Multiband Homogenization of Metamaterials in Real-Space

Total Page:16

File Type:pdf, Size:1020Kb

Multiband Homogenization of Metamaterials in Real-Space Submitted preprint. 1 Multiband Homogenization of Metamaterials in Real-Space: 2 Higher-Order Nonlocal Models and Scattering at External Surfaces 1, ∗ 2, y 1, 3, 4, z 3 Kshiteej Deshmukh, Timothy Breitzman, and Kaushik Dayal 1 4 Department of Civil and Environmental Engineering, Carnegie Mellon University 2 5 Air Force Research Laboratory 3 6 Center for Nonlinear Analysis, Department of Mathematical Sciences, Carnegie Mellon University 4 7 Department of Materials Science and Engineering, Carnegie Mellon University 8 (Dated: March 3, 2021) Dynamic homogenization of periodic metamaterials typically provides the dispersion relations as the end-point. This work goes further to invert the dispersion relation and develop the approximate macroscopic homogenized equation with constant coefficients posed in space and time. The homoge- nized equation can be used to solve initial-boundary-value problems posed on arbitrary non-periodic macroscale geometries with macroscopic heterogeneity, such as bodies composed of several different metamaterials or with external boundaries. First, considering a single band, the dispersion relation is approximated in terms of rational functions, enabling the inversion to real space. The homogenized equation contains strain gradients as well as spatial derivatives of the inertial term. Considering a boundary between a metamaterial and a homogeneous material, the higher-order space derivatives lead to additional continuity conditions. The higher-order homogenized equation and the continuity conditions provide predictions of wave scattering in 1-d and 2-d that match well with the exact fine-scale solution; compared to alternative approaches, they provide a single equation that is valid over a broad range of frequencies, are easy to apply, and are much faster to compute. Next, the setting of two bands with a bandgap is considered. The homogenized equation has also higher-order time derivatives. Notably, the homogenized model provides a single equation that is valid over both bands and the bandgap. The continuity conditions for the higher-order spatio-temporal homogenized equation are applied to wave scattering at a boundary, and show good agreement with the exact fine-scale solution. Using that the order of the highest time derivative is proportional to the number of bands considered, a nonlocal-in-time structure is conjectured for the homogenized equation in the limit of infinite bands, suggesting that homogenizing over finer length and time scales is a mechanism for the emergence of macroscopic spatial and temporal nonlocality. 9 1. Introduction 10 Metamaterials have the potential to display unusual properties, and have been the focus of much attention in + + 11 mechanics and electromagnetism, e.g. [DLT 21, LR18, Sd12, HHS07, MSGP 18, DB07, KK21, BVCV17, 12 GWWM06, SRGS09, HLR14, LS18, FTP15, HE21] and numerous others. A primary focus of much of this 13 effort is to find the dispersion relations in the context of infinite periodic systems, and then tailor or optimize 14 these relations to obtain desirable properties. 15 In this paper, we go beyond computing the dispersion relation to develop homogenized models, in the 16 context of linear periodic metamaterials. The homogenized models that we develop have two key features: 17 (1) they are posed in real space and time, i.e., not in frequency space; and (2) they are posed in terms 18 of a single equation that is valid over a large frequency range and across multiple bands. These features 19 can enable the application of the models to problems posed on complex geometries and with complex 20 time-dependent behavior, rather than infinite periodic systems at steady state and at specific frequencies. 21 Our approach is based on developing approximations to the dispersion relation and then inverting it to 22 obtain the real-space model. This requires us to balance between two competing objectives: (1) an accurate ∗ [email protected] y [email protected] z [email protected] 2 Figure 1. The metamaterial (left) gives a homogenized material with higher-order space-time derivatives (right), and consequent higher-order continuity conditions. 23 representation of the dispersion relation, and (2) tractability of the representation to inversion to real space 24 to obtain standard differential operators. For a single band, we find that a class of models that go back to 25 Toupin [Tou62] provides a good balance. In brief, this class of models can be considered as approximating 26 dispersion curves as rational functions; the inversion to real-space then provides standard but higher-order 27 differential operators. Specifically, the homogenized equation includes strain gradients as well as spatial 28 gradients of the inertial terms. When we extend this to higher bands, we find the appearance of higher-order 29 time derivatives as well. 30 To summarize our overall procedure, we: (1) start with a given dispersion relation that is derived 31 under assumptions of periodicity; (2) use a rational function approximation of the dispersion relation to 32 develop a homogenized equation in space and time with constant coefficients; and (3) then assume that 33 the homogenized equation is still valid even when the coefficients vary in space and the body is finite. 34 Roughly, our procedure assumes implicitly a separation of scales between the periodic microstructure and 35 the macroscopic heterogeneity. 36 To test and demonstrate the homogenized model, we turn to an important topic of current interest in the 37 community: to predict the scattering of waves at boundaries between different metamaterials or boundaries 38 between a metamaterial and a homogeneous material, e.g. [SW17, Wil20b, Wil20a, CGMP19]. We use 39 problems extracted from this body of work as examples on which to test our approach, and discuss this in 40 detail below. Our approach, in brief, is to identify the additional nonstandard continuity conditions that 41 arise at a surface of discontinuity due to the higher-order derivatives in the homogenized equations. These 42 higher-order continuity conditions then provide precisely the information required to uniquely solve for the 43 wave scattering at the boundary. A schematic view of this approach is shown in Figure1. 44 Prior Work on Scattering at Boundaries between Metamaterials and Homogeneous Materials. A 45 simplistic approach to model the scattering at a boundary might start from the usual assumption of infinite 46 periodicity to obtain the homogenized properties of the materials on either side, and then use these properties 47 in the nonperiodic setting with a boundary. However, as pointed out in [SW17], such an approach would 48 consider only the propagating waves and miss the contribution from the evanescent waves that are present 49 in the nonperiodic setting. They showed that if such homogenized models are applied to this problem, 50 the evanescent modes cannot be accounted for, and the classical continuity conditions – continuity of 51 displacement and traction – must be satisfied with propagating waves only; this leads to a violation of the 52 energy flux conservation. 3 53 [SW17] discuss an approach to deal with this problem. Their approach is to minimize the errors in 54 displacement continuity and traction continuity, subject to the conservation of energy, by considering only 55 the propagating modes. While simple and easy to use, it does not consider the microstructural information 56 in formulating this criterion, i.e., it does not account for the details of the evanescent modes. Further, it 57 can be difficult to apply this in a more general setting, for instance in a setting with complex geometry and 58 time-dependence where a decomposition into propagating modes is difficult. 59 A different “bottom-up” approach to this problem, and analogous problems, has been proposed by other 60 workers, e.g., [MMP18, CG20, CGMP19, PMM21, MM17, MM18, MPM19, GMOI19, MG18]. These 61 approaches rigorously account for the lack of periodicity, e.g., by introducing boundary-corrector functions 62 or using matched asymptotic expansions in 2-scale methods. Such methods typically require the coupled 63 solution of the cell problem – solving for the fast variable in a periodic unit cell – along with the effective 64 PDE describing the wave transmission, or the computation of the boundary-corrector functions. This 65 requirements make the approaches challenging and computationally expensive, and consequently difficult 66 to apply in a general setting. Further, these methods typically are restricted to a relatively limited frequency 67 band, making them difficult to apply to general problems with complex time-dependent loading. 68 The Proposed Approach.The approach that we propose aims to sit between the approach of [SW17] and the 69 rigorous homogenization approaches. Specifically, we aim for our homogenized models to be (1) applicable 70 to a broad range of frequencies, (2) applicable to general geometries and time-dependent loadings, (3) 71 computationally efficient and easy to compute with. 72 In the specific context of the insights provided by [SW17] on the importance of evanescent waves, our 73 homogenized models are able to capture the evanescent waves and the bandgap. Further, the higher-order 74 continuity conditions (Figure1) at the interface augment the standard continuity conditions, and provide 75 unique solutions that compare well with exact fine-scale calculations. 76 Emergence of Temporal Nonlocality with Multiple Bands. Existing dynamic homogenization techniques 77 can provide a homogenized equation for a specific band of the dispersion curve by expanding about the 78 frequency in that band, e.g. [GMOI19, CKP10, HMC16]. However, this typically does not provide a 79 single equation that covers several bands. In this work, we propose a single homogenized equation that is 80 applicable over a range of frequencies that covers multiple bands and the bandgaps. An important feature of 81 this homogenized equation is that it has higher derivatives in time, suggesting the emergence of nonlocality 82 in time due to homogenization as we increase the number of bands.
Recommended publications
  • Analysis of Deformation
    Chapter 7: Constitutive Equations Definition: In the previous chapters we’ve learned about the definition and meaning of the concepts of stress and strain. One is an objective measure of load and the other is an objective measure of deformation. In fluids, one talks about the rate-of-deformation as opposed to simply strain (i.e. deformation alone or by itself). We all know though that deformation is caused by loads (i.e. there must be a relationship between stress and strain). A relationship between stress and strain (or rate-of-deformation tensor) is simply called a “constitutive equation”. Below we will describe how such equations are formulated. Constitutive equations between stress and strain are normally written based on phenomenological (i.e. experimental) observations and some assumption(s) on the physical behavior or response of a material to loading. Such equations can and should always be tested against experimental observations. Although there is almost an infinite amount of different materials, leading one to conclude that there is an equivalently infinite amount of constitutive equations or relations that describe such materials behavior, it turns out that there are really three major equations that cover the behavior of a wide range of materials of applied interest. One equation describes stress and small strain in solids and called “Hooke’s law”. The other two equations describe the behavior of fluidic materials. Hookean Elastic Solid: We will start explaining these equations by considering Hooke’s law first. Hooke’s law simply states that the stress tensor is assumed to be linearly related to the strain tensor.
    [Show full text]
  • Circular Birefringence in Crystal Optics
    Circular birefringence in crystal optics a) R J Potton Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Greater Manchester M5 4WT, UK. Abstract In crystal optics the special status of the rest frame of the crystal means that space- time symmetry is less restrictive of electrodynamic phenomena than it is of static electromagnetic effects. A relativistic justification for this claim is provided and its consequences for the analysis of optical activity are explored. The discrete space-time symmetries P and T that lead to classification of static property tensors of crystals as polar or axial, time-invariant (-i) or time-change (-c) are shown to be connected by orientation considerations. The connection finds expression in the dynamic phenomenon of gyrotropy in certain, symmetry determined, crystal classes. In particular, the degeneracies of forward and backward waves in optically active crystals arise from the covariance of the wave equation under space-time reversal. a) Electronic mail: [email protected] 1 1. Introduction To account for optical activity in terms of the dielectric response in crystal optics is more difficult than might reasonably be expected [1]. Consequently, recourse is typically had to a phenomenological account. In the simplest cases the normal modes are assumed to be circularly polarized so that forward and backward waves of the same handedness are degenerate. If this is so, then the circular birefringence can be expanded in even powers of the direction cosines of the wave normal [2]. The leading terms in the expansion suggest that optical activity is an allowed effect in the crystal classes having second rank property tensors with non-vanishing symmetrical, axial parts.
    [Show full text]
  • Soft Matter Theory
    Soft Matter Theory K. Kroy Leipzig, 2016∗ Contents I Interacting Many-Body Systems 3 1 Pair interactions and pair correlations 4 2 Packing structure and material behavior 9 3 Ornstein{Zernike integral equation 14 4 Density functional theory 17 5 Applications: mesophase transitions, freezing, screening 23 II Soft-Matter Paradigms 31 6 Principles of hydrodynamics 32 7 Rheology of simple and complex fluids 41 8 Flexible polymers and renormalization 51 9 Semiflexible polymers and elastic singularities 63 ∗The script is not meant to be a substitute for reading proper textbooks nor for dissemina- tion. (See the notes for the introductory course for background information.) Comments and suggestions are highly welcome. 1 \Soft Matter" is one of the fastest growing fields in physics, as illustrated by the APS Council's official endorsement of the new Soft Matter Topical Group (GSOFT) in 2014 with more than four times the quorum, and by the fact that Isaac Newton's chair is now held by a soft matter theorist. It crosses traditional departmental walls and now provides a common focus and unifying perspective for many activities that formerly would have been separated into a variety of disciplines, such as mathematics, physics, biophysics, chemistry, chemical en- gineering, materials science. It brings together scientists, mathematicians and engineers to study materials such as colloids, micelles, biological, and granular matter, but is much less tied to certain materials, technologies, or applications than to the generic and unifying organizing principles governing them. In the widest sense, the field of soft matter comprises all applications of the principles of statistical mechanics to condensed matter that is not dominated by quantum effects.
    [Show full text]
  • Introduction to FINITE STRAIN THEORY for CONTINUUM ELASTO
    RED BOX RULES ARE FOR PROOF STAGE ONLY. DELETE BEFORE FINAL PRINTING. WILEY SERIES IN COMPUTATIONAL MECHANICS HASHIGUCHI WILEY SERIES IN COMPUTATIONAL MECHANICS YAMAKAWA Introduction to for to Introduction FINITE STRAIN THEORY for CONTINUUM ELASTO-PLASTICITY CONTINUUM ELASTO-PLASTICITY KOICHI HASHIGUCHI, Kyushu University, Japan Introduction to YUKI YAMAKAWA, Tohoku University, Japan Elasto-plastic deformation is frequently observed in machines and structures, hence its prediction is an important consideration at the design stage. Elasto-plasticity theories will FINITE STRAIN THEORY be increasingly required in the future in response to the development of new and improved industrial technologies. Although various books for elasto-plasticity have been published to date, they focus on infi nitesimal elasto-plastic deformation theory. However, modern computational THEORY STRAIN FINITE for CONTINUUM techniques employ an advanced approach to solve problems in this fi eld and much research has taken place in recent years into fi nite strain elasto-plasticity. This book describes this approach and aims to improve mechanical design techniques in mechanical, civil, structural and aeronautical engineering through the accurate analysis of fi nite elasto-plastic deformation. ELASTO-PLASTICITY Introduction to Finite Strain Theory for Continuum Elasto-Plasticity presents introductory explanations that can be easily understood by readers with only a basic knowledge of elasto-plasticity, showing physical backgrounds of concepts in detail and derivation processes
    [Show full text]
  • 2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations
    2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations 2.1 Introduction In metal forming and machining processes, the work piece is subjected to external forces in order to achieve a certain desired shape. Under the action of these forces, the work piece undergoes displacements and deformation and develops internal forces. A measure of deformation is defined as strain. The intensity of internal forces is called as stress. The displacements, strains and stresses in a deformable body are interlinked. Additionally, they all depend on the geometry and material of the work piece, external forces and supports. Therefore, to estimate the external forces required for achieving the desired shape, one needs to determine the displacements, strains and stresses in the work piece. This involves solving the following set of governing equations : (i) strain-displacement relations, (ii) stress- strain relations and (iii) equations of motion. In this chapter, we develop the governing equations for the case of small deformation of linearly elastic materials. While developing these equations, we disregard the molecular structure of the material and assume the body to be a continuum. This enables us to define the displacements, strains and stresses at every point of the body. We begin our discussion on governing equations with the concept of stress at a point. Then, we carry out the analysis of stress at a point to develop the ideas of stress invariants, principal stresses, maximum shear stress, octahedral stresses and the hydrostatic and deviatoric parts of stress. These ideas will be used in the next chapter to develop the theory of plasticity.
    [Show full text]
  • Stress, Cauchy's Equation and the Navier-Stokes Equations
    Chapter 3 Stress, Cauchy’s equation and the Navier-Stokes equations 3.1 The concept of traction/stress • Consider the volume of fluid shown in the left half of Fig. 3.1. The volume of fluid is subjected to distributed external forces (e.g. shear stresses, pressures etc.). Let ∆F be the resultant force acting on a small surface element ∆S with outer unit normal n, then the traction vector t is defined as: ∆F t = lim (3.1) ∆S→0 ∆S ∆F n ∆F ∆ S ∆ S n Figure 3.1: Sketch illustrating traction and stress. • The right half of Fig. 3.1 illustrates the concept of an (internal) stress t which represents the traction exerted by one half of the fluid volume onto the other half across a ficticious cut (along a plane with outer unit normal n) through the volume. 3.2 The stress tensor • The stress vector t depends on the spatial position in the body and on the orientation of the plane (characterised by its outer unit normal n) along which the volume of fluid is cut: ti = τij nj , (3.2) where τij = τji is the symmetric stress tensor. • On an infinitesimal block of fluid whose faces are parallel to the axes, the component τij of the stress tensor represents the traction component in the positive i-direction on the face xj = const. whose outer normal points in the positive j-direction (see Fig. 3.2). 6 MATH35001 Viscous Fluid Flow: Stress, Cauchy’s equation and the Navier-Stokes equations 7 x3 x3 τ33 τ22 τ τ11 12 τ21 τ τ 13 23 τ τ 32τ 31 τ 31 32 τ τ τ 23 13 τ21 τ τ τ 11 12 22 33 x1 x2 x1 x2 Figure 3.2: Sketch illustrating the components of the stress tensor.
    [Show full text]
  • Geophysical Journal International Provided by RERO DOC Digital Library Geophys
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Geophysical Journal International provided by RERO DOC Digital Library Geophys. J. Int. (2010) 180, 225–237 doi: 10.1111/j.1365-246X.2009.04415.x A combination of the Hashin-Shtrikman bounds aimed at modelling electrical conductivity and permittivity of variably saturated porous media A. Brovelli1 and G. Cassiani2 1Laboratoire de technologie ecologique,´ Institut d’ingenierie´ l’environnement, Batimentˆ GR, Station No. 2, Ecole Polytechnique Fed´ erale´ de Lausanne, CH-1015 Lausanne, Switzerland. E-mail: alessandro.brovelli@epfl.ch 2Dipartimento di Geoscienze, Universita` di Padova, Via Giotto 1, 35127 Padova, Italy Accepted 2009 October 9. Received 2009 October 8; in original form 2009 March 4 SUMMARY In this paper, we propose a novel theoretical model for the dielectric response of variably satu- rated porous media. The model is first constructed for fully saturated systems as a combination of the well-established Hashin and Shtrikman bounds and Archie’s first law. One of the key advantages of the new constitutive model is that it explains both electrical conductivity—when surface conductivity is small and negligible—and permittivity using the same parametrization. The model for partially saturated media is derived as an extension of the fully saturated model, where the permittivity of the pore space is obtained as a combination of the permittivity of the aqueous and non-aqueous phases. Model parameters have a well-defined physical meaning, can be independently measured, and can be used to characterize the pore-scale geometrical features of the medium. Both the fully and the partially saturated models are successfully tested against measured values of relative permittivity for a wide range of porous media and saturat- ing fluids.
    [Show full text]
  • Ch.9. Constitutive Equations in Fluids
    CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS Multimedia Course on Continuum Mechanics Overview Introduction Fluid Mechanics Lecture 1 What is a Fluid? Pressure and Pascal´s Law Lecture 3 Constitutive Equations in Fluids Lecture 2 Fluid Models Newtonian Fluids Constitutive Equations of Newtonian Fluids Lecture 4 Relationship between Thermodynamic and Mean Pressures Components of the Constitutive Equation Lecture 5 Stress, Dissipative and Recoverable Power Dissipative and Recoverable Powers Lecture 6 Thermodynamic Considerations Limitations in the Viscosity Values 2 9.1 Introduction Ch.9. Constitutive Equations in Fluids 3 What is a fluid? Fluids can be classified into: Ideal (inviscid) fluids: Also named perfect fluid. Only resists normal, compressive stresses (pressure). No resistance is encountered as the fluid moves. Real (viscous) fluids: Viscous in nature and can be subjected to low levels of shear stress. Certain amount of resistance is always offered by these fluids as they move. 5 9.2 Pressure and Pascal’s Law Ch.9. Constitutive Equations in Fluids 6 Pascal´s Law Pascal’s Law: In a confined fluid at rest, pressure acts equally in all directions at a given point. 7 Consequences of Pascal´s Law In fluid at rest: there are no shear stresses only normal forces due to pressure are present. The stress in a fluid at rest is isotropic and must be of the form: σ = − p01 σδij =−∈p0 ij ij,{} 1, 2, 3 Where p 0 is the hydrostatic pressure. 8 Pressure Concepts Hydrostatic pressure, p 0 : normal compressive stress exerted on a fluid in equilibrium. Mean pressure, p : minus the mean stress.
    [Show full text]
  • An In-Depth Tutorial on Constitutive Equations for Elastic Anisotropic Materials
    NASA/TM–2011-217314 An In-Depth Tutorial on Constitutive Equations for Elastic Anisotropic Materials Michael P. Nemeth Langley Research Center, Hampton, Virginia December 2011 NASA STI Program . in Profile Since its founding, NASA has been dedicated to CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space science. papers from scientific and technical The NASA scientific and technical information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or co-sponsored by NASA. this important role. SPECIAL PUBLICATION. Scientific, The NASA STI program operates under the technical, or historical information from NASA auspices of the Agency Chief Information Officer. It programs, projects, and missions, often collects, organizes, provides for archiving, and concerned with subjects having substantial disseminates NASA’s STI. The NASA STI program public interest. provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical TECHNICAL TRANSLATION. English- Report Server, thus providing one of the largest language translations of foreign scientific and collections of aeronautical and space science STI in technical material pertinent to NASA’s mission. the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Specialized services also include creating custom Series, which includes the following report types: thesauri, building customized databases, and organizing and publishing research results. TECHNICAL PUBLICATION. Reports of completed research or a major significant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis.
    [Show full text]
  • 5.1 Mechanics Modelling
    Section 5.1 5.1 Mechanics Modelling 5.1.1 The Mechanics Problem Typical questions which mechanics attempts to answer were given in Section 1.1. In the examples given, one invariably knows (some of) the forces (or stresses) acting on the material under study, be it due to the wind, water pressure, the weight of the human body, a moving train, and so on. One also often knows something about the displacements along some portion of the material, for example it might be fixed to the ground and so the displacements there are zero. A schematic of such a generic material is shown in Fig. 5.1.1 below. Known forces acting on boundary ? Known displacements at boundary Figure 5.1.1: a material component; force and displacement are known along some portion of the boundary The basic problem of mechanics is to determine what is happening inside the material. This means: what are the stresses and strains inside the material? With this information, one can answer further questions: Where are the stresses high? Where will the material first fail? What can we change to make the material function better? Where will the component move to? What is going on inside the material, at the microscopic level? Generally speaking, what is happening and what will happen? One can relate the loads on the component to the stresses inside the body using equilibrium equations and one can relate the displacement to internal strains using kinematics relations. For example, consider again the simple rod subjected to tension forces examined in Section 3.3.1, shown again in Fig.
    [Show full text]
  • Development of Constitutive Equations for Continuum, Beams and Plates
    Structural Mechanics 2.080 Lecture 4 Semester Yr Lecture 4: Development of Constitutive Equations for Continuum, Beams and Plates This lecture deals with the determination of relations between stresses and strains, called the constitutive equations. For an elastic material the term elasticity law or the Hooke's law are often used. In one dimension we would write σ = E (4.1) where E is the Young's (elasticity) modulus. All types of steels, independent on the yield stress have approximately the same Young modulus E = 2: GPa. The corresponding value for aluminum alloys is E = 0:80 GPa. What actually is σ and in the above equation? We are saying the \uni-axial" state but such a state does not exist simultaneously for stresses and strains. One dimensional stress state produces three-dimensional strain state and vice versa. 4.1 Elasticity Law in 3-D Continuum The second question is how to extend Eq.(4.1) to the general 3-D state. Both stress and strain are tensors so one should seek the relation between them as a linear transformation in the form σij = Cij;klkl (4.2) where Cij;kl is the matrix with 9 × 9 = 81 coefficients. Using symmetry properties of the stress and strain tensor and assumption of material isotropy, the number of independent constants are reduced from 81 to just two. These constants, called the Lame' constants, are denoted by (χ, µ). The general stress strain relation for a linear elastic material is σij = 2µij + λkkδij (4.3) where δij is the identity matrix, or Kronecker \δ", defined by 1 0 0 = 1 if = δij i j δij = 0 1 0 or (4.4) δij = 0 if i 6= j 0 0 1 and kk is, according to the summation convention, dV = 11 + 22 + 33 = (4.5) kk V 4-1 Structural Mechanics 2.080 Lecture 4 Semester Yr In the expanded form, Eq.
    [Show full text]
  • Introduction to Complex Fluids
    Chapter 1 Introduction to Complex Fluids Alexander Morozov and Saverio E. Spagnolie Abstract In this chapter we introduce the fundamental concepts in Newtonian and complex fluid mechanics, beginning with the basic underlying assumptions in con- tinuum mechanical modeling. The equations of mass and momentum conservation are derived, and the Cauchy stress tensor makes its first of many appearances. The Navier–Stokes equations are derived, along with their inertialess limit, the Stokes equations. Models used to describe complex fluid phenomena such as shear-dependent viscosity and viscoelasticity are then discussed, beginning with generalized Newtonian fluids. The Carreau–Yasuda and power-law fluid models receive special attention, and a mechanical instability is shown to exist for highly shear-thinning fluids. Differential constitutive models of viscoelastic flows are then described, beginning with the Maxwell fluid and Kelvin–Voigt solid models. After providing the foundations for objective (frame-invariant) derivatives, the linear models are extended to mathematically sound nonlinear models including the upper-convected Maxwell and Oldroyd-B models and others. A derivation of the upper-convected Maxwell model from the kinetic theory perspective is also provided. Finally, normal stress differences are discussed, and the reader is warned about common pitfalls in the mathematical modeling of complex fluids. 1 Introduction The complexity of biological systems is extraordinary and, from a mathematical modeling point of view, daunting. Even the continuum approximations that give rise to the classical equations of fluid and solid mechanics do not survive the intricacy A. Morozov SUPA, School of Physics & Astronomy, University of Edinburgh, JCMB, King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK e-mail: [email protected] S.E.
    [Show full text]