Use the K-Neighborhood Subgraphs to Compute Canonical Labelings of Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Planar Hypohamiltonian Graphs on 40 Vertices
Planar Hypohamiltonian Graphs on 40 Vertices Mohammadreza Jooyandeh, Brendan D. McKay Research School of Computer Science, Australian National University, ACT 2601, Australia Patric R. J. Osterg˚ard,¨ Ville H. Pettersson Department of Communications and Networking, Aalto University School of Electrical Engineering, P.O. Box 13000, 00076 Aalto, Finland Carol T. Zamfirescu Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281 - S9, 9000 Ghent, Belgium Abstract A graph is hypohamiltonian if it is not Hamiltonian, but the deletion of any single vertex gives a Hamiltonian graph. Until now, the smallest known planar hypohamiltonian graph had 42 vertices, a result due to Araya and Wiener. That result is here improved upon by 25 planar hypohamiltonian graphs of order 40, which are found through computer-aided generation of certain families of planar graphs with girth 4 and a fixed number of 4-faces. It is further shown that planar hypohamiltonian graphs exist for all orders greater than or equal to 42. If Hamiltonian cycles are replaced by Hamilto- nian paths throughout the definition of hypohamiltonian graphs, we get the definition of hypotraceable graphs. It is shown that there is a planar hypo- traceable graph of order 154 and of all orders greater than or equal to 156. We also show that the smallest planar hypohamiltonian graph of girth 5 has 45 vertices. Email addresses: [email protected] (Mohammadreza Jooyandeh), [email protected] (Brendan D. McKay), [email protected] (Patric R. J. Osterg˚ard),¨ [email protected] (Ville H. Pettersson), [email protected] (Carol T. Zamfirescu) URL: http://www.jooyandeh.com (Mohammadreza Jooyandeh), http://cs.anu.edu.au/~bdm (Brendan D. -
The Veldkamp Space of GQ(2,4) Metod Saniga, Richard Green, Peter Levay, Petr Pracna, Peter Vrana
The Veldkamp Space of GQ(2,4) Metod Saniga, Richard Green, Peter Levay, Petr Pracna, Peter Vrana To cite this version: Metod Saniga, Richard Green, Peter Levay, Petr Pracna, Peter Vrana. The Veldkamp Space of GQ(2,4). International Journal of Geometric Methods in Modern Physics, World Scientific Publishing, 2010, pp.1133-1145. 10.1142/S0219887810004762. hal-00365656v2 HAL Id: hal-00365656 https://hal.archives-ouvertes.fr/hal-00365656v2 Submitted on 6 Jul 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Veldkamp Space of GQ(2,4) M. Saniga,1 R. M. Green,2 P. L´evay,3 P. Pracna4 and P. Vrana3 1Astronomical Institute, Slovak Academy of Sciences SK-05960 Tatransk´aLomnica, Slovak Republic ([email protected]) 2Department of Mathematics, University of Colorado Campus Box 395, Boulder CO 80309-0395, U. S. A. ([email protected]) 3Department of Theoretical Physics, Institute of Physics Budapest University of Technology and Economics, H-1521 Budapest, Hungary ([email protected] and [email protected]) and 4J. Heyrovsk´yInstitute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejˇskova 3, CZ-182 23 Prague 8, Czech Republic ([email protected]) (6 July 2009) Abstract It is shown that the Veldkamp space of the unique generalized quadrangle GQ(2,4) is isomor- phic to PG(5,2). -
Some Topics Concerning Graphs, Signed Graphs and Matroids
SOME TOPICS CONCERNING GRAPHS, SIGNED GRAPHS AND MATROIDS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Vaidyanathan Sivaraman, M.S. Graduate Program in Mathematics The Ohio State University 2012 Dissertation Committee: Prof. Neil Robertson, Advisor Prof. Akos´ Seress Prof. Matthew Kahle ABSTRACT We discuss well-quasi-ordering in graphs and signed graphs, giving two short proofs of the bounded case of S. B. Rao's conjecture. We give a characterization of graphs whose bicircular matroids are signed-graphic, thus generalizing a theorem of Matthews from the 1970s. We prove a recent conjecture of Zaslavsky on the equality of frus- tration number and frustration index in a certain class of signed graphs. We prove that there are exactly seven signed Heawood graphs, up to switching isomorphism. We present a computational approach to an interesting conjecture of D. J. A. Welsh on the number of bases of matroids. We then move on to study the frame matroids of signed graphs, giving explicit signed-graphic representations of certain families of matroids. We also discuss the cycle, bicircular and even-cycle matroid of a graph and characterize matroids arising as two different such structures. We study graphs in which any two vertices have the same number of common neighbors, giving a quick proof of Shrikhande's theorem. We provide a solution to a problem of E. W. Dijkstra. Also, we discuss the flexibility of graphs on the projective plane. We conclude by men- tioning partial progress towards characterizing signed graphs whose frame matroids are transversal, and some miscellaneous results. -
Every Graph Occurs As an Induced Subgraph of Some Hypohamiltonian Graph
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Received: 27 October 2016 Revised: 31 October 2017 Accepted: 20 November 2017 provided by Ghent University Academic Bibliography DOI: 10.1002/jgt.22228 ARTICLE Every graph occurs as an induced subgraph of some hypohamiltonian graph Carol T. Zamfirescu1 Tudor I. Zamfirescu2,3,4 1 Department of Applied Mathematics, Com- Abstract puter Science and Statistics, Ghent University, Krijgslaan 281 - S9, 9000 Ghent, Belgium We prove the titular statement. This settles a problem 2Fachbereich Mathematik, Universität of Chvátal from 1973 and encompasses earlier results Dortmund, 44221 Dortmund, Germany of Thomassen, who showed it for 3, and Collier and 3 “Simion Stoilow” Institute of Mathematics, Schmeichel, who proved it for bipartite graphs. We also Roumanian Academy, Bucharest, Roumania show that for every outerplanar graph there exists a pla- 4College of Mathematics and Information Science, Hebei Normal University, 050024 nar hypohamiltonian graph containing it as an induced Shijiazhuang, P.R. China subgraph. Correspondence Carol T. Zamfirescu, Department of KEYWORDS Applied Mathematics, Computer Sci- hypohamiltonian, induced subgraph ence and Statistics, Ghent University, Krijgslaan 281 - S9, 9000 Ghent, Belgium. MSC 2010. Email: czamfi[email protected] 05C10, 05C45, 05C60 Funding information Fonds Wetenschappelijk Onderzoek 1 INTRODUCTION Consider a non-hamiltonian graph . We call hypohamiltonian if for every vertex in , the graph − is hamiltonian. In similar spirit, is said to be almost hypohamiltonian if there exists a vertex in , which we will call exceptional, such that − is non-hamiltonian, and for any vertex ≠ in , the graph − is hamiltonian. For an overview of results on hypohamiltonicity till 1993, see the survey by Holton and Sheehan [7]. -
On Stable Cycles and Cycle Double Covers of Graphs with Large Circumference
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 312 (2012) 2540–2544 Contents lists available at SciVerse ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc On stable cycles and cycle double covers of graphs with large circumference Jonas Hägglund ∗, Klas Markström Department of Mathematics and Mathematical Statistics, Umeå University, SE-901 87 Umeå, Sweden article info a b s t r a c t Article history: A cycle C in a graph is called stable if there exists no other cycle D in the same graph such Received 11 October 2010 that V .C/ ⊆ V .D/. In this paper, we study stable cycles in snarks and we show that if a Accepted 16 August 2011 cubic graph G has a cycle of length at least jV .G/j − 9 then it has a cycle double cover. We Available online 23 September 2011 also give a construction for an infinite snark family with stable cycles of constant length and answer a question by Kochol by giving examples of cyclically 5-edge connected snarks Keywords: with stable cycles. Stable cycle ' 2011 Elsevier B.V. All rights reserved. Snark Cycle double cover Semiextension 1. Introduction In this paper, a cycle is a connected 2-regular subgraph. A cycle double cover (usually abbreviated CDC) is a multiset of cycles covering the edges of a graph such that each edge lies in exactly two cycles. The following is a famous open conjecture in graph theory. Conjecture 1.1 (CDCC). -
Vertex-Transitive Graphs That Have No Hamilton Decomposition
Vertex-transitive graphs that have no Hamilton decomposition Darryn Bryant ∗ Matthew Dean † Abstract It is shown that there are infinitely many connected vertex-transitive graphs that have no Hamilton decomposition, including infinitely many Cayley graphs of valency 6, and including Cayley graphs of arbitrarily large valency. 1 Introduction A famous question of Lov´asz concerns the existence of Hamilton paths in vertex-transitive graphs [28], and no example of a connected vertex-transitive graph with no Hamilton path is known. The related question concerning the existence of Hamilton cycles in vertex-transitive graphs is another interesting and well-studied problem in graph theory, see the survey [23]. A Hamiltonian graph is a graph containing a Hamilton cycle. Thomassen (see [10, 23]) has conjectured that there are only finitely many non-Hamiltonian connected vertex-transitive graphs. On the other hand, Babai [8, 9] has conjectured that there are infinitely many such graphs. To date only five are known. These arXiv:1408.5211v3 [math.CO] 12 Nov 2014 are the complete graph of order 2, the Petersen graph, the Coxeter graph, and the two graphs obtained from the Petersen and Coxeter graphs by replacing each vertex with a triangle. For a regular graph of valency at least 4, a stronger property than the existence of a Hamilton cycle is the existence of a Hamilton decomposition. If X is a k-valent graph, then a Hamilton k decomposition of X is a set of ⌊ 2 ⌋ pairwise edge-disjoint Hamilton cycles in X. Given the small number of non-Hamiltonian connected vertex-transitive graphs, and the uncertainty concerning the existence of others, it is natural to ask how many connected vertex-transitive graphs have no Hamilton decomposition. -
Improved Bounds for Hypohamiltonian Graphs∗
Also available at http://amc-journal.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 13 (2017) 235–257 Improved bounds for hypohamiltonian graphs∗ Jan Goedgebeur , Carol T. Zamfirescu Department of Applied Mathematics, Computer Science & Statistics, Ghent University, Krijgslaan 281-S9, 9000 Ghent, Belgium In loving memory of Ella. Received 23 February 2016, accepted 16 January 2017, published online 6 March 2017 Abstract A graph G is hypohamiltonian if G is non-hamiltonian and G − v is hamiltonian for every v 2 V (G). In the following, every graph is assumed to be hypohamiltonian. Aldred, Wormald, and McKay gave a list of all graphs of order at most 17. In this article, we present an algorithm to generate all graphs of a given order and apply it to prove that there exist exactly 14 graphs of order 18 and 34 graphs of order 19. We also extend their results in the cubic case. Furthermore, we show that (i) the smallest graph of girth 6 has order 25, (ii) the smallest planar graph has order at least 23, (iii) the smallest cubic planar graph has order at least 54, and (iv) the smallest cubic planar graph of girth 5 with non-trivial automorphism group has order 78. Keywords: Hamiltonian, hypohamiltonian, planar, girth, cubic graph, exhaustive generation. Math. Subj. Class.: 05C10, 05C38, 05C45, 05C85 1 Introduction Throughout this paper all graphs are undirected, finite, connected, and neither contain loops nor multiple edges, unless explicitly stated otherwise. A graph is hamiltonian if it contains a cycle visiting every vertex of the graph. -
Lattices from Group Frames and Vertex Transitive Graphs
Frames Lattices Graphs Examples Lattices from group frames and vertex transitive graphs Lenny Fukshansky Claremont McKenna College (joint work with Deanna Needell, Josiah Park and Jessie Xin) Tight frame F is rational if there exists a real number α so that αpf i ; f j q P Q @ 1 ¤ i; j ¤ n: Frames Lattices Graphs Examples Tight frames k A spanning set tf 1;:::; f nu Ă R , n ¥ k, is called a tight frame k if there exists a real constant γ such that for every x P R , n 2 2 }x} “ γ px; f j q ; j“1 ¸ where p ; q stands for the usual dot-product. Frames Lattices Graphs Examples Tight frames k A spanning set tf 1;:::; f nu Ă R , n ¥ k, is called a tight frame k if there exists a real constant γ such that for every x P R , n 2 2 }x} “ γ px; f j q ; j“1 ¸ where p ; q stands for the usual dot-product. Tight frame F is rational if there exists a real number α so that αpf i ; f j q P Q @ 1 ¤ i; j ¤ n: k Let f P R be a nonzero vector, then Gf “ tUf : U P Gu k is called a group frame (or G-frame). If G acts irreducibly on R , Gf is called an irreducible group frame. Irreducible group frames are always tight. Frames Lattices Graphs Examples Group frames Let G be a finite subgroup of Ok pRq, the k-dimensional real orthog- k onal group, then G acts on R by left matrix multiplication. -
A Survey of Graph Coloring - Its Types, Methods and Applications
FOUNDATIONS OF COMPUTING AND DECISION SCIENCES Vol. 37 (2012) No. 3 DOI: 10.2478/v10209-011-0012-y A SURVEY OF GRAPH COLORING - ITS TYPES, METHODS AND APPLICATIONS Piotr FORMANOWICZ1;2, Krzysztof TANA1 Abstract. Graph coloring is one of the best known, popular and extensively researched subject in the eld of graph theory, having many applications and con- jectures, which are still open and studied by various mathematicians and computer scientists along the world. In this paper we present a survey of graph coloring as an important subeld of graph theory, describing various methods of the coloring, and a list of problems and conjectures associated with them. Lastly, we turn our attention to cubic graphs, a class of graphs, which has been found to be very interesting to study and color. A brief review of graph coloring methods (in Polish) was given by Kubale in [32] and a more detailed one in a book by the same author. We extend this review and explore the eld of graph coloring further, describing various results obtained by other authors and show some interesting applications of this eld of graph theory. Keywords: graph coloring, vertex coloring, edge coloring, complexity, algorithms 1 Introduction Graph coloring is one of the most important, well-known and studied subelds of graph theory. An evidence of this can be found in various papers and books, in which the coloring is studied, and the problems and conjectures associated with this eld of research are being described and solved. Good examples of such works are [27] and [28]. In the following sections of this paper, we describe a brief history of graph coloring and give a tour through types of coloring, problems and conjectures associated with them, and applications. -
Lombardi Drawings of Graphs 1 Introduction
Lombardi Drawings of Graphs Christian A. Duncan1, David Eppstein2, Michael T. Goodrich2, Stephen G. Kobourov3, and Martin Nollenburg¨ 2 1Department of Computer Science, Louisiana Tech. Univ., Ruston, Louisiana, USA 2Department of Computer Science, University of California, Irvine, California, USA 3Department of Computer Science, University of Arizona, Tucson, Arizona, USA Abstract. We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs. 1 Introduction The American artist Mark Lombardi [24] was famous for his drawings of social net- works representing conspiracy theories. Lombardi used curved arcs to represent edges, leading to a strong aesthetic quality and high readability. Inspired by this work, we intro- duce the notion of a Lombardi drawing of a graph, in which edges are drawn as circular arcs with perfect angular resolution: consecutive edges are evenly spaced around each vertex. While not all vertices have perfect angular resolution in Lombardi’s work, the even spacing of edges around vertices is clearly one of his aesthetic criteria; see Fig. 1. Traditional graph drawing methods rarely guarantee perfect angular resolution, but poor edge distribution can nevertheless lead to unreadable drawings. Additionally, while some tools provide options to draw edges as curves, most rely on straight-line edges, and it is known that maintaining good angular resolution can result in exponential draw- ing area for straight-line drawings of planar graphs [17,25]. -
The Extendability of Matchings in Strongly Regular Graphs
The extendability of matchings in strongly regular graphs Sebastian M. Cioab˘a∗ Weiqiang Li Department of Mathematical Sciences Department of Mathematical Sciences University of Delaware University of Delaware Newark, DE 19707-2553, U.S.A. Newark, DE 19707-2553, U.S.A. [email protected] [email protected] Submitted: Feb 25, 2014; Accepted: Apr 29, 2014; Published: May 13, 2014 Mathematics Subject Classifications: 05E30, 05C50, 05C70 Abstract A graph G of even order v is called t-extendable if it contains a perfect matching, t < v=2 and any matching of t edges is contained in some perfect matching. The extendability of G is the maximum t such that G is t-extendable. In this paper, we study the extendability properties of strongly regular graphs. We improve previous results and classify all strongly regular graphs that are not 3-extendable. We also show that strongly regular graphs of valency k > 3 with λ > 1 are bk=3c-extendable k+1 (when µ 6 k=2) and d 4 e-extendable (when µ > k=2), where λ is the number of common neighbors of any two adjacent vertices and µ is the number of common neighbors of any two non-adjacent vertices. Our results are close to being best pos- sible as there are strongly regular graphs of valency k that are not dk=2e-extendable. We show that the extendability of many strongly regular graphs of valency k is at least dk=2e − 1 and we conjecture that this is true for all primitive strongly regular graphs. We obtain similar results for strongly regular graphs of odd order. -
Use the K-Neighborhood Subgraphs to Compute Canonical Labelings of Graphs
mathematics Article Use the K-Neighborhood Subgraphs to Compute Canonical Labelings of Graphs Jianqiang Hao 1,*, Yunzhan Gong 2, Jianzhi Sun 1 and Li Tan 1 1 Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, No. 11, Fu Cheng Road, Beijing 100048, China 2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, No 10, Xitucheng Road, Haidian District, Beijing 100876, China * Correspondence: [email protected]; Tel.: +86-10-6898-5704 Received: 5 July 2019; Accepted: 27 July 2019; Published: 31 July 2019 Abstract: This paper puts forward an innovative theory and method to calculate the canonical labelings of graphs that are distinct to Nauty’s. It shows the correlation between the canonical labeling of a graph and the canonical labeling of its complement graph. It regularly examines the link between computing the canonical labeling of a graph and the canonical labeling of its open k-neighborhood subgraph . It defines dif fusion degree sequences and entire dif fusion degree sequence . For each node of a graph G, it designs a characteristic m_NearestNode to improve the precision for calculating canonical labeling. Two theorems established here display how to compute the first nodes of MaxQ(G). Another theorem presents how to determine the second nodes of MaxQ(G). When computing Cmax(G), if MaxQ(G) already holds the first i nodes u1, u2, ··· , ui, Diffusion and Nearest Node theorems provide skill on how to pick the succeeding node of MaxQ(G). Further, it also establishes two theorems to determine the Cmax(G) of disconnected graphs.