Remote Timing Attacks Are Practical
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Quantitative Study of Advanced Encryption Standard Performance
United States Military Academy USMA Digital Commons West Point ETD 12-2018 A Quantitative Study of Advanced Encryption Standard Performance as it Relates to Cryptographic Attack Feasibility Daniel Hawthorne United States Military Academy, [email protected] Follow this and additional works at: https://digitalcommons.usmalibrary.org/faculty_etd Part of the Information Security Commons Recommended Citation Hawthorne, Daniel, "A Quantitative Study of Advanced Encryption Standard Performance as it Relates to Cryptographic Attack Feasibility" (2018). West Point ETD. 9. https://digitalcommons.usmalibrary.org/faculty_etd/9 This Doctoral Dissertation is brought to you for free and open access by USMA Digital Commons. It has been accepted for inclusion in West Point ETD by an authorized administrator of USMA Digital Commons. For more information, please contact [email protected]. A QUANTITATIVE STUDY OF ADVANCED ENCRYPTION STANDARD PERFORMANCE AS IT RELATES TO CRYPTOGRAPHIC ATTACK FEASIBILITY A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Computer Science By Daniel Stephen Hawthorne Colorado Technical University December, 2018 Committee Dr. Richard Livingood, Ph.D., Chair Dr. Kelly Hughes, DCS, Committee Member Dr. James O. Webb, Ph.D., Committee Member December 17, 2018 © Daniel Stephen Hawthorne, 2018 1 Abstract The advanced encryption standard (AES) is the premier symmetric key cryptosystem in use today. Given its prevalence, the security provided by AES is of utmost importance. Technology is advancing at an incredible rate, in both capability and popularity, much faster than its rate of advancement in the late 1990s when AES was selected as the replacement standard for DES. Although the literature surrounding AES is robust, most studies fall into either theoretical or practical yet infeasible. -
Integral Cryptanalysis on Full MISTY1⋆
Integral Cryptanalysis on Full MISTY1? Yosuke Todo NTT Secure Platform Laboratories, Tokyo, Japan [email protected] Abstract. MISTY1 is a block cipher designed by Matsui in 1997. It was well evaluated and standardized by projects, such as CRYPTREC, ISO/IEC, and NESSIE. In this paper, we propose a key recovery attack on the full MISTY1, i.e., we show that 8-round MISTY1 with 5 FL layers does not have 128-bit security. Many attacks against MISTY1 have been proposed, but there is no attack against the full MISTY1. Therefore, our attack is the first cryptanalysis against the full MISTY1. We construct a new integral characteristic by using the propagation characteristic of the division property, which was proposed in 2015. We first improve the division property by optimizing a public S-box and then construct a 6-round integral characteristic on MISTY1. Finally, we recover the secret key of the full MISTY1 with 263:58 chosen plaintexts and 2121 time complexity. Moreover, if we can use 263:994 chosen plaintexts, the time complexity for our attack is reduced to 2107:9. Note that our cryptanalysis is a theoretical attack. Therefore, the practical use of MISTY1 will not be affected by our attack. Keywords: MISTY1, Integral attack, Division property 1 Introduction MISTY [Mat97] is a block cipher designed by Matsui in 1997 and is based on the theory of provable security [Nyb94,NK95] against differential attack [BS90] and linear attack [Mat93]. MISTY has a recursive structure, and the component function has a unique structure, the so-called MISTY structure [Mat96]. -
Using Frankencerts for Automated Adversarial Testing of Certificate
Using Frankencerts for Automated Adversarial Testing of Certificate Validation in SSL/TLS Implementations Chad Brubaker ∗ y Suman Janay Baishakhi Rayz Sarfraz Khurshidy Vitaly Shmatikovy ∗Google yThe University of Texas at Austin zUniversity of California, Davis Abstract—Modern network security rests on the Secure Sock- many open-source implementations of SSL/TLS are available ets Layer (SSL) and Transport Layer Security (TLS) protocols. for developers who need to incorporate SSL/TLS into their Distributed systems, mobile and desktop applications, embedded software: OpenSSL, NSS, GnuTLS, CyaSSL, PolarSSL, Ma- devices, and all of secure Web rely on SSL/TLS for protection trixSSL, cryptlib, and several others. Several Web browsers against network attacks. This protection critically depends on include their own, proprietary implementations. whether SSL/TLS clients correctly validate X.509 certificates presented by servers during the SSL/TLS handshake protocol. In this paper, we focus on server authentication, which We design, implement, and apply the first methodology for is the only protection against man-in-the-middle and other large-scale testing of certificate validation logic in SSL/TLS server impersonation attacks, and thus essential for HTTPS implementations. Our first ingredient is “frankencerts,” synthetic and virtually any other application of SSL/TLS. Server authen- certificates that are randomly mutated from parts of real cer- tication in SSL/TLS depends entirely on a single step in the tificates and thus include unusual combinations of extensions handshake protocol. As part of its “Server Hello” message, and constraints. Our second ingredient is differential testing: if the server presents an X.509 certificate with its public key. -
Cache-Timing Attack Against Aes Crypto System - Countermeasures Review
Edith Cowan University Research Online Australian Information Security Management Conference Conferences, Symposia and Campus Events 2014 Cache-timing attack against aes crypto system - countermeasures review Yaseen H. Taha University of Khartoum Settana M. Abdulh University of Khartoum Naila A. Sadalla University of Khartoum Huwaida Elshoush University of Khartoum Follow this and additional works at: https://ro.ecu.edu.au/ism Part of the Information Security Commons DOI: 10.4225/75/57b65fd1343d3 12th Australian Information Security Management Conference. Held on the 1-3 December, 2014 at Edith Cowan University, Joondalup Campus, Perth, Western Australia. This Conference Proceeding is posted at Research Online. https://ro.ecu.edu.au/ism/166 CACHE-TIMING ATTACK AGAINST AES CRYPTO SYSTEM - COUNTERMEASURES REVIEW Yaseen.H.Taha, Settana.M.Abdulh, Naila.A.Sadalla, Huwaida Elshoush University of Khartoum, Sudan [email protected], [email protected], [email protected], [email protected] Abstract Side channel attacks are based on side channel information, which is information that is leaked from encryption systems. Implementing side channel attacks is possible if and only if an attacker has access to a cryptosystem (victim) or can interact with cryptosystem remotely to compute time statistics of information that collected from targeted system. Cache timing attack is a special type of side channel attack. Here, timing information caused by cache effect is collected and analyzed by an attacker to guess sensitive information such as encryption key or plaintext. Cache timing attack against AES was known theoretically until Bernstein carry out a real implementation of the attack. Fortunately, this attack can be a success only by exploiting bad implementation in software or hardware, not for algorithm structure weaknesses, and that means attack could be prevented if proper implementation has been used. -
Not-Quite-So-Broken TLS Lessons in Re-Engineering a Security Protocol Specification and Implementation
Not-quite-so-broken TLS Lessons in re-engineering a security protocol specification and implementation David Kaloper Meršinjak Hannes Mehnert Peter Sewell Anil Madhavapeddy University of Cambridge, Computer Labs Usenix Security, Washington DC, 12 August 2015 INT SSL23_GET_CLIENT_HELLO(SSL *S) { CHAR BUF_SPACE[11]; /* REQUEST THIS MANY BYTES IN INITIAL READ. * WE CAN DETECT SSL 3.0/TLS 1.0 CLIENT HELLOS * ('TYPE == 3') CORRECTLY ONLY WHEN THE FOLLOWING * IS IN A SINGLE RECORD, WHICH IS NOT GUARANTEED BY * THE PROTOCOL SPECIFICATION: * BYTE CONTENT * 0 TYPE \ * 1/2 VERSION > RECORD HEADER * 3/4 LENGTH / * 5 MSG_TYPE \ * 6-8 LENGTH > CLIENT HELLO MESSAGE Common CVE sources in 2014 Class # Memory safety 15 State-machine errors 10 Certificate validation 5 ASN.1 parsing 3 (OpenSSL, GnuTLS, SecureTransport, Secure Channel, NSS, JSSE) Root causes Error-prone languages Lack of separation Ambiguous and untestable specification nqsb approach Choice of language and idioms Separation and modular structure A precise and testable specification of TLS Reuse between specification and implementation Choice of language and idioms OCaml: a memory-safe language with expressive static type system Well contained side-effects Explicit flows of data Value-based Explicit error handling We leverage it for abstraction and automated resource management. Formal approaches Either reason about a simplified model of the protocol; or reason about small parts of OpenSSL. In contrast, we are engineering a deployable implementation. nqsb-tls A TLS stack, developed from scratch, with dual goals: Executable specification Usable TLS implementation Structure nqsb-TLS ML module layout Core Is purely functional: VAL HANDLE_TLS : STATE -> BUFFER -> [ `OK OF STATE * BUFFER OPTION * BUFFER OPTION | `FAIL OF FAILURE ] Core OCaml helps to enforce state-machine invariants. -
New Security Proofs for the 3GPP Confidentiality and Integrity
An extended abstract of this paper appears in Fast Software Encryption, FSE 2004, Lecture Notes in Computer Science, W. Meier and B. Roy editors, Springer-Verlag, 2004. This is the full version. New Security Proofs for the 3GPP Confidentiality and Integrity Algorithms Tetsu Iwata¤ Tadayoshi Kohnoy January 26, 2004 Abstract This paper analyses the 3GPP confidentiality and integrity schemes adopted by Universal Mobile Telecommunication System, an emerging standard for third generation wireless commu- nications. The schemes, known as f8 and f9, are based on the block cipher KASUMI. Although previous works claim security proofs for f8 and f90, where f90 is a generalized versions of f9, it was recently shown that these proofs are incorrect. Moreover, Iwata and Kurosawa (2003) showed that it is impossible to prove f8 and f90 secure under the standard PRP assumption on the underlying block cipher. We address this issue here, showing that it is possible to prove f80 and f90 secure if we make the assumption that the underlying block cipher is a secure PRP-RKA against a certain class of related-key attacks; here f80 is a generalized version of f8. Our results clarify the assumptions necessary in order for f8 and f9 to be secure and, since no related-key attacks are known against the full eight rounds of KASUMI, lead us to believe that the confidentiality and integrity mechanisms used in real 3GPP applications are secure. Keywords: Modes of operation, PRP-RKA, f8, f9, KASUMI, security proofs. ¤Dept. of Computer and Information Sciences, Ibaraki University, 4–12–1 Nakanarusawa, Hitachi, Ibaraki 316- 8511, Japan. -
KLEIN: a New Family of Lightweight Block Ciphers
KLEIN: A New Family of Lightweight Block Ciphers Zheng Gong1, Svetla Nikova1;2 and Yee Wei Law3 1Faculty of EWI, University of Twente, The Netherlands fz.gong, [email protected] 2 Dept. ESAT/SCD-COSIC, Katholieke Universiteit Leuven, Belgium 3 Department of EEE, The University of Melbourne, Australia [email protected] Abstract Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has ad- vantage in the software performance on legacy sensor platforms, while its hardware implementation can be compact as well. Key words. Block cipher, Wireless sensor network, Low-resource implementation. 1 Introduction With the development of wireless communication and embedded systems, we become increasingly de- pendent on the so called pervasive computing; examples are smart cards, RFID tags, and sensor nodes that are used for public transport, pay TV systems, smart electricity meters, anti-counterfeiting, etc. Among those applications, wireless sensor networks (WSNs) have attracted more and more attention since their promising applications, such as environment monitoring, military scouting and healthcare. On resource-limited devices the choice of security algorithms should be very careful by consideration of the implementation costs. Symmetric-key algorithms, especially block ciphers, still play an important role for the security of the embedded systems. -
Known and Chosen Key Differential Distinguishers for Block Ciphers
Known and Chosen Key Differential Distinguishers for Block Ciphers Ivica Nikoli´c1?, Josef Pieprzyk2, Przemys law Soko lowski2;3, Ron Steinfeld2 1 University of Luxembourg, Luxembourg 2 Macquarie University, Australia 3 Adam Mickiewicz University, Poland [email protected], [email protected], [email protected], [email protected] Abstract. In this paper we investigate the differential properties of block ciphers in hash function modes of operation. First we show the impact of differential trails for block ciphers on collision attacks for various hash function constructions based on block ciphers. Further, we prove the lower bound for finding a pair that follows some truncated differential in case of a random permutation. Then we present open-key differential distinguishers for some well known round-reduced block ciphers. Keywords: Block cipher, differential attack, open-key distinguisher, Crypton, Hierocrypt, SAFER++, Square. 1 Introduction Block ciphers play an important role in symmetric cryptography providing the basic tool for encryp- tion. They are the oldest and most scrutinized cryptographic tool. Consequently, they are the most trusted cryptographic algorithms that are often used as the underlying tool to construct other cryp- tographic algorithms. One such application of block ciphers is for building compression functions for the hash functions. There are many constructions (also called hash function modes) for turning a block cipher into a compression function. Probably the most popular is the well-known Davies-Meyer mode. Preneel et al. in [27] have considered all possible modes that can be defined for a single application of n-bit block cipher in order to produce an n-bit compression function. -
Differential-Linear Crypt Analysis
Differential-Linear Crypt analysis Susan K. Langfordl and Martin E. Hellman Department of Electrical Engineering Stanford University Stanford, CA 94035-4055 Abstract. This paper introduces a new chosen text attack on iterated cryptosystems, such as the Data Encryption Standard (DES). The attack is very efficient for 8-round DES,2 recovering 10 bits of key with 80% probability of success using only 512 chosen plaintexts. The probability of success increases to 95% using 768 chosen plaintexts. More key can be recovered with reduced probability of success. The attack takes less than 10 seconds on a SUN-4 workstation. While comparable in speed to existing attacks, this 8-round attack represents an order of magnitude improvement in the amount of required text. 1 Summary Iterated cryptosystems are encryption algorithms created by repeating a simple encryption function n times. Each iteration, or round, is a function of the previ- ous round’s oulpul and the key. Probably the best known algorithm of this type is the Data Encryption Standard (DES) [6].Because DES is widely used, it has been the focus of much of the research on the strength of iterated cryptosystems and is the system used as the sole example in this paper. Three major attacks on DES are exhaustive search [2, 71, Biham-Shamir’s differential cryptanalysis [l], and Matsui’s linear cryptanalysis [3, 4, 51. While exhaustive search is still the most practical attack for full 16 round DES, re- search interest is focused on the latter analytic attacks, in the hope or fear that improvements will render them practical as well. -
Performance and Energy Efficiency of Block Ciphers in Personal Digital Assistants
Performance and Energy Efficiency of Block Ciphers in Personal Digital Assistants Creighton T. R. Hager, Scott F. Midkiff, Jung-Min Park, Thomas L. Martin Bradley Department of Electrical and Computer Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061 USA {chager, midkiff, jungmin, tlmartin} @ vt.edu Abstract algorithms may consume more energy and drain the PDA battery faster than using less secure algorithms. Due to Encryption algorithms can be used to help secure the processing requirements and the limited computing wireless communications, but securing data also power in many PDAs, using strong cryptographic consumes resources. The goal of this research is to algorithms may also significantly increase the delay provide users or system developers of personal digital between data transmissions. Thus, users and, perhaps assistants and applications with the associated time and more importantly, software and system designers need to energy costs of using specific encryption algorithms. be aware of the benefits and costs of using various Four block ciphers (RC2, Blowfish, XTEA, and AES) were encryption algorithms. considered. The experiments included encryption and This research answers questions regarding energy decryption tasks with different cipher and file size consumption and execution time for various encryption combinations. The resource impact of the block ciphers algorithms executing on a PDA platform with the goal of were evaluated using the latency, throughput, energy- helping software and system developers design more latency product, and throughput/energy ratio metrics. effective applications and systems and of allowing end We found that RC2 encrypts faster and uses less users to better utilize the capabilities of PDA devices. -
A Novel and Highly Efficient AES Implementation Robust Against Differential Power Analysis Massoud Masoumi K
A Novel and Highly Efficient AES Implementation Robust against Differential Power Analysis Massoud Masoumi K. N. Toosi University of Tech., Tehran, Iran [email protected] ABSTRACT been proposed. Unfortunately, most of these techniques are Developed by Paul Kocher, Joshua Jaffe, and Benjamin Jun inefficient or costly or vulnerable to higher-order attacks in 1999, Differential Power Analysis (DPA) represents a [6]. They include randomized clocks, memory unique and powerful cryptanalysis technique. Insight into encryption/decryption schemes [7], power consumption the encryption and decryption behavior of a cryptographic randomization [8], and decorrelating the external power device can be determined by examining its electrical power supply from the internal power consumed by the chip. signature. This paper describes a novel approach for Moreover, the use of different hardware logic, such as implementation of the AES algorithm which provides a complementary logic, sense amplifier based logic (SABL), significantly improved strength against differential power and asynchronous logic [9, 10] have been also proposed. analysis with a minimal additional hardware overhead. Our Some of these techniques require about twice as much area method is based on randomization in composite field and will consume twice as much power as an arithmetic which entails an area penalty of only 7% while implementation that is not protected against power attacks. does not decrease the working frequency, does not alter the For example, the technique proposed in [10] adds area 3 algorithm and keeps perfect compatibility with the times and reduces throughput by a factor of 4. Another published standard. The efficiency of the proposed method is masking which involves ensuring the attacker technique was verified by practical results obtained from cannot predict any full registers in the system without real implementation on a Xilinx Spartan-II FPGA. -
Arxiv:1911.09312V2 [Cs.CR] 12 Dec 2019
Revisiting and Evaluating Software Side-channel Vulnerabilities and Countermeasures in Cryptographic Applications Tianwei Zhang Jun Jiang Yinqian Zhang Nanyang Technological University Two Sigma Investments, LP The Ohio State University [email protected] [email protected] [email protected] Abstract—We systematize software side-channel attacks with three questions: (1) What are the common and distinct a focus on vulnerabilities and countermeasures in the cryp- features of various vulnerabilities? (2) What are common tographic implementations. Particularly, we survey past re- mitigation strategies? (3) What is the status quo of cryp- search literature to categorize vulnerable implementations, tographic applications regarding side-channel vulnerabili- and identify common strategies to eliminate them. We then ties? Past work only surveyed attack techniques and media evaluate popular libraries and applications, quantitatively [20–31], without offering unified summaries for software measuring and comparing the vulnerability severity, re- vulnerabilities and countermeasures that are more useful. sponse time and coverage. Based on these characterizations This paper provides a comprehensive characterization and evaluations, we offer some insights for side-channel of side-channel vulnerabilities and countermeasures, as researchers, cryptographic software developers and users. well as evaluations of cryptographic applications related We hope our study can inspire the side-channel research to side-channel attacks. We present this study in three di- community to discover new vulnerabilities, and more im- rections. (1) Systematization of literature: we characterize portantly, to fortify applications against them. the vulnerabilities from past work with regard to the im- plementations; for each vulnerability, we describe the root cause and the technique required to launch a successful 1.