Long-Term Balancing Selection Drives Evolution of Immunity Genes In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution of Amphimixis and Recombination Under Fluctuating Selection in One and Many Traits
Genet. Res., Camb. (1996), 68, pp. 165-173 With 7 text-figures Copyright © 1996 Cambridge University Press 165 Evolution of amphimixis and recombination under fluctuating selection in one and many traits ALEXEY S. KONDRASHOV* AND LEV YU. YAMPOLSKY Section of Ecology and Systematics, Cornell University, Ithaca, NY 14853, USA (Received 6 June 1995 and in revised form 14 May 1996) Summary Both stabilizing and directional selection acting on one or many quantitative traits usually reduce the genetic variance in a polymorphic population. Amphimixis and recombination restore the variance, pushing it closer to its value under linkage equilibrium. They thus increase the response of the population to fluctuating selection and decrease the genetic load when the mean phenotype is far from optimum. Amphimixis can have a short-term advantage over apomixis if selection fluctuates frequently and widely, so that every genotype often has a low fitness. Such selection causes high genetic variance due to frequent allele substitutions, and a high load even with amphimixis. Recombination in an amphimictic population is maintained only if selection is usually strong and effectively directional. A modifier allele causing free recombination can have a significant advantage only if fluctuations of selection are such that the load is substantial. With smaller fluctuations, an intermediate recombination rate can be established, either due to fixation of alleles that cause such a rate or due to the stable coexistence of alleles causing high and low recombination. If many traits simultaneously are under fluctuating selection, amphimixis and recombination can be maintained when selection associated with individual traits is weaker and the changes in their mean values are smaller than with a single trait. -
The Selfing Syndrome Overshadows Other Differences When Comparing
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.26.398016; this version posted November 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The selfing syndrome overshadows other differences when 2 comparing fitness across Capsella species 3 4 5 Marion Orsucci1, Theofilos Vanikiotis2, Maria Guerrina1, Tianlin Duan1, Sylvain Glémin3, Martin 6 Lascoux1 7 8 1 Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life 9 Laboratory, Uppsala University, 75236 Uppsala, Sweden 10 2 Department of Biological Applications & Technology, University of Ioannina, Leof. S. 11 Niarchou GR-451 10, Ioannina, Greece 12 3 UMR CNRS 6553 ECOBIO, Campus Beaulieu, bât 14a, p.118, CS 74205, 35042 Rennes, 13 France 14 15 16 Corresponding authors: Martin Lascoux ([email protected]), Marion Orsucci 17 ([email protected]) 18 19 20 Running title: Influence of mating system on life history traits in Capsella spp. 21 22 23 Key words: mating system, ploidy, life history traits, environmental disturbance 24 25 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.26.398016; this version posted November 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 26 SUMMARY 27 Self-fertilization has recurrently evolved from outcrossing. Self-fertilization provides an advantage 28 in the short-term as individuals do not require a mate to reproduce, but self-fertilization is also 29 associated with both decreased genetic diversity and accumulation of weakly deleterious mutations, 30 which could, however, be alleviated in polyploid selfers. -
Purebred Dog Breeds Into the Twenty-First Century: Achieving Genetic Health for Our Dogs
Purebred Dog Breeds into the Twenty-First Century: Achieving Genetic Health for Our Dogs BY JEFFREY BRAGG WHAT IS A CANINE BREED? What is a breed? To put the question more precisely, what are the necessary conditions that enable us to say with conviction, "this group of animals constitutes a distinct breed?" In the cynological world, three separate approaches combine to constitute canine breeds. Dogs are distinguished first by ancestry , all of the individuals descending from a particular founder group (and only from that group) being designated as a breed. Next they are distinguished by purpose or utility, some breeds existing for the purpose of hunting particular kinds of game,others for the performance of particular tasks in cooperation with their human masters, while yet others owe their existence simply to humankind's desire for animal companionship. Finally dogs are distinguished by typology , breed standards (whether written or unwritten) being used to describe and to recognize dogs of specific size, physical build, general appearance, shape of head, style of ears and tail, etc., which are said to be of the same breed owing to their similarity in the foregoing respects. The preceding statements are both obvious and known to all breeders and fanciers of the canine species. Nevertheless a correct and full understanding of these simple truisms is vital to the proper functioning of the entire canine fancy and to the health and well being of the animals which are the object of that fancy. It is my purpose in this brief to elucidate the interrelationship of the above three approaches, to demonstrate how distortions and misunderstandings of that interrelationship now threaten the health of all of our dogs and the very existence of the various canine breeds, and to propose reforms which will restore both balanced breed identity and genetic health to CKC breeds. -
Negative Frequency-Dependent Selection Is Frequently Confounding
PERSPECTIVE published: 21 February 2018 doi: 10.3389/fevo.2018.00010 Negative Frequency-Dependent Selection Is Frequently Confounding Dustin Brisson* Biology Department, University of Pennsylvania, Philadelphia, PA, United States Persistent genetic variation within populations presents an evolutionary problem, as natural selection and genetic drift tend to erode genetic diversity. Models of balancing selection were developed to account for the maintenance of genetic variation observed in natural populations. Negative frequency-dependent selection is a powerful type of balancing selection that maintains many natural polymorphisms, but it is also commonly misinterpreted. This review aims to clarify the processes underlying negative frequency-dependent selection, describe classes of polymorphisms that can and cannot result from these processes, and discuss the empirical data needed to accurately identify processes that generate or maintain diversity in nature. Finally, the importance of accurately describing the processes affecting genetic diversity within populations as it relates to research progress is considered. Keywords: negative frequency dependent selection, balancing selection, killing the winner hypothesis, multiple niche polymorphism, density dependent selection Edited by: Norman A. Johnson, University of Massachusetts Amherst, United States INTRODUCTION Reviewed by: Natural diversity—the “endless forms most beautiful and most wonderful” (Darwin, 2012)— Rama Shankar Singh, Is an enduring focus of both evolutionary biologists and -
Host–Parasite Fluctuating Selection in the Absence of Specificity
Heriot-Watt University Research Gateway Host–parasite fluctuating selection in the absence of specificity Citation for published version: Best, A, Ashby, B, White, A, Bowers, R, Buckling, A, Koskella, B & Boots, M 2017, 'Host–parasite fluctuating selection in the absence of specificity', Proceedings of the Royal Society B: Biological Sciences, vol. 284, no. 1866, 20171615. https://doi.org/10.1098/rspb.2017.1615 Digital Object Identifier (DOI): 10.1098/rspb.2017.1615 Link: Link to publication record in Heriot-Watt Research Portal Document Version: Publisher's PDF, also known as Version of record Published In: Proceedings of the Royal Society B: Biological Sciences General rights Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 25. Sep. 2021 Downloaded from http://rspb.royalsocietypublishing.org/ on March 5, 2018 Host–parasite fluctuating selection in the rspb.royalsocietypublishing.org absence of specificity Alex Best1, Ben Ashby2,3, Andy White4, Roger Bowers5, Angus Buckling6, Britt Koskella3 and Mike Boots3,6 Research 1School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK 2Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK Cite this article: Best A, Ashby B, White A, 3Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA 4 Bowers R, Buckling A, Koskella B, Boots M. -
Functional Role of Polymerase IV During Pollen Development in Capsella
bioRxiv preprint doi: https://doi.org/10.1101/863522; this version posted December 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Functional role of Polymerase IV during pollen development in Capsella 2 Zhenxing Wang1*, Nicolas Butel1*, Juan Santos-González1, Filipe Borges2,3, Jun Yi1, 3 Robert A. Martienssen2, German Martinez1, Claudia Köhler1 4 1 Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean 5 Center for Plant Biology, Uppsala 75007, Sweden 6 2 Howard Hughes Medical Institute and Cold Spring Harbor Laboratory, 1 Bungtown 7 Road, Cold Spring Harbor, New York 11724, USA. 8 3 Present address: Institut Jean-Pierre Bourgin, INRA, AgroParisTech, Université Paris- 9 Saclay, 78000, Versailles, France 10 *both authors contributed equally to this work 11 Corresponding Author: [email protected] 12 13 Short title: Requirement of Polymerase IV in Capsella pollen. 14 One-sentence summary: Loss of Polymerase IV function in Capsella rubella causes 15 microspore arrest, revealing an important functional role of Polymerase IV during pollen 16 development. 17 The author responsible for distribution of materials integral to the findings presented in 18 this article in accordance with the policy described in the Instructions for Authors 19 (www.plantcell.org) is: Claudia Köhler ([email protected]) 20 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/863522; this version posted December 3, 2019. -
Evolution and Diversification of the Plant Gibberellin Receptor GID1
Evolution and diversification of the plant gibberellin receptor GID1 Hideki Yoshidaa,b, Eiichi Tanimotoc, Takaaki Hiraia, Yohei Miyanoirid,e, Rie Mitania, Mayuko Kawamuraa, Mitsuhiro Takedad,f, Sayaka Takeharaa, Ko Hiranoa, Masatsune Kainoshod,g, Takashi Akagih, Makoto Matsuokaa,1, and Miyako Ueguchi-Tanakaa,1 aBioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Aichi, Japan; bKihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813 Kanagawa, Japan; cGraduate School of Natural Sciences, Nagoya City University, Nagoya, 467-8501 Aichi, Japan; dStructural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, 464-8601 Aichi, Japan; eResearch Center for State-of-the-Art Functional Protein Analysis, Institute for Protein Research, Osaka University, Suita, 565-0871 Osaka, Japan; fDepartment of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, 862-0973 Kumamoto, Japan; gGraduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, 192-0397 Tokyo, Japan; and hGraduate School of Agriculture, Kyoto University, 606-8502 Kyoto, Japan Edited by Mark Estelle, University of California, San Diego, La Jolla, CA, and approved July 10, 2018 (received for review April 9, 2018) The plant gibberellin (GA) receptor GID1 shows sequence similarity erwort Marchantia polymorpha (5–7). Furthermore, Hirano et al. to carboxylesterase (CXE). Here, we report the molecular evolution (5) reported that GID1s in the lycophyte Selaginella moellen- of GID1 from establishment to functionally diverse forms in dorffii (SmGID1s) have unique properties in comparison with eudicots. By introducing 18 mutagenized rice GID1s into a rice angiosperm GID1s: namely, lower affinity to bioactive GAs and gid1 null mutant, we identified the amino acids crucial for higher affinity to inactive GAs (lower specificity). -
Evolution of Flowering Time in the Tetraploid Capsella Bursa-Pastoris (Brassicaceae)
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 367 Evolution of Flowering Time in the Tetraploid Capsella bursa-pastoris (Brassicaceae) TANJA SLOTTE ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 978-91-554-7024-1 2007 urn:nbn:se:uu:diva-8311 ! " #$$" $%$$ & & & ' ( ) * ( + )( #$$"( & ! * ) ) ,-( . ( /0"( 1$ ( ( 2+ 3" 4345514"$#14( . 6 & &* & * ( 2 2 & & * * & * & ( ! * & ( . 7 & * . * & & & & & * ( & & * & * 8 & ( ) & & * * ( . 4 4& * && * * && & * ( + * 9) ,9 ) - & & * : ( ) !"!#$% ,%- & 9) &!'$()* &! ,&- * & * ( && & * & * & ; ( ) % & * & && & * ( 2 8 & & * +, - & * 8 9) . / $ / * / $ * / ) %0/ / $ 12345 / , < ) 6 + #$$" 2++ 0540#1 2+ 3" 4345514"$#14 % %%% 4 / , %== (:(= > ? % %%% 4 /- looking carefully, a shepherd’s purse is blooming under the fence Bash List of papers This thesis is based on the following papers, which are referred to by their Roman numerals: I Slotte, T., Ceplitis, A., Neuffer, B., Hurka, H., and M. Lascoux. 2006. Intrageneric phylogeny of Capsella (Brassicaceae) and the -
IEG News June Edition
June 2019 IEG News June edition News from the Head of the Department I wish everyone at the department a nice summer - relaxing vacations, and successful work in the field or elsewhere. Thank you all for contributions during the past academic year! For the upcoming fall, don’t forget the following important events: - The dean of biology has invited all senior scientists (“PIs”) to strategic discussions about biology at Uppsala University on August 28 - see mail sent by Staffan Svärd on June 5 for details and reg- istration. - The annual biology teacher days, August 22-23 - see mail from Henning Blom on June 3 for de- tails and registration. - The annual IEG Day will take place 8th of November - a full day of information, interactions, and discussion on topics of importance to the success of IEG as an excellent academic environment. There will also be research presentations, and a party. Old colleague moves on to new challenges Stefan Bertilsson leaves us for a professor position at the Department of Aquatic Sciences and As- sessment at SLU. Good luck to Stefan in his new job, and we look forward to coming inter-univer- sity cooperation! At the farewell celebration, we equipped him with some relevant tools for his fu- ture at the agricultural university. Stefan will still be around to some extent to finalize supervision. Photos courtesy of Lars Tranvik News from the administration Travelling on a business trip? Business trips must be booked through Lingmerth’s travel agency, which is the university’s pro- cured supplier, read more on the Employee Portal (Medarbetarportalen). -
Review of the Current State of Genetic Testing - a Living Resource
Review of the Current State of Genetic Testing - A Living Resource Prepared by Liza Gershony, DVM, PhD and Anita Oberbauer, PhD of the University of California, Davis Editorial input by Leigh Anne Clark, PhD of Clemson University July, 2020 Contents Introduction .................................................................................................................................................. 1 I. The Basics ......................................................................................................................................... 2 II. Modes of Inheritance ....................................................................................................................... 7 a. Mendelian Inheritance and Punnett Squares ................................................................................. 7 b. Non-Mendelian Inheritance ........................................................................................................... 10 III. Genetic Selection and Populations ................................................................................................ 13 IV. Dog Breeds as Populations ............................................................................................................. 15 V. Canine Genetic Tests ...................................................................................................................... 16 a. Direct and Indirect Tests ................................................................................................................ 17 b. Single -
Parental Legacy, Demography, and Admixture Influenced the Evolution
Parental legacy, demography, and admixture influenced the evolution of the two subgenomes of the tetraploid Capsella bursa-pastoris (Brassicaceae) Dmytro Kryvokhyzha, Adriana Salcedo, Mimmi C. Eriksson, Tianlin Duan, Nilesh Tawari, Jun Chen, Maria Guerrina, Julia Kreiner, Tyler V. Kent, Ulf Lagercrantz, et al. To cite this version: Dmytro Kryvokhyzha, Adriana Salcedo, Mimmi C. Eriksson, Tianlin Duan, Nilesh Tawari, et al.. Parental legacy, demography, and admixture influenced the evolution of the two subgenomes of the tetraploid Capsella bursa-pastoris (Brassicaceae). PLoS Genetics, Public Library of Science, 2019, 15 (2), pp.e1007949. 10.1371/journal.pgen.1007949. hal-02369510 HAL Id: hal-02369510 https://hal.archives-ouvertes.fr/hal-02369510 Submitted on 19 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Parental legacy, demography, and admixture influenced the evolution of the two subgenomes of the tetraploid Capsella bursa- pastoris (Brassicaceae) 1☯ 2☯ 1,3 1 Dmytro KryvokhyzhaID , Adriana Salcedo , Mimmi C. ErikssonID , Tianlin DuanID , 4 1 1 2 2 Nilesh Tawari , Jun ChenID , Maria Guerrina , Julia M. Kreiner , Tyler V. KentID , 1 2 1,5 2 Ulf Lagercrantz , John R. StinchcombeID , Sylvain GleÂmin *, Stephen I. -
Balancing Selection at the Prion Protein Gene Consistent with Prehistoric Kurulike Epidemics Simon Mead,1 Michael P
Balancing Selection at the Prion Protein Gene Consistent with Prehistoric Kurulike Epidemics Simon Mead,1 Michael P. H. Stumpf,2 Jerome Whitfield,1,3 Jonathan A. Beck,1 Mark Poulter,1 Tracy Campbell,1 James Uphill,1 David Goldstein,2 Michael Alpers,1,3,4 Elizabeth M. C. Fisher,1 John Collinge1* 1Medical Research Council, Prion Unit, and Department of Neurodegenerative Disease, Institute of Neurology, University College, Queen Square, London WC1N 3BG, UK. 2Department of Biology (Galton Laboratory), University College London, Gower Street, London WC1E 6BT, UK. 3Institute of Medical Research, Goroka, EHP, Papua New Guinea. 4Curtin University of Technology, Perth, WA, Australia. *To whom correspondence should be addressed. E-mail: [email protected] Kuru is an acquired prion disease largely restricted to the cannibalism imposed by the Australian authorities in the mid- Fore linguistic group of the Papua New Guinea Highlands 1950s led to a decline in kuru incidence, and although rare which was transmitted during endocannibalistic feasts. cases still occur these are all in older individuals and reflect Heterozygosity for a common polymorphism in the the long incubation periods possible in human prion human prion protein gene (PRNP) confers relative diseasekuru has not been recorded in any individual born after the late 1950s (4). resistance to prion diseases. Elderly survivors of the kuru A coding polymorphism at codon 129 of PRNP is a strong epidemic, who had multiple exposures at mortuary feasts, susceptibility factor for human prion diseases. Methionine are, in marked contrast to younger unexposed Fore, homozygotes comprise 37% of the UK population whereas predominantly PRNP 129 heterozygotes.