Hyzy Sharon L 201208 Mast.Pdf (762.5Kb)

Total Page:16

File Type:pdf, Size:1020Kb

Hyzy Sharon L 201208 Mast.Pdf (762.5Kb) ADVERSE EFFECTS OF BONE MORPHOGENIC PROTEIN-2 DURING OSSEOINTEGRATION A Thesis Presented to The Academic Faculty by Sharon Leigh Hyzy In Partial Fulfillment of the Requirements for the Degree Masters of Science in the School of Biology Georgia Institute of Technology August 2012 ADVERSE EFFECTS OF BONE MORPHOGENIC PROTEIN-2 DURING OSSEOINTEGRATION Approved by: Dr. Barbara D. Boyan, Advisor Dr. Zvi Schwartz, Co-advisor School of Biomedical Engineering School of Biomedical Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Kirill Lobachev Dr. J. Todd Streelman School of Biology School of Biology Georgia Institute of Technology Georgia Institute of Technology Date Approved: May 03, 2012 ACKNOWLEDGEMENTS I would express my profound gratitude to my advisors, Dr. Barbara D. Boyan and Dr. Zvi Schwartz, for supporting my decision to begin my degree and for guidance of my research. I would like to thank the members of my committee, Dr. Kirill Lobachev and Dr. J. Todd Streelman, for their encouragement, difficult questions, and insightful comments during the completion of this thesis. I would like to acknowledge the members of the Boyan/Schwartz laboratory for their support during this process, particularly the staff members. My sincere thanks go to Dr. Rene Olivares-Navarrete for encouraging my scientific development, constant guidance, and patience with this thesis. I am grateful to the undergraduates who have worked with me, particularly Christian Tan and Rahul Basu. My parents, sister, grandparents, aunts, and uncles have been supportive of my postgraduate studies and unendingly understanding when my work consumes my time, for which I am eternally thankful. iii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS iii LIST OF TABLES v LIST OF FIGURES vi LIST OF SYMBOLS AND ABBREVIATIONS vii SUMMARY viii CHAPTER 1 INTRODUCTION 1 Specific Aims 5 2 BONE MORPHOGENIC PROTEIN 2 AND INTERLEUKINS 6 Introduction 6 Methods 8 Results 12 Discussion 20 Conclusion 23 3 BONE MORPOGENIC PROTEIN 2 AND OSTEOBLAST APOPTOSIS 24 Introduction 24 Methods 25 Results 29 Discussion 37 Conclusion 40 4 CONCLUSIONS 41 REFERENCES 43 iv LIST OF TABLES Page Table 2.1: Primer sequences used in real-time qPCR analysis 10 Table 3.1: Primer sequences used in real-time qPCR analysis 27 v LIST OF FIGURES Page Figure 2.1: Effect of surface microstructure and energy on anti-inflammatory gene expression 12 Figure 2.2: Effect of surface microstructure and energy on pro-inflammatory interleukin expression of MG63 cells 13 Figure 2.3: Effect of surface microstructure and energy on osteogenic differentiation of MG63 cells 14 Figure 2.4: Effect of surface microstructure and energy on interleukin production by MG63 cells 15 Figure 2.5: Effect of BMP2 on MG63 differentiation on microstructured Ti surfaces 16 Figure 2.6: Effect of BMP2 on inflammatory interleukin expression in MG63 cells cultured on microstructured Ti surfaces 17 Figure 2.7: BMP pathway modulation of inflammatory microenvironment produced by MG63 cells on microstructured Ti surfaces 19 Figure 3.1: Effect of BMP2 treatment on apoptotic proteins in NHOst cells 30 Figure 3.2: Effect of BMP2 on mesenchymal stem cell apoptosis 31 Figure 3.3: Effect of BMP2 on MG63 cell apoptosis 32 Figure 3.4: Effect of BMP2 on normal human osteoblast apoptosis 33 Figure 3.5: Effect of BMP2 treatment on NOG mRNA levels 34 Figure 3.6: Effect of NOG silencing on MG63 cell apoptosis 35 Figure 3.7: Effect of NOG silencing on BMP2-induced MG63 cell apoptosis 36 Figure 3.8: Effect of BMP pathway inhibition on BMP2-induced NHOst apoptosis 37 vi LIST OF SYMBOLS AND ABBREVIATIONS BMP2 Bone morphogenic protein 2 IL Interleukin MSC Mesenchymal stem cells NHOst Normal human osteoblasts Ti Titanium TCPS Tissue culture polystyrene GAPDH Glyceraldehyde 3-phosphate dehydrogenase TAK1 Transforming growth factor β–activated kinase 1 TAB TAK1-binding protein shNOG-MG63 Silenced Noggin MG63 cell line TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling vii SUMMARY Modifications of biomaterial surface properties are employed to increase osteoblast differentiation and bone formation. Microtextured metallic surfaces promote osteoblast differentiation and high surface energy- achieved by controlling surface hydrocarbon contamination- increases osteoblast differentiation and peri-implant bone formation. Recombinant human bone morphogenic protein 2 (BMP2) is approved to induce bone formation in a number of applications. It is used clinically in combination with biomaterials to improve peri-implant bone formation and osseointegration. The amount of BMP2 that is required is large and inflammatory (swelling/seroma) and bone- related (ectopic bone/bone resorption) complications have been reported after BMP2 treatment. The aim of this study was to examine potential deleterious effects of BMP2 on the inflammatory environment and apoptosis of osteoblasts. Surface roughness and energy decreased pro-inflammatory interleukins and increased anti-inflammatory interleukins. In contrast, BMP2 abolished the surface effect, increasing pro-inflammatory interleukin (IL) 6, IL8, and IL17 in a surface roughness- dependent fashion and decreasing anti-inflammatory IL10 on rough surfaces. 5Z-7- Oxozeaenol and Dorsomorphin, but not H-8, blocked the effect of BMP2 on IL1A expression. There was an increase in expression of IL6 when treated with BMP2 for the control and H-8 groups, but both 5Z-7-Oxozeaenol and Dorsomorphin blocked the effect. Both 5Z-7-Oxozeaenol and H-8 blocked the effect of BMP2 on IL10 expression. BMP2 treatment had little effect on apoptosis in human mesenchymal stem cells (MSCs). Exogenous BMP2 had no effect on TUNEL. Caspase-3 activity was viii increased only at 200ng/ml BMP2. BAX/BCL2 decreased in MSCs treated with 50 and 100ng/ml BMP2. In contrast, BMP2 increased caspase-3 activity and TUNEL at all doses in normal human osteoblasts (NHOst). BAX/BCL2 increased in NHOst treated with BMP2 in a dose-dependent manner. Cells treated with 200 ng/ml BMP2 had an 8-fold increase in BAX/BCL2 expression in comparison with untreated cells. Similarly, BMP2 increased DNA fragmentation in NHOst cells. The BMP2-induced increase in DNA fragmentation was eliminated by 5-Z7-Oxozeaenol and Dorsomorphin. The results suggest that while surface features modulate an initial controlled inflammatory response, the addition of BMP2 induces a pro-inflammatory response. The effect of BMP2 on apoptosis depends on cell maturation state, inducing apoptosis in committed osteoblasts. BMP2 together with microtextured orthopaedic and dental implants may increase inflammation and possibly delay bone formation. Dose, location, and delivery strategies are important considerations in BMP2 as a therapeutic and must be optimized to minimize complications. ix CHAPTER 1 INTRODUCTION Bone morphogenetic proteins Bone morphogenetic proteins (BMPs) were first described in 1965 by Marshall Urist as the active component of demineralized bone matrix able to induce ectopic bone formation. BMPs are members of the TGF-β growth factor superfamily (1). BMPs are generated by proteolytic cleavage of the transcribed preproproteins (2). After cleavage, mature BMPs are secreted from the cell and form homodimers or heterodimers to activate signaling (3, 4). BMPs transduce signals through membrane serine/threonine kinase receptors (5-7). These receptors, categorized as type I and type II receptors, have differential specificity for BMP ligands (8, 9). Dimers of type I receptors combine with dimers of type II receptors to transduce signaling. It has been demonstrated that the order of receptor recruitment and binding determines signaling (9). BMP binding to preformed complexes activates Smad signaling, while BMP-induced formation of heteromeric complexes activates non-canonical BMP signaling (9). Smads are intracellular signaling proteins that are categorized as either receptor-regulated Smads, common-partner Smad, or inhibitory Smads (5, 10). Type I BMP receptors phosphorylate Smad1/5/8. The activated Smad then complexes with common-partner Smad4, translocates to the nucleus, and initiates downstream signaling. In addition to this canonical Smad signaling, BMP signaling can also activate mitogen activated kinase signaling molecules (ERK1/2, p38, Jun N-terminal kinase) through activation of transforming growth factor β–activated kinase 1 (TAK1) and TAK1-binding protein (TAB) (6, 11, 12). BMP signaling is required for multiple processes in embryonic and adult tissue formation and homeostasis (1, 13-15). BMP signaling controls mesoderm patterning, chondrogenesis and osteogenesis in skeletogenesis, cartilage and bone formation, and limb development. In vitro, BMPs induce adipogenic, chondrogenic, and osteogenic differentiation of progenitor cells (16-18). BMP signaling also promotes patterning of craniofacial structures, and limb development. Programmed cell death, or apoptosis, is important in several of these processes. BMP2, BMP4, and BMP7 initiate apoptosis in the developing limb (19-21). While the effects of BMPs on apoptosis are clear, the controlling mechanisms in embryonic and adult processes remain to be elucidated. Besides roles in development, BMP2 is essential in bone regeneration. In a mouse model, limb-specific deletion of BMP2 expression delayed endochondral bone formation and led to micro-fractures in animals by post-natal day 14 (22, 23). Recombinant BMP2 and BMP7 (OP-1) are approved by the Food and Drug Administration for use in bone formation (24). BMP2 is used in fracture
Recommended publications
  • Chondrogenesis of Mesenchymal Stem Cells in a Novel Hyaluronate-Collagen-Tricalcium Phosphate Scaffolds for Knee Repair F.G
    EuropeanF Meng et Cells al. and Materials Vol. 31 2016 (pages 79-94) DOI: 10.22203/eCM.v031a06 TCP-COL-HA scaffolds for cartilage ISSN regeneration 1473-2262 CHONDROGENESIS OF MESENCHYMAL STEM CELLS IN A NOVEL HYALURONATE-COLLAGEN-TRICALCIUM PHOSPHATE SCAFFOLDS FOR KNEE REPAIR F.G. Meng§, Z.Q. Zhang§, G.X. Huang, W.S. Chen, Z.J. Zhang, A.S. He and W.M. Liao* Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China §These two authors contributed equally to this work. Abstract Introduction Scaffolds are expected to play a key role in the induction Damaged articular cartilage has poor self-repair capability of chondrogenesis of mesenchymal stem cells (MSCs) owing to the low metabolic rate of chondrocytes (Chen for cartilage tissue regeneration. Here, we report the et al., 2009; Hunziker, 2002; Steadman et al., 2002). development of a novel tricalcium phosphate-collagen- Tissue engineering is considered a potential strategy hyaluronate (TCP-COL-HA) scaffold that can function as for regenerating damaged tissue (Jackson and Simon, a stem cell carrier to induce chondrogenesis and promote 1999). Mesenchymal stem cells (MSCs) are an especially cartilage repair, and the investigation of chondroinductive promising tool since they can be easily isolated from bone properties of scaffolds containing varying amounts of TCP, marrow and expanded in vitro without the loss of their COL and HA. TCP-COL-HA scaffolds, as well as TCP- capacity to differentiate into various cell types, including COL scaffolds at two different TCP/COL ratios (50:50 and chondrocytes and osteoblasts (Caplan, 2005).
    [Show full text]
  • Mesenchymal Stem Cells in Combination with Hyaluronic Acid
    www.nature.com/scientificreports OPEN Mesenchymal Stem Cells in Combination with Hyaluronic Acid for Articular Cartilage Defects Received: 1 August 2017 Lang Li1, Xin Duan1, Zhaoxin Fan2, Long Chen1,3, Fei Xing1, Zhao Xu4, Qiang Chen2,5 & Accepted: 19 April 2018 Zhou Xiang1 Published: xx xx xxxx Mesenchymal stem cells (MSCs) and hyaluronic acid (HA) have been found in previous studies to have great potential for medical use. This study aimed to investigate the therapeutic efects of bone marrow mesenchymal stem cells (BMSCs) combined with HA on articular cartilage repair in canines. Twenty-four healthy canines (48 knee-joints), male or female with weight ranging from 5 to 6 kg, were operated on to induce cartilage defect model and divided into 3 groups randomly which received diferent treatments: BMSCs plus HA (BMSCs-HA), HA alone, and saline. Twenty-eight weeks after treatment, all canines were sacrifced and analyzed by gross appearance, magnetic resonance imaging (MRI), hematoxylin-eosin (HE) staining, Masson staining, toluidine blue staining, type II collagen immunohistochemistry, gross grading scale and histological scores. MSCs plus HA regenerated more cartilage-like tissue than did HA alone or saline. According to the macroscopic evaluation and histological assessment score, treatment with MSCs plus HA also lead to signifcant improvement in cartilage defects compared to those in the other 2 treatment groups (P < 0.05). These fndings suggested that allogeneic BMSCs plus HA rather than HA alone was efective in promoting the formation of cartilage-like tissue for repairing cartilage defect in canines. Articular cartilage is composed of chondrocyte and extracellular matrix and has an important role in joint move- ment including lubrication, shock absorption and conduction.
    [Show full text]
  • Effectiveness of Antibacterial Surfaces in Osseointegration of Titanium Dental Implants: a Systematic Review
    antibiotics Review Effectiveness of Antibacterial Surfaces in Osseointegration of Titanium Dental Implants: A Systematic Review Nansi López-Valverde 1 , Bruno Macedo-de-Sousa 2 , Antonio López-Valverde 1,* and Juan Manuel Ramírez 3 1 Department of Surgery, Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; [email protected] 2 Institute for Occlusion and Orofacial Pain, Faculty of Medicine, University of Coimbra, Polo I-Edifício Central Rua Larga, 3004-504 Coimbra, Portugal; [email protected] 3 Department of Morphological Sciences, University of Cordoba, Avenida Menéndez Pidal S/N, 14071 Cordoba, Spain; [email protected] * Correspondence: [email protected] Abstract: Titanium (Ti) dental implant failure as a result of infection has been established at 40%, being regarded as one of the most habitual and untreatable problems. Current research is focused on the design of new surfaces that can generate long-lasting, infection-free osseointegration. The purpose of our study was to assess studies on Ti implants coated with different antibacterial surfaces, assessing their osseointegration. The PubMed, Web of Science and Scopus databases were electronically searched for in vivo studies up to December 2020, selecting six studies that met the inclusion criteria. The quality of the selected studies was assessed using the ARRIVE (Animal Research: Reporting of In Vivo Experiments) criteria and Systematic Review Center for Laboratory animal Experimentation’s (SYRCLE’s) risk of bias tool. Although all the included studies, proved greater osseointegration Citation: López-Valverde, N.; capacity of the different antibacterial surfaces studied, the methodological quality and experimental Macedo-de-Sousa, B.; models used in some of them make it difficult to draw predictable conclusions.
    [Show full text]
  • Knee MACI Procedure Rehabilitation Protocol
    REHABILITATION MANUAL Guidelines for the functional recovery of patients following MACI for the treatment of cartilage defects of the knee Written by: Jay Ebert, PhD, AEP ESSAM Hollywood Functional Rehabilitation Clinic School of Sport Science, Exercise and Health University of Western Australia Please see Important Safety Information on page 21 and accompanying full Prescribing Information 2 INTRODUCTION The purpose of this manual is to provide guidance for the development of a KEY POINTS OF CONSIDERATION physician-prescribed rehabilitation program to foster early mobilization and load • Patient adherence to the prescribed rehabilitation protection, promote graft maturation, and reduce the risk of graft delamination, program is critical. postoperative thromboembolic events, and joint stiffness. • Consider lesion size, location and patient characteristics when determining a The MACI® (autologous cultured chondrocytes on porcine collagen membrane) rehabilitation program. Rehabilitation Manual is based on clinical experience* that supports the use of a controlled rehabilitation program to promote a progressive return to full range • Emphasis should be placed on reaching the goals of a given phase over rigid adherence to time schedule. of motion (ROM) and weight bearing (WB), as well as muscle strengthening and conditioning. The rehabilitation program was designed using the knowledge of • It is important to avoid excessive load/WB on the graft site to allow proper healing. basic science, anatomy, and the biomechanics of articular cartilage, as well as the natural course of healing following implantation. It is not intended as a • Pain and swelling must be carefully monitored throughout the rehabilitation process. Ignoring substitute for individual clinical judgment, and a patient-specific rehabilitation these symptoms may compromise the success of program should be implemented.
    [Show full text]
  • Evaluation of Functional Dynamics During Osseointegration And
    Review Po-Chun Chang Evaluation of functional dynamics Niklaus P. Lang William V. Giannobile during osseointegration and regeneration associated with oral implants Authors’ affiliations: Key words: bone–implant interactions, finite element analysis, growth factor Po-Chun Chang, William V. Giannobile, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Abstract Ann Arbor, MI, USA Objectives: The aim of this paper is to review current investigations on functional Po-Chun Chang, William V. Giannobile, assessments of osseointegration and assess correlations to the peri-implant structure. Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Material and methods: The literature was electronically searched for studies of promoting MI, USA dental implant osseointegration, functional assessments of implant stability, and finite Po-Chun Chang, Department of Preventive Dentistry, Division of Periodontology, Faculty of element (FE) analyses in the field of implant dentistry, and any references regarding Dentistry, National University of Singapore, biological events during osseointegration were also cited as background information. Singapore Niklaus P. Lang, Faculty of Dentistry, The Results: Osseointegration involves a cascade of protein and cell apposition, vascular University of Hong Kong, Hong Kong, China SAR invasion, de novo bone formation and maturation to achieve the primary and secondary William V. Giannobile, Michigan Center for Oral dental implant stability.
    [Show full text]
  • Adult Chondrogenesis and Spontaneous Cartilage Repair in the Skate, Leucoraja Erinacea Aleksandra Marconi1, Amy Hancock-Ronemus2,3, J Andrew Gillis1,3*
    RESEARCH ARTICLE Adult chondrogenesis and spontaneous cartilage repair in the skate, Leucoraja erinacea Aleksandra Marconi1, Amy Hancock-Ronemus2,3, J Andrew Gillis1,3* 1Department of Zoology, University of Cambridge, Cambridge, United Kingdom; 2Charles River Laboratories, Wilmington, Massachusetts, United States; 3Marine Biological Laboratory, Woods Hole, Massachusetts, United States Abstract Mammalian articular cartilage is an avascular tissue with poor capacity for spontaneous repair. Here, we show that embryonic development of cartilage in the skate (Leucoraja erinacea) mirrors that of mammals, with developing chondrocytes co-expressing genes encoding the transcription factors Sox5, Sox6 and Sox9. However, in skate, transcriptional features of developing cartilage persist into adulthood, both in peripheral chondrocytes and in cells of the fibrous perichondrium that ensheaths the skeleton. Using pulse-chase label retention experiments and multiplexed in situ hybridization, we identify a population of cycling Sox5/6/9+ perichondral progenitor cells that generate new cartilage during adult growth, and we show that persistence of chondrogenesis in adult skates correlates with ability to spontaneously repair cartilage injuries. Skates therefore offer a unique model for adult chondrogenesis and cartilage repair and may serve as inspiration for novel cell-based therapies for skeletal pathologies, such as osteoarthritis. Introduction Hyaline cartilage is a skeletal tissue that consists of a single cell type (the chondrocyte) embedded *For correspondence: [email protected] within a homogeneous, collagenous extracellular matrix (reviewed in Gillis, 2018). In mammals, hya- line cartilage is predominantly an embryonic tissue, making up the anlage of the axial (chondrocra- Competing interests: The nial, vertebral and rib) and appendicular (limb) endoskeleton. The vast majority of mammalian authors declare that no hyaline cartilage is replaced by bone during the process of endochondral ossification, with cartilage competing interests exist.
    [Show full text]
  • Developmentally Inspired Programming of Adult Human Mesenchymal Stromal Cells Toward Stable Chondrogenesis
    Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis Paola Occhettaa, Sebastien Pigeota, Marco Rasponib, Boris Dasena, Arne Mehrkensa, Thomas Ullrichc, Ina Kramerd, Sabine Guth-Gundeld, Andrea Barberoa, and Ivan Martina,1 aDepartment of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; bDepartment of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milano, Italy; cGlobal Discovery Chemistry, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland; and dMusculoskeletal Disease Area, Novartis Institutes for BioMedical Research, CH-4056 Basel, Switzerland Edited by Robert Langer, Massachusetts Institute of Technology, Cambridge, MA, and approved March 26, 2018 (received for review December 19, 2017) It is generally accepted that adult human bone marrow-derived bone ossicles when transplanted in vivo (8, 9). “Re-programming” mesenchymal stromal cells (hMSCs) are default committed toward hMSCs fate by exposure to specific signals has been postulated as a osteogenesis. Even when induced to chondrogenesis, hMSCs typically potential strategy to reverse this tendency and maintain the stability form hypertrophic cartilage that undergoes endochondral ossifica- of cartilage formed by hMSCs (10). In this direction, signaling fac- tion. Because embryonic mesenchyme is obviously competent to tors directly mediating chondrocyte hypertrophy [i.e., parathyroid generate phenotypically stable cartilage, it is questioned whether hormone-related protein (PTHrP)/Ihh regulatory loop] have been there is a correspondence between mesenchymal progenitor com- extensively considered (11–13). However, upon removal of the sig- partments during development and in adulthood. Here we tested nal, cells typically proceed toward hypertrophy in vitro and to en- whether forcing specific early events of articular cartilage develop- dochondral ossification in vivo.
    [Show full text]
  • RUPPERT, DAVID STRATER. a Study of Osseointegration of Additively Manufactured Implants in Rats Through Vibration and Ultrasound
    Abstract: RUPPERT, DAVID STRATER. A Study of Osseointegration of Additively Manufactured Implants in Rats through Vibration and Ultrasound. (Under the direction of Paul S. Weinhold, PhD and Ola L.A. Harrysson, PhD) Amputees frequently develop soft tissue problems on their residual limb due to increased pressure and shear-forces generated at the socket-limb interface. Direct skeletal attachment of prostheses via percutaneous osseointegrated implants provides stable connections while eliminating skin lesions. However, effective osseointegration of implants remains a major clinical challenge. Hastening rehabilitation, as-well-as providing implants for patient specific anatomy, would greatly increase the feasibility of percutaneous osseointegrated prostheses as an alternative to socket prosthetics. Previous studies indicate that vibration and low-intensity pulsed ultrasound (LIPUS) are beneficial for bone healing. However, the optimal vibration amplitude hasn’t been identified nor has it been shown that LIPUS has a beneficial effect in an intramedullary model to stimulate healing at the bone-implant interface. The primary objective of this work was identifying therapies for accelerating implant osseointegration. Whole body vibration at various amplitudes was investigated to identify the optimal stimuli. Locally applied vibration and LIPUS were studied separately and cumulatively. Non-patient specific threaded implants are being used in FDA clinical osseointegrated prostheses trials. Additive manufacturing can cost effectively create custom implants to better interface with amputees’ residual bones. A secondary objective of this study was evaluating additive manufacturing as an alternative to commonly used Brånemark threaded implant to produce patient specific implants. This objective was broken into two phases: compare osseointegration of additive manufactured (AM) implants to threaded implants; compare osseointegration strength of coarse and fine textured AM implants.
    [Show full text]
  • Mesenchymal Stem Cells and Articular Cartilage Repair: Clinical Studies and Future Direction Shahid Punwar1 and Wasim S
    296 The Open Orthopaedics Journal, 2011, 5, (Suppl 2-M11) 296-301 Open Access Mesenchymal Stem Cells and Articular Cartilage Repair: Clinical Studies and Future Direction Shahid Punwar1 and Wasim S. Khan*,2 1Department of Trauma and Orthopaedics, Frenchay Hospital, North Bristol NHS Trust, Bristol, BS16 1LE, UK 2University College London Institute of Orthopaedics and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK Abstract: Cartilage is frequently injured but shows little capacity for repair. Current treatment options include the use of procedures that stimulate repair through the stimulation of subchondral bone marrow and result in the formation of fibrocartilage. There is considerable interest in the use of cell-based treatment strategies and there are limited studies describing the use of mesenchymal stem cells for cartilage repair with promising early results. This paper reviews the current treatment strategies for articular cartilage, describes use of mesenchymal stem cells for articular cartilage repair along with the results of clinical studies, and describes the future direction that these strategies are likely to take. Keywords: Cartilage repair, chondrogenesis, mesenchymal stem cells, osteoarthritis, tissue engineering. Hyaline articular cartilage is a highly specialized tissue. osteochondral grafting (mosaicplasty) and autologous It is characteristically avascular and depends on diffusion chondrocyte implantation (ACI). Recently autologous from cyclical loading during joint movement for nutrient chondrocytes have been cultured on collagen membranes acquisition [1]. As well as its shock absorbing function it prior to re- implantation, a technique known as MACI enables synovial joints to articulate with extremely low (matrix assisted autologous chondrocyte implantation). frictional forces. Despite the best efforts of man to engineer These procedures are limited to small and medium sized smooth bearing surfaces, prosthetic joints cannot recreate focal chondral and osteochondral defects.
    [Show full text]
  • Chondrogenesis, Studied with the Electron Microscope
    CHONDROGENESIS, STUDIED WITH THE ELECTRON MICROSCOPE GABRIEL C. GODMAN, M.1)., and KEITH R. PORTER, Ph.I). From The Rockefeller Institute. Dr. Godman's present address is Department of Microbiology, Columbia University, New York ABSTRACT The role of the cells in the fabrication of a connective tissue matrix, and the structural modifications which accompany cytodifferentiation have been investigated in developing epiphyseal cartilage of fetal rat by means of electron microscopy. Differentiation of the pre- chondral mesenchymal cells to chondroblasts is marked by the acquisition of an extensive endoplasmic reticulum, enlargement and concentration of the Golgi apparatus, the ap- pearance of membrane-bounded cytoplasmic inclusions, and the formation of specialized foci of increased density in the cell cortex. These modifications are related to the secretion of the cartilage matrix. The matrix of young hyaline cartilage consists of groups of rela- tively short, straight, banded collagen fibrils of 10 to 20 m# and a dense granular component embedded in an amorphous ground substance of moderate electron density. It is postu- lated that the first phase of fibrillogenesis takes place at the cell cortex in dense bands or striae within the ectoplasm subjacent to the cell membrane. These can be resolved into sheaves of "primary" fibrils of about 7 to 10 m#. They are supposedly shed (by excortica- tion) into the matrix space between the separating chondroblasts, where they may serve as "cores" of the definitive matrix fibrils. The diameter of the fibrils may subsequently increase up to threefold, presumably by incorporation of "soluble" or tropocollagen units from the ground substance. The chondroblast also discharges into the matrix the electron- dense amorphous or granular contents of vesicles derived from the Golgi apparatus, and the mixed contents of large vacuoles or blebs bounded by distinctive double membranes.
    [Show full text]
  • Derived Cells Express Cartilage- Like
    ll Scienc Ce e f & o T l h a e n r a r a Hoz-Rodriguez et al. J Cell Sci Ther 2016, 7:4 p p u u y y o o J J Journal of Cell Science & Therapy DOI: 10.4172/2157-7013.1000248 ISSN: 2157-7013 Research Article Open Access Human Cementoblastoma- Derived Cells Express Cartilage- Like Phenotype In vitro and In vivo and Induce Bone Formation Lia Hoz-Rodriguez1, Ana L Garcia-Hernandez2, Enrique RomoArevalo1, Fabiola Salgado-Chavarria1, Gonzalo Montoya-Ayala1, Margarita Zeichner-David3, Rodrigo Correa-Prado1, Sonia Lopez-Letayf1 and Higinio Arzate1* 1Periodontal Biology Laboratory, Faculty of Dentistry, National Autonomous University of Mexico, Mexico 2Iztacala School of Higher Studies, National Autonomous University of Mexico, Mexico 3Ostrow School of Dentistry, University of Southern California, USA Abstract The molecular mechanisms that regulate proliferation and differentiation of cementoblasts, have not been elucidated to date. In this paper, it is shown that human cementoblastoma-derived cells (HCDC) express greater levels of cartilage markers such as type II and X collagens, aggrecan (ACAN) and SRY-box 9 (SOX9) stem cell markers; MCAM (melanoma cell adhesion molecule; synonym: CD146) and STRO-1 than human gingival fibroblasts (HGF). Our in vivo studies demonstrate that HCDC induce bone formation through endochondral ossification as observed 14 days after HCDC were implanted in rat critical-size calvarial defects. At 30 and 60 days post-implantation, the defects treated with HCDC were filled with 70 ± 1.6 and 91 ± 1.3% of newly formed bone. To confirm the identity of this tissue, we analyzed the newly formed bone using histomorphology and immunostaining.
    [Show full text]
  • Regulation of Chondrogenesis in Human Mesenchymal Stem Cells by Cartilage Extracellular Matrix and Therapeutic Applications An
    Regulation of Chondrogenesis in Human Mesenchymal Stem Cells by Cartilage Extracellular Matrix and Therapeutic Applications Ang Li Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences Columbia University 2018 © 2018 Ang Li All Rights Reserved ABSTRACT Regulation of Chondrogenesis in Human Mesenchymal Stem Cells by Cartilage Extracellular Matrix and Therapeutic Applications Ang Li Cartilage has limited intrinsic healing potential upon injury, due to the low cell density and the lack of blood supply. Degenerative disease of the cartilage, such as osteoarthritis (OA), is challenging to treat without clear mechanistic understandings of cartilage development. With over 90% of the cartilage tissue occupied by extracellular matrix (ECM), understanding the cellular and molecular effects of cartilage ECM on chondrogenesis and chondrocyte behavior is crucial for therapeutic development. The focus of this work is to study the regulation of chondrogenesis and hypertrophic maturation of human mesenchymal stem cells (MSCs) by cartilage ECM in the context of potential therapeutic applications. To study the cartilage ECM, we created a decellularized ECM digest from native porcine cartilage and examined its effects on MSCs. Since native cartilage ECM maintains chondrocyte homeostasis without progressing to hypertrophic degeneration, we hypothesized that the decellularized ECM would promote MSC chondrogenesis and inhibit hypertrophy. Indeed, we showed that ECM promoted MSC chondrogenesis and matrix production, and inhibited hypertrophy and endochondral ossification. The chondrogenic effect was shown to potentially involve the PI3K-Akt-Foxo1 and Hif1 pathways. By recapitulating the activated Hif1 pathway, roxadustat, a small molecule stabilizer of Hif, was able to reproduce the chondrogenic and anti- hypertrophic effects of the cartilage ECM.
    [Show full text]