Datatype Defining Rewrite Systems for Naturals and Integers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1804.04307V1 [Math.RA] 12 Apr 2018 Prtr.A Xml Fsc Lersi H Di the Di Is Algebras of Such of Example an Operators
FREE OPERATED MONOIDS AND REWRITING SYSTEMS JIN ZHANG AND XING GAO ∗ Abstract. The construction of bases for quotients is an important problem. In this paper, applying the method of rewriting systems, we give a unified approach to construct sections—an alternative name for bases in semigroup theory—for quotients of free operated monoids. As applications, we capture sections of free ∗-monoids and free groups, respectively. Contents 1. Introduction 1 2. Rewrting systems and sections 2 2.1. Operated monoids and operated congruences 2 2.2. Relationshipbetweenrewritingsystemsandsections 6 3. Applications 8 3.1. Free ∗-monoids 9 3.2. Free groups 12 References 16 1. Introduction In 1960, A.G. Kurosh [23] first introduced the concept of algebras with one or more linear operators. An example of such algebras is the differential algebra led by the algebraic abstraction of differential operator in analysis. Differential algebra is from a purely algebraic viewpoint to study differentiation and nonlinear differential equations without using an underlying topology, and has been largely successful in many crucial areas, such as uncoupling of nonlinear systems, classification of singular components, and detection of hidden equations [22, 28]. Another im- portant example of such algebras is the Rota-Baxter algebra (first called Baxter algebra) which is the algebraic abstraction of integral operator in analysis [17]. Rota-Baxter algebra, originated from probability study [5], is related beautifully to the classical Yang-Baxter equation, as well as to operads, to combinatorics and, through the Hopf algebra framework of Connes and Kreimer, to the renormalization of quantum field theory [1, 3, 4, 11, 12, 19]. -
Lectures on Algebraic Rewriting
Lectures on Algebraic Rewriting Philippe Malbos Institut Camille Jordan Université Claude Bernard Lyon 1 - December 2019 - PHILIPPE MALBOS Univ Lyon, Université Claude Bernard Lyon 1 [email protected] CNRS UMR 5208, Institut Camille Jordan 43 blvd. du 11 novembre 1918 F-69622 Villeurbanne cedex, France — December 6, 2019 - 17:47 — Contents 1 Abstract Rewriting 1 1.1 Abstract Rewriting Systems . .2 1.2 Confluence . .4 1.3 Normalisation . .6 1.4 From local to global confluence . 10 2 String Rewriting 13 2.1 Preliminaries: one and two-dimensional categories . 13 2.2 String rewriting systems . 21 2.3 The word problem . 25 2.4 Branchings . 26 2.5 Completion . 30 2.6 Existence of finite convergent presentations . 32 3 Coherent presentations and syzygies 35 3.1 Introduction . 35 3.2 Categorical preliminaries . 37 3.3 Coherent presentation of categories . 40 3.4 Finite derivation type . 42 3.5 Coherence from convergence . 44 4 Two-dimensional homological syzygies 51 4.1 Preliminaries on modules . 51 4.2 Monoids of finite homological type . 55 4.3 Squier’s homological theorem . 61 4.4 Homology of monoids with integral coefficients . 63 4.5 Historical notes . 65 iii CONTENTS 5 Linear rewriting 69 5.1 Linear 2-polygraphs . 70 5.2 Linear rewriting steps . 77 5.3 Termination for linear 2-polygraphs . 79 5.4 Monomial orders . 80 5.5 Confluence and convergence . 82 5.6 The Critical Branchings Theorem . 85 5.7 Coherent presentations of algebras . 90 6 Paradigms of linear rewriting 95 6.1 Composition Lemma . 96 6.2 Reduction operators . -
EM-Training for Weighted Aligned Hypergraph Bimorphisms
EM-Training for Weighted Aligned Hypergraph Bimorphisms Frank Drewes Kilian Gebhardt and Heiko Vogler Department of Computing Science Department of Computer Science Umea˚ University Technische Universitat¨ Dresden S-901 87 Umea,˚ Sweden D-01062 Dresden, Germany [email protected] [email protected] [email protected] Abstract malized by the new concept of hybrid grammar. Much as in the mentioned synchronous grammars, We develop the concept of weighted a hybrid grammar synchronizes the derivations aligned hypergraph bimorphism where the of nonterminals of a string grammar, e.g., a lin- weights may, in particular, represent proba- ear context-free rewriting system (LCFRS) (Vijay- bilities. Such a bimorphism consists of an Shanker et al., 1987), and of nonterminals of a R 0-weighted regular tree grammar, two ≥ tree grammar, e.g., regular tree grammar (Brainerd, hypergraph algebras that interpret the gen- 1969) or simple definite-clause programs (sDCP) erated trees, and a family of alignments (Deransart and Małuszynski, 1985). Additionally it between the two interpretations. Seman- synchronizes terminal symbols, thereby establish- tically, this yields a set of bihypergraphs ing an explicit alignment between the positions of each consisting of two hypergraphs and the string and the nodes of the tree. We note that an explicit alignment between them; e.g., LCFRS/sDCP hybrid grammars can also generate discontinuous phrase structures and non- non-projective dependency structures. projective dependency structures are bihy- In this paper we focus on the task of training an pergraphs. We present an EM-training al- LCFRS/sDCP hybrid grammar, that is, assigning gorithm which takes a corpus of bihyper- probabilities to its rules given a corpus of discon- graphs and an aligned hypergraph bimor- tinuous phrase structures or non-projective depen- phism as input and generates a sequence dency structures. -
Thue Systems As Rewriting Systems~
J. Symbolic Computation (1987) 3, 39-68 Thue Systems as Rewriting Systems~ RONALD V. BOOK Department of Mathematics, University of California at Santa Barbara, Santa Barbara, California 93106, USA This paper is a survey of recent results on Thue systems, where the systems are viewed as rewriting systems on strings over a finite alphabet. The emphasis is on Thue systems with the Chureh-Rosser property, where the notion of reduction is based on length-decreasing rewriting rules. The main effort is expended in outlining the properties of such systems, paying close attention to the issue of the possible decidability of properties and to the issue of the computational complexity of decidable properties. Since Thue systems may also be considered as presentations of monoids, the language of monoids (and groups) is used to describe some of these properties. 1. Introduction Replacement systems arise in the study of formula manipulation systems such as theorem provers, program optimisers, and algebraic simplifiers. These replacement systems take such forms as term rewriting systems, tree manipulating systems, graph grammars, etc. The study of abstract data types is another area where such systems are useful. The principal problem in this context is the word problem: given a system and two objects, are the two objects equivalent? From a slightly different viewpoint the problem can be stated as follows: can one of these objects be transformed into the other by means of a finite number of applications of the rewriting rules in the given system? This leads naturally to the question of the decidability of the word problem for a given class of systems. -
Strategy Independent Reduction Lengths in Rewriting and Binary Arithmetic
Strategy Independent Reduction Lengths in Rewriting and Binary Arithmetic Hans Zantema University of Technology, Eindhoven, The Netherlands Radboud University, Nijmegen, The Netherlands [email protected] In this paper we give a criterion by which one can conclude that every reduction of a basic term to normal form has the same length. As a consequence, the number of steps to reach the normal form is independent of the chosen strategy. In particular this holds for TRSs computing addition and multiplication of natural numbers, both in unary and binary notation. 1 Introduction For many term rewriting systems (TRSs) the number of rewrite steps to reach a normal form strongly depends on the chosen strategy. For instance, in using the standard if-then-else-rules if(true;x;y) ! x if(false;x;y) ! y it is a good strategy to first rewrite the leftmost (boolean) argument of the symbol if until this argument is rewritten to false or true and then apply the corresponding rewrite rule for if. In this way redundant reductions in the third argument are avoided in case the condition rewrites to true, and redundant reduc- tions in the second argument are avoided in case the condition rewrites to false. More general, choosing a good reduction strategy is essential for doing efficient computation by rewriting. Roughly speaking, for erasing rules, that is, some variable in the left-hand side does not appear in the right-hand side, it seems a good strategy to postpone rewriting this possibly erasing argument, as is the case in the above if-then-else example. -
Balanced Ternary Arithmetic on the Abacus
Balanced Ternary Arithmetic on the Abacus What is balanced ternary? It is a ternary number system where the digits of a number are powers of three rather than powers of ten, but instead of adding multiples of one or two times various powers of three to make up the desired number, in balanced ternary some powers of three are added and others are subtracted. Each power of three comprisising the number is represented by either a +, a -, or 0, to show that the power of three is either added, subtracted, or not present in the number. There are no multiples of a power of three greater than +1 or -1, which greatly simplifies multiplication and division. Another advantage of balanced ternary is that all integers can be represented, both positive and negative, without the need for a separate symbol to indicate plus or minus. The most significant ternary digit (trit) of any positive balanced ternary number is + and the most significant trit of any negative number is -. Here is a list of a few numbers in decimal, ternary, and balanced ternary: Decimal Ternary Balanced ternary ------------------------------------------------- -6 - 20 - + 0 (-9+3) -5 - 12 - + + (-9+3+1) -4 - 11 - - ( -3-1) -3 - 10 - 0 etc. -2 - 2 - + -1 - 1 - 0 0 0 1 1 + 2 2 + - 3 10 + 0 4 11 + + 5 12 + - - 6 20 + - 0 Notice that the negative of a balanced ternary number is formed simply by inverting all the + and - signs in the number. Thomas Fowler in England, about 1840, built a balanced ternary calculating machine capable of multiplying and dividing balanced ternary numbers. -
Domain Theory and the Logic of Observable Properties
Domain Theory and the Logic of Observable Properties Samson Abramsky Submitted for the degree of Doctor of Philosophy Queen Mary College University of London October 31st 1987 Abstract The mathematical framework of Stone duality is used to synthesize a number of hitherto separate developments in Theoretical Computer Science: • Domain Theory, the mathematical theory of computation introduced by Scott as a foundation for denotational semantics. • The theory of concurrency and systems behaviour developed by Milner, Hennessy et al. based on operational semantics. • Logics of programs. Stone duality provides a junction between semantics (spaces of points = denotations of computational processes) and logics (lattices of properties of processes). Moreover, the underlying logic is geometric, which can be com- putationally interpreted as the logic of observable properties—i.e. properties which can be determined to hold of a process on the basis of a finite amount of information about its execution. These ideas lead to the following programme: 1. A metalanguage is introduced, comprising • types = universes of discourse for various computational situa- tions. • terms = programs = syntactic intensions for models or points. 2. A standard denotational interpretation of the metalanguage is given, assigning domains to types and domain elements to terms. 3. The metalanguage is also given a logical interpretation, in which types are interpreted as propositional theories and terms are interpreted via a program logic, which axiomatizes the properties they satisfy. 2 4. The two interpretations are related by showing that they are Stone duals of each other. Hence, semantics and logic are guaranteed to be in harmony with each other, and in fact each determines the other up to isomorphism. -
Algebraic Implementation of Abstract Data Types*
Theoretical Computer Science 20 (1982) 209-263 209 North-Holland Publishing Company ALGEBRAIC IMPLEMENTATION OF ABSTRACT DATA TYPES* H. EHRIG, H.-J. KREOWSKI, B. MAHR and P. PADAWITZ Fachbereich Informatik, TV Berlin, 1000 Berlin 10, Fed. Rep. Germany Communicated by M. Nivat Received October 1981 Abstract. Starting with a review of the theory of algebraic specifications in the sense of the ADJ-group a new theory for algebraic implementations of abstract data types is presented. While main concepts of this new theory were given already at several conferences this paper provides the full theory of algebraic implementations developed in Berlin except of complexity considerations which are given in a separate paper. The new concept of algebraic implementations includes implementations for algorithms in specific programming languages and on the other hand it meets also the requirements for stepwise refinement of structured programs and software systems as introduced by Dijkstra and Wirth. On the syntactical level an algebraic implementation corresponds to a system of recursive programs while the semantical level is defined by algebraic constructions, called SYNTHESIS, RESTRICTION and IDENTIFICATION. Moreover the concept allows composition of implementations and a rigorous study of correctness. The main results of the paper are different kinds of correctness criteria which are applied to a number of illustrating examples including the implementation of sets by hash-tables. Algebraic implementations of larger systems like a histogram or a parts system are given in separate case studies which, however, are not included in this paper. 1. Introduction The concept of abstract data types was developed since about ten years starting with the debacles of large software systems in the late 60's. -
Verifying the Unification Algorithm In
Verifying the Uni¯cation Algorithm in LCF Lawrence C. Paulson Computer Laboratory Corn Exchange Street Cambridge CB2 3QG England August 1984 Abstract. Manna and Waldinger's theory of substitutions and uni¯ca- tion has been veri¯ed using the Cambridge LCF theorem prover. A proof of the monotonicity of substitution is presented in detail, as an exam- ple of interaction with LCF. Translating the theory into LCF's domain- theoretic logic is largely straightforward. Well-founded induction on a complex ordering is translated into nested structural inductions. Cor- rectness of uni¯cation is expressed using predicates for such properties as idempotence and most-generality. The veri¯cation is presented as a series of lemmas. The LCF proofs are compared with the original ones, and with other approaches. It appears di±cult to ¯nd a logic that is both simple and exible, especially for proving termination. Contents 1 Introduction 2 2 Overview of uni¯cation 2 3 Overview of LCF 4 3.1 The logic PPLAMBDA :::::::::::::::::::::::::: 4 3.2 The meta-language ML :::::::::::::::::::::::::: 5 3.3 Goal-directed proof :::::::::::::::::::::::::::: 6 3.4 Recursive data structures ::::::::::::::::::::::::: 7 4 Di®erences between the formal and informal theories 7 4.1 Logical framework :::::::::::::::::::::::::::: 8 4.2 Data structure for expressions :::::::::::::::::::::: 8 4.3 Sets and substitutions :::::::::::::::::::::::::: 9 4.4 The induction principle :::::::::::::::::::::::::: 10 5 Constructing theories in LCF 10 5.1 Expressions :::::::::::::::::::::::::::::::: -
The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes
Portland State University PDXScholar Mathematics and Statistics Faculty Fariborz Maseeh Department of Mathematics Publications and Presentations and Statistics 3-2018 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hu Sun University of Macau Christine Chambris Université de Cergy-Pontoise Judy Sayers Stockholm University Man Keung Siu University of Hong Kong Jason Cooper Weizmann Institute of Science SeeFollow next this page and for additional additional works authors at: https:/ /pdxscholar.library.pdx.edu/mth_fac Part of the Science and Mathematics Education Commons Let us know how access to this document benefits ou.y Citation Details Sun X.H. et al. (2018) The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes. In: Bartolini Bussi M., Sun X. (eds) Building the Foundation: Whole Numbers in the Primary Grades. New ICMI Study Series. Springer, Cham This Book Chapter is brought to you for free and open access. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Xu Hu Sun, Christine Chambris, Judy Sayers, Man Keung Siu, Jason Cooper, Jean-Luc Dorier, Sarah Inés González de Lora Sued, Eva Thanheiser, Nadia Azrou, Lynn McGarvey, Catherine Houdement, and Lisser Rye Ejersbo This book chapter is available at PDXScholar: https://pdxscholar.library.pdx.edu/mth_fac/253 Chapter 5 The What and Why of Whole Number Arithmetic: Foundational Ideas from History, Language and Societal Changes Xu Hua Sun , Christine Chambris Judy Sayers, Man Keung Siu, Jason Cooper , Jean-Luc Dorier , Sarah Inés González de Lora Sued , Eva Thanheiser , Nadia Azrou , Lynn McGarvey , Catherine Houdement , and Lisser Rye Ejersbo 5.1 Introduction Mathematics learning and teaching are deeply embedded in history, language and culture (e.g. -
Categories of Coalgebras with Monadic Homomorphisms Wolfram Kahl
Categories of Coalgebras with Monadic Homomorphisms Wolfram Kahl To cite this version: Wolfram Kahl. Categories of Coalgebras with Monadic Homomorphisms. 12th International Workshop on Coalgebraic Methods in Computer Science (CMCS), Apr 2014, Grenoble, France. pp.151-167, 10.1007/978-3-662-44124-4_9. hal-01408758 HAL Id: hal-01408758 https://hal.inria.fr/hal-01408758 Submitted on 5 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Categories of Coalgebras with Monadic Homomorphisms Wolfram Kahl McMaster University, Hamilton, Ontario, Canada, [email protected] Abstract. Abstract graph transformation approaches traditionally con- sider graph structures as algebras over signatures where all function sym- bols are unary. Attributed graphs, with attributes taken from (term) algebras over ar- bitrary signatures do not fit directly into this kind of transformation ap- proach, since algebras containing function symbols taking two or more arguments do not allow component-wise construction of pushouts. We show how shifting from the algebraic view to a coalgebraic view of graph structures opens up additional flexibility, and enables treat- ing term algebras over arbitrary signatures in essentially the same way as unstructured label sets. -
Datatype Defining Rewrite Systems for Naturals and Integers
UvA-DARE (Digital Academic Repository) Datatype defining rewrite systems for naturals and integers Bergstra, J.A.; Ponse, A. DOI 10.23638/LMCS-17(1:17)2021 Publication date 2021 Document Version Final published version Published in Logical Methods in Computer Science License CC BY Link to publication Citation for published version (APA): Bergstra, J. A., & Ponse, A. (2021). Datatype defining rewrite systems for naturals and integers. Logical Methods in Computer Science, 17(1), [17]. https://doi.org/10.23638/LMCS- 17(1:17)2021 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Logical Methods in Computer Science Volume 17, Issue 1, 2021, pp. 17:1–17:31 Submitted Jan. 15, 2020 https://lmcs.episciences.org/ Published Feb.