A Review of the Health Protective Effects of Phenolic Acids Against a Range of Severe Pathologic Conditions (Including Coronavirus-Based Infections)

Total Page:16

File Type:pdf, Size:1020Kb

A Review of the Health Protective Effects of Phenolic Acids Against a Range of Severe Pathologic Conditions (Including Coronavirus-Based Infections) molecules Review A Review of the Health Protective Effects of Phenolic Acids against a Range of Severe Pathologic Conditions (Including Coronavirus-Based Infections) Sotirios Kiokias 1,* and Vassiliki Oreopoulou 2 1 European Research Executive Agency, Place Charles Rogier 16, 1210 Bruxelles, Belgium 2 Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Iron Politechniou 9, 15780 Athens, Greece; [email protected] * Correspondence: [email protected]; Tel.: +32-49-533-2171 Abstract: Phenolic acids comprise a class of phytochemical compounds that can be extracted from various plant sources and are well known for their antioxidant and anti-inflammatory properties. A few of the most common naturally occurring phenolic acids (i.e., caffeic, carnosic, ferulic, gallic, p-coumaric, rosmarinic, vanillic) have been identified as ingredients of edible botanicals (thyme, oregano, rosemary, sage, mint, etc.). Over the last decade, clinical research has focused on a number of in vitro (in human cells) and in vivo (animal) studies aimed at exploring the health protective effects of phenolic acids against the most severe human diseases. In this review paper, the authors first report on the main structural features of phenolic acids, their most important natural sources and their extraction techniques. Subsequently, the main target of this analysis is to provide an overview of the most recent clinical studies on phenolic acids that investigate their health effects against a range Citation: Kiokias, S.; Oreopoulou, V. A Review of the Health Protective of severe pathologic conditions (e.g., cancer, cardiovascular diseases, hepatotoxicity, neurotoxicity, Effects of Phenolic Acids against a and viral infections—including coronaviruses-based ones). Range of Severe Pathologic Conditions (Including Keywords: phenolic acids; antioxidants; health properties Coronavirus-Based Infections). Molecules 2021, 26, 5405. https:// doi.org/10.3390/molecules26175405 1. Introduction Academic Editors: Maria Free radicals are mainly reactive oxygen species (ROS) (including hydroxyl-, superoxide- José Rodríguez-Lagunas and radicals and singlet oxygen) that are formed in tissue cells by various endogenous and Malen Massot-Cladera exogenous pathways. ROS normally exert an adverse impact on human health by inducing the so called “oxidative stress conditions” [1]. The ability of free radicals to structurally Received: 23 July 2021 modify cellular components and cause oxidative damage to biomolecules (LDL-low density Accepted: 12 August 2021 Published: 6 September 2021 lipoproteins, DNA, etc.) has revealed their involvement in a variety of health pathologies (i.e., inflammation, aging, types of cancer and cardiovascular diseases) [2,3]. Publisher’s Note: MDPI stays neutral Nature has generously offered several types of natural dietary antioxidants, among with regard to jurisdictional claims in which phenolic compounds can operate as scavengers of free radicals in vivo and can published maps and institutional affil- efficiently reduce the harmful health impacts of oxidative damage [4,5]. Phenolic acids iations. comprise a group of natural phenolic compounds that are present in a wide range of herbs and other species of the plant kingdom [6]. More specifically, thyme, oregano, rosemary, sage, and mint herbal preparations—all rich in various phenolics—have been reported to exert strong antioxidant biochemical and anti-inflammatory properties [7,8]. A few authors have reviewed the radical scavenging capacity of phenolic acids and their subsequent Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. beneficial effects against the development of cancer, cardiovascular diseases and other This article is an open access article health disorders (such as skin problems, inflammations, bacterial infections, etc.) [9]. The distributed under the terms and main biochemical pathways and mechanisms of phenolic actions against the development conditions of the Creative Commons of certain types of cancer include: free radical scavenging, enzyme induction, DNA damage Attribution (CC BY) license (https:// repair, cell proliferation depression, and apoptosis [10]. creativecommons.org/licenses/by/ In their recent publication, Kiokias et al. (2020) [11] focused on the in vitro antioxidant 4.0/). activities of a few common naturally occurring phenolic acids (caffeic, carnosic, ferulic, Molecules 2021, 26, 5405. https://doi.org/10.3390/molecules26175405 https://www.mdpi.com/journal/molecules Molecules 2021, 26, x FOR PEER REVIEW 2 of 18 Molecules 2021, 26, 5405 2 of 18 In their recent publication, Kiokias et al. (2020) [11] focused on the in vitro antioxidant activities of a few common naturally occurring phenolic acids (caffeic, carnosic, ferulic, gallic,gallic, p-coumaric,p-coumaric, rosmarinic, vanillic) vanillic) against against the the oxidation oxidation of ofoil-in-water oil-in-water emulsions. emulsions. SuchSuch interfacialinterfacial lipid-based systems systems generally generally mimic mimic the the structure structure of ofbiological biological mem- mem- branesbranes andand biomoleculesbiomolecules that that when when attacked attacked by by free free radicals radicals are are prone prone to harmful to harmful in vivoin vivo oxidativeoxidative reactions.reactions. InIn this paper, paper, the the authors authors first first report report on the on main the mainstructural structural features features of phenolic of phenolicacids acidsas well as wellas on as a onfew a fewimportant important natural natural sources sources and their and theirextraction extraction techniques. techniques. Subse- Sub- sequently,quently, the the main main focus focus of this of thisanalysis analysis is to isprovide to provide an overview an overview of the most of the recent most clin- recent clinicalical studies studies on phenolic on phenolic acids acids that investigate that investigate their health their effects health against effects a against few severe a few path- severe pathologicologic disorders. disorders. 2.2. Structure,Structure, Herbal Sources and and Extraction Extraction of of the the Most Most Common Common Naturally Naturally Occurring Occurring PhenolicPhenolic AcidsAcids 2.1.2.1. StructuralStructural Classidication of of Natural Natural Phenolic Phenolic Acids Acids InIn termsterms ofof their chemical structure, structure, phenolic phenolic acids acids are are classified classified as: as: HydroxybenzoicHydroxybenzoic acids with with a a C C66-C-C1 1structure:structure: Among Among them them a trihydroxy a trihydroxy derivative derivative (gallic(gallic acid) acid) has has been been associated associated withwith teatea antioxidantantioxidant activity, whilewhile vanilic acid is a methoxy-meth- hydroxyoxy-hydroxy derivative derivative serving serving as a as well-known a well-known flavouring flavouring agent agent [12 [12].]. HydroxycinnamicHydroxycinnamic acids acids with with a a C C6-C6-C3 3structurestructure [13]. [13 ].These These are are abundant abundant in plant in plant sources,sources, withwith p-coumaric (4-hydroxy (4-hydroxy derivati derivative),ve), caffeic caffeic (3, (3,4-dihydroxy4-dihydroxy derivative) derivative) and and ferulicferulic (3-methoxy,(3-methoxy, 4-hydroxy4-hydroxy derivative) derivative) commo commonlynly present present in invarious various culinary culinary herbs. herbs. In In addition,addition, rosmarinicrosmarinic acid (an (an ester ester of of caffeic caffeic acid acid with with 3,4-dihydroxyphenyl 3,4-dihydroxyphenyl lactic lactic acid) acid) is is mainlymainly encounteredencountered in certain aromatic aromatic herbs herbs [14]. [14 ]. Phenylacetic acids with a C6-C2 structure. Phenylacetic acids are scarce in fruits and Phenylacetic acids with a C6-C2 structure. Phenylacetic acids are scarce in fruits andvegetables, vegetables, while while a dihydroxy a dihydroxy derivative derivative was detected was detected in strawberry in strawberry tree honey tree [15]. honey Car- [15]. Carnosicnosic acid acid belongs belongs to the to phenolic the phenolic diterpenes diterpenes that are thatusually are classified usually as classified hybrid phenol- as hybrid phenolicsics [13]. [13]. ThisThis reviewreview focuses on on the the most most common common hydroxybenzoic hydroxybenzoic and and hydroxycinnamic hydroxycinnamic phenolic acids, along with carnosic acid, the chemical structures of which are given in phenolic acids, along with carnosic acid, the chemical structures of which are given in Figure 1. Figure1. (a) Hydrocinnamic acids (b) Hydroxybenzoic acids Caffeic acid Gallic acid Ferulic acid Vanillic acid p-Coumaric acid Carnosic acid Rosmarinic acid (hybrid phenolic) Figure 1. Chemical structure of phenolic acids examined in this study. Molecules 2021, 26, 5405 3 of 18 2.2. Herbal Sources and Extraction of Phenolic Acids Caffeic acid (CA) is found at high levels in various herbs worldwide, including the South American herb yerba mate (1.5 g/kg) [16], the Japanese herbal leaf tea, the tea stem from Moringa oleifera L. [17], and thyme (1.7 mg/kg) [18]. Carnocic acid (CarA) can be found in a few species of the Lamiaceae family (such as rosemary and common salvia species). It has been reported to be present at a concentration of 1.5 to 2.5% in dried sage leaves [19,20]. Ferulic acid (FA) is present in black beans at an average concentration of 0.8 g/kg, while flaxseed has been reported as the richest natural source of FA glucoside (4.1 ± 0.2 g/kg), [21,22] . FA has been
Recommended publications
  • Aquatic Plants of Saratoga Lake
    Saratoga Lake Aquatic Plant Survey – 2009 Prepared By Lawrence Eichler Research Scientist and Charles Boylen Associate Director Darrin Fresh Water Institute 5060 Lakeshore Drive Bolton Landing, NY 12814 (518) 644-3541 (voice) (518) 644-3640 (fax) [email protected] December 1, 2009 DFWI Technical Report 2009-6 TABLE OF CONTENTS Background . 1 Introduction . 1 Survey Site . 1 Methods . 3 Species List and Herbarium Specimens . 3 Point Intercept Survey . 3 Results and Discussion Saratoga Lake Survey Results . 5 Maximum Depth of Colonization . 6 Species Richness and Distribution . 7 Summary . 14 References . 19 Acknowledgements . 20 Appendix A. Saratoga Lake aquatic plant distribution maps . A-1 List of Tables Page Table 1 Aquatic plant species present in Saratoga Lake in 2009 ….………... 5 Table 2 Saratoga Lake point intercept percent frequency of occurrence …… 8 Table 3 Saratoga Lake point intercept percent frequency of occurrence in 2009 9 Table 4 Species richness for the point intercept surveys …………………… 13 List of Figures Page Figure 1 Distribution of point intercept survey points for Saratoga Lake ..…… 4 Figure 2 Depth distribution of Saratoga Lake sampling points ..……………… 7 Figure 3 Distribution of Eurasian watermilfoil in Saratoga Lake in 2009 10 Figure 4 Frequency of occurrence summaries for sampling points of all water depth 11 Figure 5 Frequency of occurrence summaries for sampling points of <6m water depth ………………………………………………………………….. 12 Figure 6 Species richness for native species in the point intercept survey ……. 13 Figure 7 A comparison of the distribution of Eurasian watermilfoil (Myriophyllum spicatum) growth in Saratoga Lake in 2004, 2007, 2008 and 2009…. 16 iii Report on Aquatic Vegetation of Saratoga Lake, New York Background Quantitative aquatic plant surveys were undertaken in 2009 for Saratoga Lake, New York as part of a cooperative effort between Aquatic Control Technologies (ACT) and the Darrin Fresh Water Institute, and supported by the Saratoga Lake Protection and Improvement District (SLPID).
    [Show full text]
  • Chemical Profile of the North American Native Myriophyllum
    Chemical profile of the North American native Myriophyllum sibiricum compared to the invasive M. spicatum Michelle D. Marko a,b,*, Elisabeth M. Gross c, Raymond M. Newman a, Florence K. Gleason b a University of Minnesota, Department of Fisheries, Wildlife and Conservation Biology, 1980 Folwell Avenue, St. Paul, MN 55108, USA b University of Minnesota, Department of Plant Biology, 1445 Gortner Avenue, St. Paul, MN 55108, USA c Limnological Institute, University of Konstanz, PO Box M659, 78457 Konstanz, Germany Received 7 September 2006; received in revised form 10 August 2007; accepted 27 August 2007 Available online 2 September 2007 Abstract Myriophyllum spicatum L. is a nonindigenous invasive plant in North America that can displace the closely related native Myriophyllum sibiricum Komarov. We analyzed the chemical composition (including: C, N, P, polyphenols, lignin, nonpolar extractables, and sugars) of M. spicatum and M. sibiricum and determined how the chemistry of the two species varied by plant part with growing environment (lake versus tank), irradiance (full sun versus 50% shading), and season (July through September). M. spicatum had higher concentrations of carbon, polyphenols and lignin (C: 47%; polyphenols: 5.5%; lignin: 18%) than M. sibiricum (C: 42%; polyphenols: 3.7%; lignin: 9%) while M. sibiricum had a higher concentration of ash under all conditions (12% versus 8% for M. spicatum). Apical meristems of both species had the highest concentration of carbon, polyphenols, and tellimagrandin II, followed by leaves and stems. Tellimagrandin II was present in apical meristems of both M. spicatum (24.6 mg gÀ1 dm) and M. sibiricum (11.1 mg gÀ1 dm).
    [Show full text]
  • “Maltese Mushroom” (Cynomorium Coccineum) by Means of Multiple Chemical and Biological Assays
    Nutrients 2013, 5, 149-161; doi:10.3390/nu5010149 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Article Evaluation of Antioxidant Potential of “Maltese Mushroom” (Cynomorium coccineum) by Means of Multiple Chemical and Biological Assays Paolo Zucca 1,2,†, Antonella Rosa 1,†, Carlo I. G. Tuberoso 3, Alessandra Piras 4, Andrea C. Rinaldi 1, Enrico Sanjust 1, Maria A. Dessì 1 and Antonio Rescigno 1,* 1 Department of Biomedical Sciences, University of Cagliari, Monserrato 09042, Italy; E-Mails: [email protected] (P.Z.); [email protected] (A.R.); [email protected] (A.C.R.); [email protected] (E.S.); [email protected] (M.A.D.) 2 Consorzio UNO, Consortium University of Oristano, Oristano 09170, Italy 3 Department of Life and Environmental Sciences, University of Cagliari, Cagliari 09124, Italy; E-Mail: [email protected] 4 Department of Chemical and Geological Sciences, University of Cagliari, Monserrato 09042, Italy; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-70-675-4516; Fax: +39-70-675-4527. Received: 14 November 2012; in revised form: 21 December 2012 / Accepted: 4 January 2013 / Published: 11 January 2013 Abstract: Cynomorium coccineum is an edible, non-photosynthetic plant widespread along the coasts of the Mediterranean Sea. The medicinal properties of Maltese mushroom—one of the oldest vernacular names used to identify this species—have been kept in high regard since ancient times to the present day. We evaluated the antioxidant potential of fresh specimens of C. coccineum picked in Sardinia, Italy.
    [Show full text]
  • Design a Database of Italian Vascular Alimurgic Flora (Alimurgita): Preliminary Results
    plants Article Design a Database of Italian Vascular Alimurgic Flora (AlimurgITA): Preliminary Results Bruno Paura 1,*, Piera Di Marzio 2 , Giovanni Salerno 3, Elisabetta Brugiapaglia 1 and Annarita Bufano 1 1 Department of Agricultural, Environmental and Food Sciences University of Molise, 86100 Campobasso, Italy; [email protected] (E.B.); [email protected] (A.B.) 2 Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy; [email protected] 3 Graduate Department of Environmental Biology, University “La Sapienza”, 00100 Roma, Italy; [email protected] * Correspondence: [email protected] Abstract: Despite the large number of data published in Italy on WEPs, there is no database providing a complete knowledge framework. Hence the need to design a database of the Italian alimurgic flora: AlimurgITA. Only strictly alimurgic taxa were chosen, excluding casual alien and cultivated ones. The collected data come from an archive of 358 texts (books and scientific articles) from 1918 to date, chosen with appropriate criteria. For each taxon, the part of the plant used, the method of use, the chorotype, the biological form and the regional distribution in Italy were considered. The 1103 taxa of edible flora already entered in the database equal 13.09% of Italian flora. The most widespread family is that of the Asteraceae (20.22%); the most widely used taxa are Cichorium intybus and Borago officinalis. The not homogeneous regional distribution of WEPs (maximum in the south and minimum in the north) has been interpreted. Texts published reached its peak during the 2001–2010 decade. A database for Italian WEPs is important to have a synthesis and to represent the richness and Citation: Paura, B.; Di Marzio, P.; complexity of this knowledge, also in light of its potential for cultural enhancement, as well as its Salerno, G.; Brugiapaglia, E.; Bufano, applications for the agri-food system.
    [Show full text]
  • (Potamogeton Crispus) in the Sacramento–San Joaquin Delta, California
    J. Aquat. Plant Manage. 59: 1–6 Molecular confirmation of hybridization with invasive curly-leaf pondweed (Potamogeton crispus) in the Sacramento–San Joaquin Delta, California AJAY R. JONES AND RYAN A. THUM* ABSTRACT populations of hydrilla (Hydrilla verticillata) is influenced by DNA substitutions in the phytoene desaturase gene (Michel Weed managers recognize that hybridization can influ- et al. 2004), which can be detected by genetic screening ence invasiveness in target weeds. As such, the identification (Benoit and Les 2013). Similarly, different genotypes of of hybridization in target weeds has become of fundamental Eurasian (Myriophyllum spicatum) and hybrid watermilfoil (M. interest. Curly-leaf pondweed (Potamogeton crispus)isa spicatum 3 M. sibiricum) vary in their growth and response to heavily managed invasive aquatic weed in the United States. several herbicides (e.g., Glomski and Netherland 2009, The genus is known for extensive interspecific hybridiza- Berger et al. 2012, Thum et al, 2012, LaRue et al. 2013, tion, but the extent to which invasive P. crispus in the United Taylor et al. 2017, Netherland and Willey 2018), and distinct States hybridizes is unknown. In October 2018, an aquatic phenotypes of fanwort (Cabomba caroliniana) differ in their vegetation survey in the California Sacramento–San Joaquin response to several herbicides (Bultemeier et al. 2009). river delta identified plants that were suspected as P. crispus Hybridization between invasive species and their native hybrids. These plants closely resembled P. crispus but relatives is one source of genetic variation that can differed in several ways, including having smaller, finer influence invasiveness (Ellstrand and Schierenbeck 2000). leaves and lacking the presence of true turions.
    [Show full text]
  • Fecundity of a Native Herbivore on Its Native and Exotic Host Plants and Relationship to Plant Chemistry
    Aquatic Invasions (2017) Volume 12, Issue 3: 355–369 DOI: https://doi.org/10.3391/ai.2017.12.3.09 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Special Issue: Invasive Species in Inland Waters Research Article Fecundity of a native herbivore on its native and exotic host plants and relationship to plant chemistry Michelle D. Marko1,2,* and Raymond M. Newman1 1Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, 55108, USA 2Biology Department, Concordia College, Moorhead, MN 56562, USA *Corresponding author E-mail: [email protected] Received: 2 November 2016 / Accepted: 28 August 2017 / Published online: 20 September 2017 Handling editor: Liesbeth Bakker Editor’s note: This study was first presented at the special session on aquatic invasive species at the 33rd Congress of the International Society of Limnology (SIL) (31 July – 5 August 2016, Torino, Italy) (http://limnology.org/meetings/past-sil-congress/). This special session has provided a venue for the exchange of information on ecological impacts of non-native species in inland waters. Abstract The host range expansion of the specialist milfoil weevil, Euhrychiopsis lecontei, from the native Myriophyllum sibiricum (northern watermilfoil) to invasive M. spicatum (Eurasian watermilfoil) is one of the few examples of a native insect herbivore preferring, growing and surviving better on a nonindigenous host plant than it does on its native host plant. The milfoil weevil’s preference for the nonindigenous plant can be induced during juvenile development or through exposure to Eurasian watermilfoil as an adult. We evaluated how the fecundity of the milfoil weevil was affected over time by juvenile and adult exposure to the native, invasive and invasive × native hybrid milfoils and whether fecundity was correlated with host plant quality.
    [Show full text]
  • State of the Science for Cyanobacterial Blooms (Microcystis Species) in Florida a Summary Document from the 2019 Harmful Algal Bloom State of the Science Symposium
    State of the Science for Cyanobacterial Blooms (Microcystis species) in Florida A summary document from the 2019 Harmful Algal Bloom State of the Science Symposium Image: Cyanobacterial bloom in Lake Okeechobee Credit: L. Krimsky, Florida Sea Grant Contents: Introduction In recent years, intense blooms of Karenia brevis red tide and Introduction.....................................................2 Microcystis aeruginosa cyanobacteria, known commonly as Current Understanding.....................................3 blue-green algae, have plagued Florida waterways, impacting the state’s economy, environment and public health. Though Bloom Initiation, Development notable in their duration and intensity, these harmful algal and Termination...............................................3 blooms, or HABs, are not uncommon. Florida experiences a variety of HABs in its marine and fresh waters. Public Health....................................................4 Bloom Prediction and Modeling .......................5 In 2019, Governor Ron DeSantis’ Executive Order 19-12 established the Blue-Green Algae Task Force and revived the Bloom Detection and Monitoring......................5 state’s Harmful Algal Bloom Task Force to provide technical expertise and recommendations to reduce the adverse Bloom Mitigation and Control...........................6 impacts of future blooms. Next Steps........................................................6 This fact sheet represents the latest science-based Conclusion.......................................................6
    [Show full text]
  • Investigation of a Microcystis Aeruginosa Cyanobacterial Freshwater Harmful Algal Bloom Associated with Acute Microcystin Toxicosis in a Dog
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by K-State Research Exchange This is the author’s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher’s web site or your institution’s library. Investigation of a Microcystis aeruginosa cyanobacterial freshwater harmful algal bloom associated with acute microcystin toxicosis in a dog Deon van der Merwe, Lionel Sebbag, Jerome C. Nietfeld, Mark T. Aubel, Amanda Foss, Edward Carney How to cite this manuscript If you make reference to this version of the manuscript, use the following information: Van der Merwe, D., Sebbag, L., Nietfeld, J. C., Aubel, M. T., Foss, A., & Carney, E. (2012). Investigation of a Microcystis aeruginosa cyanobacterial freshwater harmful algal bloom associated with acute microcystin toxicosis in a dog. Retrieved from http://krex.ksu.edu Published Version Information Citation: Van der Merwe, D., Sebbag, L., Nietfeld, J. C., Aubel, M. T., Foss, A., & Carney, E. (2012). Investigation of a Microcystis aeruginosa cyanobacterial freshwater harmful algal bloom associated with acute microcystin toxicosis in a dog. Journal of Veterinary Diagnostic Investigation, 24(4), 679-687. Copyright: © 2012 The Author(s) Digital Object Identifier (DOI): doi:10.1177/1040638712445768 Publisher’s Link: http://vdi.sagepub.com/content/24/4/679 This item was retrieved from the K-State Research Exchange (K-REx), the institutional repository of Kansas State University. K-REx is available at http://krex.ksu.edu 1 TITLE PAGE 2 Investigation of a Microcystis aeruginosa cyanobacterial freshwater harmful algal bloom 3 associated with acute microcystin toxicosis in a dog 4 5 Deon van der Merwe1, Lionel Sebbag, Jerome C.
    [Show full text]
  • Harmful Algal Blooms Can Be Deadly to Pets and Livestock
    HARMFUL ALGAL BLOOMS CAN BE DEADLY TO PETS AND LIVESTOCK Harmful Algal Blooms (HABs) are a growing concern in Ohio. From Lake Erie to the Ohio River, HABs are becoming commonplace in many streams, lakes and ponds. Besides being unsightly and sometimes odorous, some algae can produce toxins that can kill animals. HABs include toxin-producing blue-green algae which are actually photosynthesizing bacteria (gram negative, photoautotrophic prokaryotes), called cyanobacteria. These organisms may produce a number of types of “algal” toxins that can cause skin irritation, illness or even death to pets, livestock and people. Numerous dog and livestock illnesses and deaths from exposure to HABs have been reported in the U.S. and around the world. As researchers stressed in their March 2003 report to the U.S. House Science Committee’s Subcommittee on Environment, Technology and Standards, the past 30 years has revealed a substantial increase in the rate of occurrence and the duration of harmful algal blooms.1 There have been reports from 50 countries, including at least 27 states in the U.S. of human and animal illnesses linked to algal toxins.2 Cyanobacteria Blooms Cyanobacteria are present in most surface waters including lakes and streams. Excessive growth (blooms) of these organisms can occur any time of the year when an abundance of nutrients (phosphorus and nitrogen) are present in the water. Cyanobacteria blooms increase the possibility of toxin production that may cause illnesses in people and animals. It is generally thought that most blooms occur in stagnant water in the late summer and early fall when water temperatures are high.
    [Show full text]
  • Whorled Water-Milfoil, Myriophyllum Verticillatum
    Natural Heritage Whorled Water-milfoil & Endangered Species Myriophyllum verticillatum L. Program www.mass.gov/nhesp State Status: Endangered Federal Status: None Massachusetts Division of Fisheries & Wildlife DESCRIPTION: The Whorled Water-milfoil (Myriophyllum verticillatum) is an aquatic herb of the Haloragaceae family. The plant grows submersed in water, except for the terminal inflorescence, which emerges above the surface. Small, sessile flowers are oppositely arranged along the uppermost portion of the spike. The stems are elongate and narrow, often branched, and bear whorled leaves that are pinnately dissected into fine segments. AIDS TO IDENTIFICATION: Distinguishing the various species of water-milfoils is difficult, especially in the vegetative condition, and a technical manual and an expert should always be consulted. This is one of a few water-milfoils that produce turions, which are small, bulb-like propagules that allow the plant to spread vegetatively. In this species, the turions are club-shaped (wider at the tips than at the base). Another diagnostic character is the presence of consistently deeply lobed floral bracts that greatly exceed (are more than twice as long as) the length of the female flowers. The combination of these characters, plus the presence of whorled leaves, serves to distinguish this species from the other water-milfoils in Massachusetts. Crow, Garrett, and C. Barre Hellquist. 2000. Aquatic and Wetland Plants. Volume 1. University of Wisconsin Press, Madison, Wisconsin. SIMILAR SPECIES: Common water-milfoils could easily be confused with the Whorled Water-milfoil. For example, the native Lowly Water-milfoil (Myriophyllum humile) differs in having leaves that are strictly alternate, rather than whorled as in the Whorled Water-milfoil.
    [Show full text]
  • Eurasian Watermilfoil Myriophyllum Spicatum L. Water-Milfoil Family (Haloragaceae)
    FACT SHEET: EURASIAN WATERMILFOIL Eurasian Watermilfoil Myriophyllum spicatum L. Water-milfoil family (Haloragaceae) NATIVE RANGE Eurasia and Africa DESCRIPTION Eurasian watermilfoil, also called spike watermilfoil, is an emergent, herbaceous aquatic plant. Stems grow to the water surface, usually extending 3 to 10, but as much as 33, feet in length and frequently forming dense mats. Stems of Eurasian milfoil are long, slender, branching, hairless, and become leafless toward the base. New plants may emerge from each node (joint) on a stem, and root upon contact with mud. The grayish-green leaves of Eurasian watermilfoil are finely divided and occur in whorls of three or four along the stem, with 12-16 pairs of fine, thin leaflets about 1/2 inch long. These leaflets give milfoil a feathery appearance that is a distinguishing feature of the plant. Eurasian watermilfoil produces small yellow, 4-parted flowers on a spike that projects 2- 4 inches above the water surface. The fruit is a hard, segmented capsule containing four seeds. ECOLOGICAL THREAT Eurasian milfoil can form large, floating mats of vegetation on the surface of lakes, rivers, and other water bodies, preventing light penetration for native aquatic plants and impeding water traffic. The plant thrives in areas that have been subjected to various kinds of natural and manmade disturbance. DISTRIBUTION IN THE UNITED STATES Watermilfoil occurs in thirty-three states east of the Mississippi River and has recently been found in Colorado. It is abundant in the Chesapeake Bay, the tidal Potomac River, and several Tennessee Valley reservoirs. HABITAT IN THE UNITED STATES Typical habitat for Eurasian watermilfoil includes fresh to brackish water of fish ponds, lakes, slow-moving streams, reservoirs, estuaries, and canals.
    [Show full text]
  • A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health
    IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume. 1 Issue. 3, PP 57-60 www.iosrjournals.org A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health Nisreen Husain1, Sunita Gupta2 1 (Department of Zoology, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] 2 (Department of Chemistry, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] Abstract: Phytochemicals are the secondary metabolites synthesized in different parts of the plants. They have the remarkable ability to influence various body processes and functions. So they are taken in the form of food supplements, tonics, dietary plants and medicines. Such natural products of the plants attribute to their therapeutic and medicinal values. Phenolic compounds are the most important group of bioactive constituents of the medicinal plants and human diet. Some of the important ones are simple phenols, phenolic acids, flavonoids and phenyl-propanoids. They act as antioxidants and free radical scavengers, and hence function to decrease oxidative stress and their harmful effects. Thus, phenols help in prevention and control of many dreadful diseases and early ageing. Phenols are also responsible for anti-inflammatory, anti-biotic and anti- septic properties. The unique molecular structure of these phytochemicals, with specific position of hydroxyl groups, owes to their powerful bioactivities. The present work reviews the critical study on the chemistry, distribution and role of some phenolic compounds in promoting health-benefits.
    [Show full text]