in Some
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 February 2021 doi:10.20944/preprints202102.0157.v1 Derivation of generalized Einstein's equations of gravitation in some non-inertial reference frames based on the theory of vacuum mechanics Xiao-Song Wang Institute of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454000, China (Dated: Dec. 15, 2020) When solving the Einstein's equations for an isolated system of masses, V. Fock introduces har- monic reference frame and obtains an unambiguous solution. Further, he concludes that there exists a harmonic reference frame which is determined uniquely apart from a Lorentz transformation if suitable supplementary conditions are imposed. It is known that wave equations keep the same form under Lorentz transformations. Thus, we speculate that Fock's special harmonic reference frames may have provided us a clue to derive the Einstein's equations in some special class of non-inertial reference frames. Following this clue, generalized Einstein's equations in some special non-inertial reference frames are derived based on the theory of vacuum mechanics. If the field is weak and the reference frame is quasi-inertial, these generalized Einstein's equations reduce to Einstein's equa- tions. Thus, this theory may also explain all the experiments which support the theory of general relativity. There exist some differences between this theory and the theory of general relativity. Keywords: Einstein's equations; gravitation; general relativity; principle of equivalence; gravitational aether; vacuum mechanics. I. INTRODUCTION p. 411). Theoretical interpretation of the small value of Λ is still open [6]. The Einstein's field equations of gravitation are valid 3.
    [Show full text]
  • Formulation of Einstein Field Equation Through Curved Newtonian Space-Time
    Formulation of Einstein Field Equation Through Curved Newtonian Space-Time Austen Berlet Lord Dorchester Secondary School Dorchester, Ontario, Canada Abstract This paper discusses a possible derivation of Einstein’s field equations of general relativity through Newtonian mechanics. It shows that taking the proper perspective on Newton’s equations will start to lead to a curved space time which is basis of the general theory of relativity. It is important to note that this approach is dependent upon a knowledge of general relativity, with out that, the vital assumptions would not be realized. Note: A number inside of a double square bracket, for example [[1]], denotes an endnote found on the last page. 1. Introduction The purpose of this paper is to show a way to rediscover Einstein’s General Relativity. It is done through analyzing Newton’s equations and making the conclusion that space-time must not only be realized, but also that it must have curvature in the presence of matter and energy. 2. Principal of Least Action We want to show here the Lagrangian action of limiting motion of Newton’s second law (F=ma). We start with a function q mapping to n space of n dimensions and we equip it with a standard inner product. q : → (n ,(⋅,⋅)) (1) We take a function (q) between q0 and q1 and look at the ds of a section of the curve. We then look at some properties of this function (q). We see that the classical action of the functional (L) of q is equal to ∫ds, L denotes the systems Lagrangian.
    [Show full text]
  • Einstein's 1916 Derivation of the Field Equations
    1 Einstein's 1916 derivation of the Field Equations Galina Weinstein 24/10/2013 Abstract: In his first November 4, 1915 paper Einstein wrote the Lagrangian form of his field equations. In the fourth November 25, 1915 paper, Einstein added a trace term of the energy- momentum tensor on the right-hand side of the generally covariant field equations. The main purpose of the present work is to show that in November 4, 1915, Einstein had already explored much of the main ingredients that were required for the formulation of the final form of the field equations of November 25, 1915. The present work suggests that the idea of adding the second-term on the right-hand side of the field equation might have originated in reconsideration of the November 4, 1915 field equations. In this regard, the final form of Einstein's field equations with the trace term may be linked with his work of November 4, 1915. The interesting history of the derivation of the final form of the field equations is inspired by the exchange of letters between Einstein and Paul Ehrenfest in winter 1916 and by Einstein's 1916 derivation of the November 25, 1915 field equations. In 1915, Einstein wrote the vacuum (matter-free) field equations in the form:1 for all systems of coordinates for which It is sufficient to note that the left-hand side represents the gravitational field, with g the metric tensor field. Einstein wrote the field equations in Lagrangian form. The action,2 and the Lagrangian, 2 Using the components of the gravitational field: Einstein wrote the variation: which gives:3 We now come back to (2), and we have, Inserting (6) into (7) gives the field equations (1).
    [Show full text]
  • Post-Newtonian Approximations and Applications
    Monash University MTH3000 Research Project Coming out of the woodwork: Post-Newtonian approximations and applications Author: Supervisor: Justin Forlano Dr. Todd Oliynyk March 25, 2015 Contents 1 Introduction 2 2 The post-Newtonian Approximation 5 2.1 The Relaxed Einstein Field Equations . 5 2.2 Solution Method . 7 2.3 Zones of Integration . 13 2.4 Multi-pole Expansions . 15 2.5 The first post-Newtonian potentials . 17 2.6 Alternate Integration Methods . 24 3 Equations of Motion and the Precession of Mercury 28 3.1 Deriving equations of motion . 28 3.2 Application to precession of Mercury . 33 4 Gravitational Waves and the Hulse-Taylor Binary 38 4.1 Transverse-traceless potentials and polarisations . 38 4.2 Particular gravitational wave fields . 42 4.3 Effect of gravitational waves on space-time . 46 4.4 Quadrupole formula . 48 4.5 Application to Hulse-Taylor binary . 52 4.6 Beyond the Quadrupole formula . 56 5 Concluding Remarks 58 A Appendix 63 A.1 Solving the Wave Equation . 63 A.2 Angular STF Tensors and Spherical Averages . 64 A.3 Evaluation of a 1PN surface integral . 65 A.4 Details of Quadrupole formula derivation . 66 1 Chapter 1 Introduction Einstein's General theory of relativity [1] was a bold departure from the widely successful Newtonian theory. Unlike the Newtonian theory written in terms of fields, gravitation is a geometric phenomena, with space and time forming a space-time manifold that is deformed by the presence of matter and energy. The deformation of this differentiable manifold is characterised by a symmetric metric, and freely falling (not acted on by exter- nal forces) particles will move along geodesics of this manifold as determined by the metric.
    [Show full text]
  • Einstein's $ R^{\Hat {0}\Hat {0}} $ Equation for Non-Relativistic Sources
    Einstein’s R0ˆ0ˆ equation for nonrelativistic sources derived from Einstein’s inertial motion and the Newtonian law for relative acceleration Christoph Schmid∗ ETH Zurich, Institute for Theoretical Physics, 8093 Zurich, Switzerland (Dated: March 22, 2018) With Einstein’s inertial motion (freefalling and nonrotating relative to gyroscopes), geodesics for nonrelativistic particles can intersect repeatedly, allowing one to compute the space-time curvature ˆˆ ˆˆ R00 exactly. Einstein’s R00 for strong gravitational fields and for relativistic source-matter is iden- tical with the Newtonian expression for the relative radial acceleration of neighbouring freefalling test-particles, spherically averaged. — Einstein’s field equations follow from Newtonian experiments, local Lorentz-covariance, and energy-momentum conservation combined with the Bianchi identity. PACS numbers: 04.20.-q, 04.20.Cv Up to now, a rigorous derivation of Einstein’s field structive. Newtonian relative acceleration in general La- equations for general relativity has been lacking: Wald [1] grangian 3-coordinates (e.g. comoving with the wind) writes “a clue is provided”, “the correspondence suggests has the same number of 106 uninstructive terms. the field equation”. Weinberg [2] takes the ”weak static The expressions for Einstein’s R 0ˆ (P ) and the New- 0ˆ limit”, makes a ”guess”, and argues with ”number of tonian relative acceleration are extremely simple and ex- derivatives”. Misner, Thorne, and Wheeler [3] give ”Six plicitely identical with the following choices: (1) We work Routes to Einstein’s field equations”, among which they with Local Ortho-Normal Bases (LONBs) in Cartan’s recommend (1) “model geometrodynamics after electro- method. (2) We use a primary observer (non-inertial or dynamics”, (2) ”take the variational principle with only inertial) with worldline through P , withu ¯obs =e ¯0ˆ, and a scalar linear in second derivatives of the metric and no with his spatial LONBse ¯ˆi along his worldline.
    [Show full text]
  • The Confrontation Between General Relativity and Experiment
    The Confrontation between General Relativity and Experiment Clifford M. Will Department of Physics University of Florida Gainesville FL 32611, U.S.A. email: [email protected]fl.edu http://www.phys.ufl.edu/~cmw/ Abstract The status of experimental tests of general relativity and of theoretical frameworks for analyzing them are reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the E¨otv¨os experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse–Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves. arXiv:1403.7377v1 [gr-qc] 28 Mar 2014 1 Contents 1 Introduction 3 2 Tests of the Foundations of Gravitation Theory 6 2.1 The Einstein equivalence principle . .. 6 2.1.1 Tests of the weak equivalence principle . .. 7 2.1.2 Tests of local Lorentz invariance . .. 9 2.1.3 Tests of local position invariance . 12 2.2 TheoreticalframeworksforanalyzingEEP. ....... 16 2.2.1 Schiff’sconjecture ................................ 16 2.2.2 The THǫµ formalism .............................
    [Show full text]
  • Doing Physics with Quaternions
    Doing Physics with Quaternions Douglas B. Sweetser ©2005 doug <[email protected]> All righs reserved. 1 INDEX Introduction 2 What are Quaternions? 3 Unifying Two Views of Events 4 A Brief History of Quaternions Mathematics 6 Multiplying Quaternions the Easy Way 7 Scalars, Vectors, Tensors and All That 11 Inner and Outer Products of Quaternions 13 Quaternion Analysis 23 Topological Properties of Quaternions 28 Quaternion Algebra Tool Set Classical Mechanics 32 Newton’s Second Law 35 Oscillators and Waves 37 Four Tests of for a Conservative Force Special Relativity 40 Rotations and Dilations Create the Lorentz Group 43 An Alternative Algebra for Lorentz Boosts Electromagnetism 48 Classical Electrodynamics 51 Electromagnetic Field Gauges 53 The Maxwell Equations in the Light Gauge: QED? 56 The Lorentz Force 58 The Stress Tensor of the Electromagnetic Field Quantum Mechanics 62 A Complete Inner Product Space with Dirac’s Bracket Notation 67 Multiplying quaternions in Polar Coordinate Form 69 Commutators and the Uncertainty Principle 74 Unifying the Representations of Integral and Half−Integral Spin 79 Deriving A Quaternion Analog to the Schrödinger Equation 83 Introduction to Relativistic Quantum Mechanics 86 Time Reversal Transformations for Intervals Gravity 89 Unified Field Theory by Analogy 101 Einstein’s vision I: Classical unified field equations for gravity and electromagnetism using Riemannian quaternions 115 Einstein’s vision II: A unified force equation with constant velocity profile solutions 123 Strings and Quantum Gravity 127 Answering Prima Facie Questions in Quantum Gravity Using Quaternions 134 Length in Curved Spacetime 136 A New Idea for Metrics 138 The Gravitational Redshift 140 A Brief Summary of Important Laws in Physics Written as Quaternions 155 Conclusions 2 What Are Quaternions? Quaternions are numbers like the real numbers: they can be added, subtracted, multiplied, and divided.
    [Show full text]
  • Frame Dragging with Optical Vortices
    Frame dragging with optical vortices J. Strohaber Texas A&M University, Department of Physics, College Station, TX 77843-4242, USA *Corresponding author: [email protected] General Relativistic calculations in the linear regime have been made for electromagnetic beams of radiation known as optical vortices. These exotic beams of light carry a physical quantity known as optical orbital angular momentum. It is found that when a massive spinning neutral particle is placed along the optical axis, a phenomenon known as inertial frame dragging occurs. Our results are compared with those found previously for a ring laser and an order of magnitude estimate of the laser intensity needed for a precession frequency of 1 Hz is given for these “steady” beams of light. In pre-relativity, Newton’s law of universal gravitation was used to quantify the gravitational force between massive point objects. From this elementary theory of gravity, it is well known that mass is the source of gravitational fields, and those gravitational fields act only upon massive particles [1,2]. In contrast, in 1804 the German physicist Soldner used Newton’s corpuscular (little particle) theory of light to show that starlight skimming the sun could be deflected about a straight path. This result is often referred to as the “Newtonian prediction” [2,3]. It was not until the birth of General Relativity (GR) that Einstein theoretically demonstrated that the trajectories of photons could be influenced by a gravitational field and in the case of the deflection of starlight by the sun he gave the correct result which is twice the Newtonian prediction [4].
    [Show full text]