Optimization of eigenvalue bounds for the independence and chromatic number of graph powers A. Abiada;b;c, G. Coutinhod, M. A. Fiole, B. D. Nogueirad, S. Zeijlemakera aDepartment of Mathematics and Computer Science Eindhoven University of Technology, Eindhoven, The Netherlands bDepartment of Mathematics: Analysis, Logic and Discrete Mathematics Ghent University, Ghent, Belgium cDepartment of Mathematics and Data Science Vrije Universiteit Brussels, Brussels, Belgium fa.abiad.monge,
[email protected] dDepartment of Computer Science Federal University of Minas Gerais, Belo Horizonte, Brazil fgabriel,
[email protected] eDepartament of Mathematics Polytechnic University of Catalonia, Barcelona Barcelona Graduate School of Mathematics
[email protected] Abstract The kth power of a graph G = (V; E), Gk, is the graph whose vertex set is V and in which two distinct vertices are adjacent if and only if their distance in G is at most k. This article proves various eigenvalue bounds for the independence number and chromatic number of Gk which purely depend on the spectrum of G, together with a method to optimize them. Our bounds for the k-independence number also work for arXiv:2010.12649v1 [math.CO] 23 Oct 2020 its quantum counterpart, which is not known to be a computable parameter in general, thus justifying the use of integer programming to optimize them. Some of the bounds previously known in the literature follow as a corollary of our main results. Infinite families of graphs where the bounds are sharp are presented as well. 1 Introduction For a positive integer k, the kth power of a graph G = (V; E), denoted by Gk, is a graph with vertex set V in which two distinct elements of V are joined by an edge if there is a 1 path in G of length at most k between them.