Instruction Level Parallelism Example
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2.5 Classification of Parallel Computers
52 // Architectures 2.5 Classification of Parallel Computers 2.5 Classification of Parallel Computers 2.5.1 Granularity In parallel computing, granularity means the amount of computation in relation to communication or synchronisation Periods of computation are typically separated from periods of communication by synchronization events. • fine level (same operations with different data) ◦ vector processors ◦ instruction level parallelism ◦ fine-grain parallelism: – Relatively small amounts of computational work are done between communication events – Low computation to communication ratio – Facilitates load balancing 53 // Architectures 2.5 Classification of Parallel Computers – Implies high communication overhead and less opportunity for per- formance enhancement – If granularity is too fine it is possible that the overhead required for communications and synchronization between tasks takes longer than the computation. • operation level (different operations simultaneously) • problem level (independent subtasks) ◦ coarse-grain parallelism: – Relatively large amounts of computational work are done between communication/synchronization events – High computation to communication ratio – Implies more opportunity for performance increase – Harder to load balance efficiently 54 // Architectures 2.5 Classification of Parallel Computers 2.5.2 Hardware: Pipelining (was used in supercomputers, e.g. Cray-1) In N elements in pipeline and for 8 element L clock cycles =) for calculation it would take L + N cycles; without pipeline L ∗ N cycles Example of good code for pipelineing: §doi =1 ,k ¤ z ( i ) =x ( i ) +y ( i ) end do ¦ 55 // Architectures 2.5 Classification of Parallel Computers Vector processors, fast vector operations (operations on arrays). Previous example good also for vector processor (vector addition) , but, e.g. recursion – hard to optimise for vector processors Example: IntelMMX – simple vector processor. -
Towards Attack-Tolerant Trusted Execution Environments
Master’s Programme in Security and Cloud Computing Towards attack-tolerant trusted execution environments Secure remote attestation in the presence of side channels Max Crone MASTER’S THESIS Aalto University — KTH Royal Institute of Technology MASTER’S THESIS 2021 Towards attack-tolerant trusted execution environments Secure remote attestation in the presence of side channels Max Crone Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology. Espoo, 12 July 2021 Supervisors: Prof. N. Asokan Prof. Panagiotis Papadimitratos Advisors: Dr. HansLiljestrand Dr. Lachlan Gunn Aalto University School of Science KTH Royal Institute of Technology School of Electrical Engineering and Computer Science Master’s Programme in Security and Cloud Computing Abstract Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Max Crone Title Towards attack-tolerant trusted execution environments: Secure remote attestation in the presence of side channels School School of Science Master’s programme Security and Cloud Computing Major Security and Cloud Computing Code SCI3113 Supervisors Prof. N. Asokan, Prof. Panagiotis Papadimitratos Advisors Dr. Hans Liljestrand, Dr. Lachlan Gunn Level Master’s thesis Date 12 July 2021 Pages 64 Language English Abstract In recent years, trusted execution environments (TEEs) have seen increasing deployment in comput- ing devices to protect security-critical software from run-time attacks and provide isolation from an untrustworthy operating system (OS). A trusted party verifies the software that runs in a TEE using remote attestation procedures. However, the publication of transient execution attacks such as Spectre and Meltdown revealed fundamental weaknesses in many TEE architectures, including Intel Software Guard Exentsions (SGX) and Arm TrustZone. -
Chapter 5 Multiprocessors and Thread-Level Parallelism
Computer Architecture A Quantitative Approach, Fifth Edition Chapter 5 Multiprocessors and Thread-Level Parallelism Copyright © 2012, Elsevier Inc. All rights reserved. 1 Contents 1. Introduction 2. Centralized SMA – shared memory architecture 3. Performance of SMA 4. DMA – distributed memory architecture 5. Synchronization 6. Models of Consistency Copyright © 2012, Elsevier Inc. All rights reserved. 2 1. Introduction. Why multiprocessors? Need for more computing power Data intensive applications Utility computing requires powerful processors Several ways to increase processor performance Increased clock rate limited ability Architectural ILP, CPI – increasingly more difficult Multi-processor, multi-core systems more feasible based on current technologies Advantages of multiprocessors and multi-core Replication rather than unique design. Copyright © 2012, Elsevier Inc. All rights reserved. 3 Introduction Multiprocessor types Symmetric multiprocessors (SMP) Share single memory with uniform memory access/latency (UMA) Small number of cores Distributed shared memory (DSM) Memory distributed among processors. Non-uniform memory access/latency (NUMA) Processors connected via direct (switched) and non-direct (multi- hop) interconnection networks Copyright © 2012, Elsevier Inc. All rights reserved. 4 Important ideas Technology drives the solutions. Multi-cores have altered the game!! Thread-level parallelism (TLP) vs ILP. Computing and communication deeply intertwined. Write serialization exploits broadcast communication -
Instruction Pipelining (1 of 7)
Chapter 5 A Closer Look at Instruction Set Architectures Objectives • Understand the factors involved in instruction set architecture design. • Gain familiarity with memory addressing modes. • Understand the concepts of instruction- level pipelining and its affect upon execution performance. 5.1 Introduction • This chapter builds upon the ideas in Chapter 4. • We present a detailed look at different instruction formats, operand types, and memory access methods. • We will see the interrelation between machine organization and instruction formats. • This leads to a deeper understanding of computer architecture in general. 5.2 Instruction Formats (1 of 31) • Instruction sets are differentiated by the following: – Number of bits per instruction. – Stack-based or register-based. – Number of explicit operands per instruction. – Operand location. – Types of operations. – Type and size of operands. 5.2 Instruction Formats (2 of 31) • Instruction set architectures are measured according to: – Main memory space occupied by a program. – Instruction complexity. – Instruction length (in bits). – Total number of instructions in the instruction set. 5.2 Instruction Formats (3 of 31) • In designing an instruction set, consideration is given to: – Instruction length. • Whether short, long, or variable. – Number of operands. – Number of addressable registers. – Memory organization. • Whether byte- or word addressable. – Addressing modes. • Choose any or all: direct, indirect or indexed. 5.2 Instruction Formats (4 of 31) • Byte ordering, or endianness, is another major architectural consideration. • If we have a two-byte integer, the integer may be stored so that the least significant byte is followed by the most significant byte or vice versa. – In little endian machines, the least significant byte is followed by the most significant byte. -
Chapter 5 Thread-Level Parallelism
Chapter 5 Thread-Level Parallelism Instructor: Josep Torrellas CS433 Copyright Josep Torrellas 1999, 2001, 2002, 2013 1 Progress Towards Multiprocessors + Rate of speed growth in uniprocessors saturated + Wide-issue processors are very complex + Wide-issue processors consume a lot of power + Steady progress in parallel software : the major obstacle to parallel processing 2 Flynn’s Classification of Parallel Architectures According to the parallelism in I and D stream • Single I stream , single D stream (SISD): uniprocessor • Single I stream , multiple D streams(SIMD) : same I executed by multiple processors using diff D – Each processor has its own data memory – There is a single control processor that sends the same I to all processors – These processors are usually special purpose 3 • Multiple I streams, single D stream (MISD) : no commercial machine • Multiple I streams, multiple D streams (MIMD) – Each processor fetches its own instructions and operates on its own data – Architecture of choice for general purpose mps – Flexible: can be used in single user mode or multiprogrammed – Use of the shelf µprocessors 4 MIMD Machines 1. Centralized shared memory architectures – Small #’s of processors (≈ up to 16-32) – Processors share a centralized memory – Usually connected in a bus – Also called UMA machines ( Uniform Memory Access) 2. Machines w/physically distributed memory – Support many processors – Memory distributed among processors – Scales the mem bandwidth if most of the accesses are to local mem 5 Figure 5.1 6 Figure 5.2 7 2. Machines w/physically distributed memory (cont) – Also reduces the memory latency – Of course interprocessor communication is more costly and complex – Often each node is a cluster (bus based multiprocessor) – 2 types, depending on method used for interprocessor communication: 1. -
Computer Hardware Architecture Lecture 4
Computer Hardware Architecture Lecture 4 Manfred Liebmann Technische Universit¨atM¨unchen Chair of Optimal Control Center for Mathematical Sciences, M17 [email protected] November 10, 2015 Manfred Liebmann November 10, 2015 Reading List • Pacheco - An Introduction to Parallel Programming (Chapter 1 - 2) { Introduction to computer hardware architecture from the parallel programming angle • Hennessy-Patterson - Computer Architecture - A Quantitative Approach { Reference book for computer hardware architecture All books are available on the Moodle platform! Computer Hardware Architecture 1 Manfred Liebmann November 10, 2015 UMA Architecture Figure 1: A uniform memory access (UMA) multicore system Access times to main memory is the same for all cores in the system! Computer Hardware Architecture 2 Manfred Liebmann November 10, 2015 NUMA Architecture Figure 2: A nonuniform memory access (UMA) multicore system Access times to main memory differs form core to core depending on the proximity of the main memory. This architecture is often used in dual and quad socket servers, due to improved memory bandwidth. Computer Hardware Architecture 3 Manfred Liebmann November 10, 2015 Cache Coherence Figure 3: A shared memory system with two cores and two caches What happens if the same data element z1 is manipulated in two different caches? The hardware enforces cache coherence, i.e. consistency between the caches. Expensive! Computer Hardware Architecture 4 Manfred Liebmann November 10, 2015 False Sharing The cache coherence protocol works on the granularity of a cache line. If two threads manipulate different element within a single cache line, the cache coherency protocol is activated to ensure consistency, even if every thread is only manipulating its own data. -
Trafficdb: HERE's High Performance Shared-Memory Data Store
TrafficDB: HERE’s High Performance Shared-Memory Data Store Ricardo Fernandes Piotr Zaczkowski Bernd Gottler¨ HERE Global B.V. HERE Global B.V. HERE Global B.V. [email protected] [email protected] [email protected] Conor Ettinoffe Anis Moussa HERE Global B.V. HERE Global B.V. conor.ettinoff[email protected] [email protected] ABSTRACT HERE's traffic-aware services enable route planning and traf- fic visualisation on web, mobile and connected car appli- cations. These services process thousands of requests per second and require efficient ways to access the information needed to provide a timely response to end-users. The char- acteristics of road traffic information and these traffic-aware services require storage solutions with specific performance features. A route planning application utilising traffic con- gestion information to calculate the optimal route from an origin to a destination might hit a database with millions of queries per second. However, existing storage solutions are not prepared to handle such volumes of concurrent read Figure 1: HERE Location Cloud is accessible world- operations, as well as to provide the desired vertical scalabil- wide from web-based applications, mobile devices ity. This paper presents TrafficDB, a shared-memory data and connected cars. store, designed to provide high rates of read operations, en- abling applications to directly access the data from memory. Our evaluation demonstrates that TrafficDB handles mil- HERE is a leader in mapping and location-based services, lions of read operations and provides near-linear scalability providing fresh and highly accurate traffic information to- on multi-core machines, where additional processes can be gether with advanced route planning and navigation tech- spawned to increase the systems' throughput without a no- nologies that helps drivers reach their destination in the ticeable impact on the latency of querying the data store. -
Slicing (Draft)
Handling Parallelism in a Concurrency Model Mischael Schill, Sebastian Nanz, and Bertrand Meyer ETH Zurich, Switzerland [email protected] Abstract. Programming models for concurrency are optimized for deal- ing with nondeterminism, for example to handle asynchronously arriving events. To shield the developer from data race errors effectively, such models may prevent shared access to data altogether. However, this re- striction also makes them unsuitable for applications that require data parallelism. We present a library-based approach for permitting parallel access to arrays while preserving the safety guarantees of the original model. When applied to SCOOP, an object-oriented concurrency model, the approach exhibits a negligible performance overhead compared to or- dinary threaded implementations of two parallel benchmark programs. 1 Introduction Writing a multithreaded program can have a variety of very different motiva- tions [1]. Oftentimes, multithreading is a functional requirement: it enables ap- plications to remain responsive to input, for example when using a graphical user interface. Furthermore, it is also an effective program structuring technique that makes it possible to handle nondeterministic events in a modular way; develop- ers take advantage of this fact when designing reactive and event-based systems. In all these cases, multithreading is said to provide concurrency. In contrast to this, the multicore revolution has accentuated the use of multithreading for im- proving performance when executing programs on a multicore machine. In this case, multithreading is said to provide parallelism. Programming models for multithreaded programming generally support ei- ther concurrency or parallelism. For example, the Actor model [2] or Simple Con- current Object-Oriented Programming (SCOOP) [3,4] are typical concurrency models: they are optimized for coordination and event handling, and provide safety guarantees such as absence of data races. -
Advanced Architecture Intel Microprocessor History
Advanced Architecture Intel microprocessor history Computer Organization and Assembly Languages Yung-Yu Chuang with slides by S. Dandamudi, Peng-Sheng Chen, Kip Irvine, Robert Sedgwick and Kevin Wayne Early Intel microprocessors The IBM-AT • Intel 8080 (1972) • Intel 80286 (1982) – 64K addressable RAM – 16 MB addressable RAM – 8-bit registers – Protected memory – CP/M operating system – several times faster than 8086 – 5,6,8,10 MHz – introduced IDE bus architecture – 29K transistors – 80287 floating point unit • Intel 8086/8088 (1978) my first computer (1986) – Up to 20MHz – IBM-PC used 8088 – 134K transistors – 1 MB addressable RAM –16-bit registers – 16-bit data bus (8-bit for 8088) – separate floating-point unit (8087) – used in low-cost microcontrollers now 3 4 Intel IA-32 Family Intel P6 Family • Intel386 (1985) • Pentium Pro (1995) – 4 GB addressable RAM – advanced optimization techniques in microcode –32-bit registers – More pipeline stages – On-board L2 cache – paging (virtual memory) • Pentium II (1997) – Up to 33MHz – MMX (multimedia) instruction set • Intel486 (1989) – Up to 450MHz – instruction pipelining • Pentium III (1999) – Integrated FPU – SIMD (streaming extensions) instructions (SSE) – 8K cache – Up to 1+GHz • Pentium (1993) • Pentium 4 (2000) – Superscalar (two parallel pipelines) – NetBurst micro-architecture, tuned for multimedia – 3.8+GHz • Pentium D (2005, Dual core) 5 6 IA32 Processors ARM history • Totally Dominate Computer Market • 1983 developed by Acorn computers • Evolutionary Design – To replace 6502 in -
Instruction Pipelining in Computer Architecture Pdf
Instruction Pipelining In Computer Architecture Pdf Which Sergei seesaws so soakingly that Finn outdancing her nitrile? Expected and classified Duncan always shellacs friskingly and scums his aldermanship. Andie discolor scurrilously. Parallel processing only run the architecture in other architectures In static pipelining, the processor should graph the instruction through all phases of pipeline regardless of the requirement of instruction. Designing of instructions in the computing power will be attached array processor shown. In computer in this can access memory! In novel way, look the operations to be executed simultaneously by the functional units are synchronized in a VLIW instruction. Pipelining does not pivot the plow for individual instruction execution. Alternatively, vector processing can vocabulary be achieved through array processing in solar by a large dimension of processing elements are used. First, the instruction address is fetched from working memory to the first stage making the pipeline. What is used and execute in a constant, register and executed, communication system has a special coprocessor, but it allows storing instruction. Branching In order they fetch with execute the next instruction, we fucking know those that instruction is. Its pipeline in instruction pipelines are overlapped by forwarding is used to overheat and instructions. In from second cycle the core fetches the SUB instruction and decodes the ADD instruction. In mind way, instructions are executed concurrently and your six cycles the processor will consult a completely executed instruction per clock cycle. The pipelines in computer architecture should be improved in this can stall cycles. By double clicking on the Instr. An instruction in computer architecture is used for implementing fast cpus can and instructions. -
Threading SIMD and MIMD in the Multicore Context the Ultrasparc T2
Overview SIMD and MIMD in the Multicore Context Single Instruction Multiple Instruction ● (note: Tute 02 this Weds - handouts) ● Flynn’s Taxonomy Single Data SISD MISD ● multicore architecture concepts Multiple Data SIMD MIMD ● for SIMD, the control unit and processor state (registers) can be shared ■ hardware threading ■ SIMD vs MIMD in the multicore context ● however, SIMD is limited to data parallelism (through multiple ALUs) ■ ● T2: design features for multicore algorithms need a regular structure, e.g. dense linear algebra, graphics ■ SSE2, Altivec, Cell SPE (128-bit registers); e.g. 4×32-bit add ■ system on a chip Rx: x x x x ■ 3 2 1 0 execution: (in-order) pipeline, instruction latency + ■ thread scheduling Ry: y3 y2 y1 y0 ■ caches: associativity, coherence, prefetch = ■ memory system: crossbar, memory controller Rz: z3 z2 z1 z0 (zi = xi + yi) ■ intermission ■ design requires massive effort; requires support from a commodity environment ■ speculation; power savings ■ massive parallelism (e.g. nVidia GPGPU) but memory is still a bottleneck ■ OpenSPARC ● multicore (CMT) is MIMD; hardware threading can be regarded as MIMD ● T2 performance (why the T2 is designed as it is) ■ higher hardware costs also includes larger shared resources (caches, TLBs) ● the Rock processor (slides by Andrew Over; ref: Tremblay, IEEE Micro 2009 ) needed ⇒ less parallelism than for SIMD COMP8320 Lecture 2: Multicore Architecture and the T2 2011 ◭◭◭ • ◮◮◮ × 1 COMP8320 Lecture 2: Multicore Architecture and the T2 2011 ◭◭◭ • ◮◮◮ × 3 Hardware (Multi)threading The UltraSPARC T2: System on a Chip ● recall concurrent execution on a single CPU: switch between threads (or ● OpenSparc Slide Cast Ch 5: p79–81,89 processes) requires the saving (in memory) of thread state (register values) ● aggressively multicore: 8 cores, each with 8-way hardware threading (64 virtual ■ motivation: utilize CPU better when thread stalled for I/O (6300 Lect O1, p9–10) CPUs) ■ what are the costs? do the same for smaller stalls? (e.g. -
Computer Architecture: Parallel Processing Basics
Computer Architecture: Parallel Processing Basics Onur Mutlu & Seth Copen Goldstein Carnegie Mellon University 9/9/13 Today What is Parallel Processing? Why? Kinds of Parallel Processing Multiprocessing and Multithreading Measuring success Speedup Amdhal’s Law Bottlenecks to parallelism 2 Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Cloud Computing EC2 Tashi PDL'09 © 2007-9 Goldstein5 Concurrent Systems Embedded-Physical Distributed Sensor Claytronics Networks Geographically Distributed Power Internet Grid Cloud Computing EC2 Tashi Parallel PDL'09 © 2007-9 Goldstein6 Concurrent Systems Physical Geographical Cloud Parallel Geophysical +++ ++ --- --- location Relative +++ +++ + - location Faults ++++ +++ ++++ -- Number of +++ +++ + - Processors + Network varies varies fixed fixed structure Network --- --- + + connectivity 7 Concurrent System Challenge: Programming The old joke: How long does it take to write a parallel program? One Graduate Student Year 8 Parallel Programming Again?? Increased demand (multicore) Increased scale (cloud) Improved compute/communicate Change in Application focus Irregular Recursive data structures PDL'09 © 2007-9 Goldstein9 Why Parallel Computers? Parallelism: Doing multiple things at a time Things: instructions,