Divisor Function 1 Divisor Function

Total Page:16

File Type:pdf, Size:1020Kb

Divisor Function 1 Divisor Function Divisor function 1 Divisor function In mathematics, and specifically in number theory, a divisor function is an arithmetical function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Divisor function σ (n) up to n = 250 0 Definition The sum of positive divisors function σ (n), for a real or complex x number x, is defined as the sum of the xth powers of the positive divisors of n, or The notations d(n), ν(n) and τ(n) (for the German Teiler = divisors) are also used to denote σ (n), or the number-of-divisors function[1][2] 0 (sequence A000005 in OEIS). When x is 1, the function is called the [3][4] sigma function or sum-of-divisors function, and the subscript is Sigma function σ (n) up to n = 250 1 often omitted, so σ(n) is equivalent to σ (n) ( A000203). 1 The aliquot sum s(n) of n is the sum of the proper divisors (that is, the divisors excluding n itself, A001065), and equals σ (n) − n; the 1 aliquot sequence of n is formed by repeatedly applying the aliquot sum function. Example For example, σ (12) is the number of the divisors of 12: 0 Sum of the squares of divisors, σ (n), up to 2 while σ (12) is the sum of all the divisors: n = 250 1 and the aliquot sum s(12) of proper divisors is: Divisor function 2 Sum of cubes of divisors, σ (n) up to n = 250 3 Table of values n Divisors σ (n) σ (n) s(n) = σ (n) − n Comment 0 1 1 1 1 1 1 0 square number: σ (n) is odd; power of 2: s(n) = n − 1 (almost-perfect) 0 2 1,2 2 3 1 Prime: σ (n) = 1+n so s(n) =1 1 3 1,3 2 4 1 Prime: σ (n) = 1+n so s(n) =1 1 4 1,2,4 3 7 3 square number: σ (n) is odd; power of 2: s(n) = n − 1 (almost-perfect) 0 5 1,5 2 6 1 Prime: σ (n) = 1+n so s(n) =1 1 6 1,2,3,6 4 12 6 first perfect number: s(n) = n 7 1,7 2 8 1 Prime: σ (n) = 1+n so s(n) =1 1 8 1,2,4,8 4 15 7 power of 2: s(n) = n − 1 (almost-perfect) 9 1,3,9 3 13 4 square number: σ (n) is odd 0 10 1,2,5,10 4 18 8 11 1,11 2 12 1 Prime: σ (n) = 1+n so s(n) =1 1 12 1,2,3,4,6,12 6 28 16 first abundant number: s(n) > n 13 1,13 2 14 1 Prime: σ (n) = 1+n so s(n) =1 1 14 1,2,7,14 4 24 10 15 1,3,5,15 4 24 9 16 1,2,4,8,16 5 31 15 square number: σ (n) is odd; power of 2: s(n) = n − 1 (almost-perfect) 0 The cases x=2, x=3 and so on are tabulated in A001157, A001158, A001159, A001160, A013954, A013955 ... Divisor function 3 Properties For a non-square integer every divisor d of n is paired with divisor n/d of n and is then even; for a square integer one divisor (namely ) is not paired with a distinct divisor and is then odd. For a prime number p, because by definition, the factors of a prime number are 1 and itself. Also,where p # denotes the primorial, n since n prime factors allow a sequence of binary selection ( or 1) from n terms for each proper divisor formed. Clearly, 1 < d(n) < n and σ(n) > n for all n > 2. The divisor function is multiplicative, but not completely multiplicative. The consequence of this is that, if we write where r = ω(n) is the number of distinct prime factors of n, p is the ith prime factor, and a is the maximum power of i i p by which n is divisible, then we have i which is equivalent to the useful formula: It follows (by setting x = 0) that d(n) is: For example, if n is 24, there are two prime factors (p is 2; p is 3); noting that 24 is the product of 23×31, a is 3 1 2 1 and a is 1. Thus we can calculate d(24) as so: 2 The eight divisors counted by this formula are 1, 2, 4, 8, 3, 6, 12, and 24. We also note s(n) = σ(n) − n. Here s(n) denotes the sum of the proper divisors of n, i.e. the divisors of n excluding n itself. This function is the one used to recognize perfect numbers which are the n for which s(n) = n. If s(n) > n then n is an abundant number and if s(n) < n then n is a deficient number. If n is a power of 2, e.g. , then and s(n) = n - 1, which makes n almost-perfect. As an example, for two distinct primes p and q with p < q, let Then and Divisor function 4 where φ(n) is Euler's totient function. Then, the roots of: allows us to express p and q in terms of σ(n) and φ(n) only, without even knowing n or p+q, as: Also, knowing n and either σ(n) or φ(n) (or knowing p+q and either σ(n) or φ(n)) allows us to easily find p and q. In 1984, Roger Heath-Brown proved that d(n) = d(n + 1) will occur infinitely often. Series relations Two Dirichlet series involving the divisor function are: which for d(n) = σ (n) gives 0 and A Lambert series involving the divisor function is: for arbitrary complex |q| ≤ 1 and a. This summation also appears as the Fourier series of the Eisenstein series and the invariants of the Weierstrass elliptic functions. Approximate growth rate In little-o notation, the divisor function satisfies the inequality (see page 296 of Apostol’s book[5]) More precisely, Severin Wigert showed that On the other hand, since there are infinitely many prime numbers, In Big-O notation, Dirichlet showed that the average order of the divisor function satisfies the following inequality (see Theorem 3.3 of Apostol’s book[5]) Divisor function 5 where is Euler's constant. Improving the bound in this formula is known as Dirichlet's divisor problem The behaviour of the sigma function is irregular. The asymptotic growth rate of the sigma function can be expressed by: where lim sup is the limit superior. This result is Grönwall's theorem, published in 1913 (Grönwall 1913). His proof uses Mertens' 3rd theorem, which says that where p denotes a prime. In 1915, Ramanujan proved that under the assumption of the Riemann hypothesis, the inequality: (Robin's inequality) holds for all sufficiently large n. In 1984 Guy Robin proved that the inequality is true for all n ≥ 5,041 if and only if the Riemann hypothesis is true (Robin 1984). This is Robin's theorem and the inequality became known after him. The largest known value that violates the inequality is n=5,040. If the Riemann hypothesis is true, there are no greater exceptions. If the hypothesis is false, then Robin showed there are an infinite number of values of n that violate the inequality, and it is known that the smallest such n ≥ 5,041 must be superabundant (Akbary & Friggstad 2009). It has been shown that the inequality holds for large odd and square-free integers, and that the Riemann hypothesis is equivalent to the inequality just for n divisible by the fifth power of a prime (Choie et al. 2007). A related bound was given by Jeffrey Lagarias in 2002, who proved that the Riemann hypothesis is equivalent to the statement that for every natural number n, where is the nth harmonic number, (Lagarias 2002). Robin also proved, unconditionally, that the inequality holds for all n ≥ 3. Notes [1] Long (1972, p. 46) [2] Pettofrezzo & Byrkit (1970, p. 63) [3] Long (1972, p. 46) [4] Pettofrezzo & Byrkit (1970, p. 58) [5] Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR0434929 References • Akbary, Amir; Friggstad, Zachary (2009), "Superabundant numbers and the Riemann hypothesis" (http:/ / webdocs. cs. ualberta. ca/ ~zacharyf/ Papers/ superabundant. pdf), American Mathematical Monthly 116 (3): 273–275, doi:10.4169/193009709X470128. • Bach, Eric; Shallit, Jeffrey, Algorithmic Number Theory, volume 1, 1996, MIT Press. ISBN 0-262-02405-5, see page 234 in section 8.8. Divisor function 6 • Caveney, Geoffrey; Nicolas, Jean-Louis; Sondow, Jonathan (2011), "Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis" (http:/ / www. integers-ejcnt. org/ l33/ l33. pdf), INTEGERS: the Electronic Journal of Combinatorial Number Theory 11: A33 • Choie, YoungJu; Lichiardopol, Nicolas; Moree, Pieter; Solé, Patrick (2007), "On Robin's criterion for the Riemann hypothesis" (http:/ / jtnb.
Recommended publications
  • 9N1.5 Determine the Square Root of Positive Rational Numbers That Are Perfect Squares
    9N1.5 Determine the square root of positive rational numbers that are perfect squares. Square Roots and Perfect Squares The square root of a given number is a value that when multiplied by itself results in the given number. For ​ ​ example, the square root of 9 is 3 because 3 × 3 = 9 . Example Use a diagram to determine the square root of 121. Solution Step 1 Draw a square with an area of 121 units. Step 2 Count the number of units along one side of the square. √121 = 11 units √121 = 11 units The square root of 121 is 11. This can also be written as √121 = 11. A number that has a whole number as its square root is called a perfect square. Perfect squares have the ​ ​ unique characteristic of having an odd number of factors. Example Given the numbers 81, 24, 102, 144, identify the perfect squares by ordering their factors from smallest to largest. Solution The square root of each perfect square is bolded. Factors of 81: 1, 3, 9, 27, 81 ​ ​ Since there are an odd number of factors, 81 is a perfect square. Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24 Since there are an even number of factors, 24 is not a perfect square. Factors of 102: 1, 2, 3, 6, 17, 34, 51, 102 Since there are an even number of factors, 102 is not a perfect square. Factors of 144: 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144 ​ ​ Since there are an odd number of factors, 144 is a perfect square.
    [Show full text]
  • Prime Divisors in the Rationality Condition for Odd Perfect Numbers
    Aid#59330/Preprints/2019-09-10/www.mathjobs.org RFSC 04-01 Revised The Prime Divisors in the Rationality Condition for Odd Perfect Numbers Simon Davis Research Foundation of Southern California 8861 Villa La Jolla Drive #13595 La Jolla, CA 92037 Abstract. It is sufficient to prove that there is an excess of prime factors in the product of repunits with odd prime bases defined by the sum of divisors of the integer N = (4k + 4m+1 ℓ 2αi 1) i=1 qi to establish that there do not exist any odd integers with equality (4k+1)4m+2−1 between σ(N) and 2N. The existence of distinct prime divisors in the repunits 4k , 2α +1 Q q i −1 i , i = 1,...,ℓ, in σ(N) follows from a theorem on the primitive divisors of the Lucas qi−1 sequences and the square root of the product of 2(4k + 1), and the sequence of repunits will not be rational unless the primes are matched. Minimization of the number of prime divisors in σ(N) yields an infinite set of repunits of increasing magnitude or prime equations with no integer solutions. MSC: 11D61, 11K65 Keywords: prime divisors, rationality condition 1. Introduction While even perfect numbers were known to be given by 2p−1(2p − 1), for 2p − 1 prime, the universality of this result led to the the problem of characterizing any other possible types of perfect numbers. It was suggested initially by Descartes that it was not likely that odd integers could be perfect numbers [13]. After the work of de Bessy [3], Euler proved σ(N) that the condition = 2, where σ(N) = d|N d is the sum-of-divisors function, N d integer 4m+1 2α1 2αℓ restricted odd integers to have the form (4kP+ 1) q1 ...qℓ , with 4k + 1, q1,...,qℓ prime [18], and further, that there might exist no set of prime bases such that the perfect number condition was satisfied.
    [Show full text]
  • Limiting Values and Functional and Difference Equations †
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 February 2020 doi:10.20944/preprints202002.0245.v1 Peer-reviewed version available at Mathematics 2020, 8, 407; doi:10.3390/math8030407 Article Limiting values and functional and difference equations † N. -L. Wang 1, P. Agarwal 2,* and S. Kanemitsu 3 1 College of Applied Mathematics and Computer Science, ShangLuo University, Shangluo, 726000 Shaanxi, P.R. China; E-mail:[email protected] 2 Anand International College of Engineering, Near Kanota, Agra Road, Jaipur-303012, Rajasthan, India 3 Faculty of Engrg Kyushu Inst. Tech. 1-1Sensuicho Tobata Kitakyushu 804-8555, Japan; [email protected] * Correspondence: [email protected] † Dedicated to Professor Dr. Yumiko Hironaka with great respect and friendship Version February 17, 2020 submitted to Journal Not Specified Abstract: Boundary behavior of a given important function or its limit values are essential in the whole spectrum of mathematics and science. We consider some tractable cases of limit values in which either a difference of two ingredients or a difference equation is used coupled with the relevant functional equations to give rise to unexpected results. This involves the expression for the Laurent coefficients including the residue, the Kronecker limit formulas and higher order coefficients as well as the difference formed to cancel the inaccessible part, typically the Clausen functions. We also state Abelian results which yield asymptotic formulas for weighted summatory function from that for the original summatory function. Keywords: limit values; modular relation; Lerch zeta-function; Hurwitz zeta-function; Laurent coefficients MSC: 11F03; 01A55; 40A30; 42A16 1. Introduction There have appeared enormous amount of papers on the Laurent coefficients of a large class of zeta-, L- and special functions.
    [Show full text]
  • 08 Cyclotomic Polynomials
    8. Cyclotomic polynomials 8.1 Multiple factors in polynomials 8.2 Cyclotomic polynomials 8.3 Examples 8.4 Finite subgroups of fields 8.5 Infinitude of primes p = 1 mod n 8.6 Worked examples 1. Multiple factors in polynomials There is a simple device to detect repeated occurrence of a factor in a polynomial with coefficients in a field. Let k be a field. For a polynomial n f(x) = cnx + ::: + c1x + c0 [1] with coefficients ci in k, define the (algebraic) derivative Df(x) of f(x) by n−1 n−2 2 Df(x) = ncnx + (n − 1)cn−1x + ::: + 3c3x + 2c2x + c1 Better said, D is by definition a k-linear map D : k[x] −! k[x] defined on the k-basis fxng by D(xn) = nxn−1 [1.0.1] Lemma: For f; g in k[x], D(fg) = Df · g + f · Dg [1] Just as in the calculus of polynomials and rational functions one is able to evaluate all limits algebraically, one can readily prove (without reference to any limit-taking processes) that the notion of derivative given by this formula has the usual properties. 115 116 Cyclotomic polynomials [1.0.2] Remark: Any k-linear map T of a k-algebra R to itself, with the property that T (rs) = T (r) · s + r · T (s) is a k-linear derivation on R. Proof: Granting the k-linearity of T , to prove the derivation property of D is suffices to consider basis elements xm, xn of k[x]. On one hand, D(xm · xn) = Dxm+n = (m + n)xm+n−1 On the other hand, Df · g + f · Dg = mxm−1 · xn + xm · nxn−1 = (m + n)xm+n−1 yielding the product rule for monomials.
    [Show full text]
  • Grade 7/8 Math Circles the Scale of Numbers Introduction
    Faculty of Mathematics Centre for Education in Waterloo, Ontario N2L 3G1 Mathematics and Computing Grade 7/8 Math Circles November 21/22/23, 2017 The Scale of Numbers Introduction Last week we quickly took a look at scientific notation, which is one way we can write down really big numbers. We can also use scientific notation to write very small numbers. 1 × 103 = 1; 000 1 × 102 = 100 1 × 101 = 10 1 × 100 = 1 1 × 10−1 = 0:1 1 × 10−2 = 0:01 1 × 10−3 = 0:001 As you can see above, every time the value of the exponent decreases, the number gets smaller by a factor of 10. This pattern continues even into negative exponent values! Another way of picturing negative exponents is as a division by a positive exponent. 1 10−6 = = 0:000001 106 In this lesson we will be looking at some famous, interesting, or important small numbers, and begin slowly working our way up to the biggest numbers ever used in mathematics! Obviously we can come up with any arbitrary number that is either extremely small or extremely large, but the purpose of this lesson is to only look at numbers with some kind of mathematical or scientific significance. 1 Extremely Small Numbers 1. Zero • Zero or `0' is the number that represents nothingness. It is the number with the smallest magnitude. • Zero only began being used as a number around the year 500. Before this, ancient mathematicians struggled with the concept of `nothing' being `something'. 2. Planck's Constant This is the smallest number that we will be looking at today other than zero.
    [Show full text]
  • Input for Carnival of Math: Number 115, October 2014
    Input for Carnival of Math: Number 115, October 2014 I visited Singapore in 1996 and the people were very kind to me. So I though this might be a little payback for their kindness. Good Luck. David Brooks The “Mathematical Association of America” (http://maanumberaday.blogspot.com/2009/11/115.html ) notes that: 115 = 5 x 23. 115 = 23 x (2 + 3). 115 has a unique representation as a sum of three squares: 3 2 + 5 2 + 9 2 = 115. 115 is the smallest three-digit integer, abc , such that ( abc )/( a*b*c) is prime : 115/5 = 23. STS-115 was a space shuttle mission to the International Space Station flown by the space shuttle Atlantis on Sept. 9, 2006. The “Online Encyclopedia of Integer Sequences” (http://www.oeis.org) notes that 115 is a tridecagonal (or 13-gonal) number. Also, 115 is the number of rooted trees with 8 vertices (or nodes). If you do a search for 115 on the OEIS website you will find out that there are 7,041 integer sequences that contain the number 115. The website “Positive Integers” (http://www.positiveintegers.org/115) notes that 115 is a palindromic and repdigit number when written in base 22 (5522). The website “Number Gossip” (http://www.numbergossip.com) notes that: 115 is the smallest three-digit integer, abc, such that (abc)/(a*b*c) is prime. It also notes that 115 is a composite, deficient, lucky, odd odious and square-free number. The website “Numbers Aplenty” (http://www.numbersaplenty.com/115) notes that: It has 4 divisors, whose sum is σ = 144.
    [Show full text]
  • MORE-ON-SEMIPRIMES.Pdf
    MORE ON FACTORING SEMI-PRIMES In the last few years I have spent some time examining prime numbers and their properties. Among some of my new results are the a Prime Number Function F(N) and the concept of Number Fraction f(N). We can define these quantities as – (N ) N 1 f (N 2 ) 1 f (N ) and F(N ) N Nf (N 3 ) Here (N) is the divisor function of number theory. The interesting property of these functions is that when N is a prime then f(N)=0 and F(N)=1. For composite numbers f(N) is a positive fraction and F(N) will be less than one. One of the problems of major practical interest in number theory is how to rapidly factor large semi-primes N=pq, where p and q are prime numbers. This interest stems from the fact that encoded messages using public keys are vulnerable to decoding by adversaries if they can factor large semi-primes when they have a digit length of the order of 100. We want here to show how one might attempt to factor such large primes by a brute force approach using the above f(N) function. Our starting point is to consider a large semi-prime given by- N=pq with p<sqrt(N)<q By the basic definition of f(N) we get- p q p2 N f (N ) f ( pq) N pN This may be written as a quadratic in p which reads- p2 pNf (N ) N 0 It has the solution- p K K 2 N , with p N Here K=Nf(N)/2={(N)-N-1}/2.
    [Show full text]
  • On the First Occurrences of Gaps Between Primes in a Residue Class
    On the First Occurrences of Gaps Between Primes in a Residue Class Alexei Kourbatov JavaScripter.net Redmond, WA 98052 USA [email protected] Marek Wolf Faculty of Mathematics and Natural Sciences Cardinal Stefan Wyszy´nski University Warsaw, PL-01-938 Poland [email protected] To the memory of Professor Thomas R. Nicely (1943–2019) Abstract We study the first occurrences of gaps between primes in the arithmetic progression (P): r, r + q, r + 2q, r + 3q,..., where q and r are coprime integers, q > r 1. ≥ The growth trend and distribution of the first-occurrence gap sizes are similar to those arXiv:2002.02115v4 [math.NT] 20 Oct 2020 of maximal gaps between primes in (P). The histograms of first-occurrence gap sizes, after appropriate rescaling, are well approximated by the Gumbel extreme value dis- tribution. Computations suggest that first-occurrence gaps are much more numerous than maximal gaps: there are O(log2 x) first-occurrence gaps between primes in (P) below x, while the number of maximal gaps is only O(log x). We explore the con- nection between the asymptotic density of gaps of a given size and the corresponding generalization of Brun’s constant. For the first occurrence of gap d in (P), we expect the end-of-gap prime p √d exp( d/ϕ(q)) infinitely often. Finally, we study the gap ≍ size as a function of its index in thep sequence of first-occurrence gaps. 1 1 Introduction Let pn be the n-th prime number, and consider the difference between successive primes, called a prime gap: pn+1 pn.
    [Show full text]
  • 2020 Chapter Competition Solutions
    2020 Chapter Competition Solutions Are you wondering how we could have possibly thought that a Mathlete® would be able to answer a particular Sprint Round problem without a calculator? Are you wondering how we could have possibly thought that a Mathlete would be able to answer a particular Target Round problem in less 3 minutes? Are you wondering how we could have possibly thought that a particular Team Round problem would be solved by a team of only four Mathletes? The following pages provide solutions to the Sprint, Target and Team Rounds of the 2020 MATHCOUNTS® Chapter Competition. These solutions provide creative and concise ways of solving the problems from the competition. There are certainly numerous other solutions that also lead to the correct answer, some even more creative and more concise! We encourage you to find a variety of approaches to solving these fun and challenging MATHCOUNTS problems. Special thanks to solutions author Howard Ludwig for graciously and voluntarily sharing his solutions with the MATHCOUNTS community. 2020 Chapter Competition Sprint Round 1. Each hour has 60 minutes. Therefore, 4.5 hours has 4.5 × 60 minutes = 45 × 6 minutes = 270 minutes. 2. The ratio of apples to oranges is 5 to 3. Therefore, = , where a represents the number of apples. So, 5 3 = 5 × 9 = 45 = = . Thus, apples. 3 9 45 3 3. Substituting for x and y yields 12 = 12 × × 6 = 6 × 6 = . 1 4. The minimum Category 4 speed is 130 mi/h2. The maximum Category 1 speed is 95 mi/h. Absolute difference is |130 95| mi/h = 35 mi/h.
    [Show full text]
  • PRIME-PERFECT NUMBERS Paul Pollack [email protected] Carl
    PRIME-PERFECT NUMBERS Paul Pollack Department of Mathematics, University of Illinois, Urbana, Illinois 61801, USA [email protected] Carl Pomerance Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755, USA [email protected] In memory of John Lewis Selfridge Abstract We discuss a relative of the perfect numbers for which it is possible to prove that there are infinitely many examples. Call a natural number n prime-perfect if n and σ(n) share the same set of distinct prime divisors. For example, all even perfect numbers are prime-perfect. We show that the count Nσ(x) of prime-perfect numbers in [1; x] satisfies estimates of the form c= log log log x 1 +o(1) exp((log x) ) ≤ Nσ(x) ≤ x 3 ; as x ! 1. We also discuss the analogous problem for the Euler function. Letting N'(x) denote the number of n ≤ x for which n and '(n) share the same set of prime factors, we show that as x ! 1, x1=2 x7=20 ≤ N (x) ≤ ; where L(x) = xlog log log x= log log x: ' L(x)1=4+o(1) We conclude by discussing some related problems posed by Harborth and Cohen. 1. Introduction P Let σ(n) := djn d be the sum of the proper divisors of n. A natural number n is called perfect if σ(n) = 2n and, more generally, multiply perfect if n j σ(n). The study of such numbers has an ancient pedigree (surveyed, e.g., in [5, Chapter 1] and [28, Chapter 1]), but many of the most interesting problems remain unsolved.
    [Show full text]
  • The Aliquot Constant We first Show the Following Result on the Geometric Mean for the Ordi- Nary Sum of Divisors Function
    THE ALIQUOT CONSTANT WIEB BOSMA AND BEN KANE Abstract. The average value of log s(n)/n taken over the first N even integers is shown to converge to a constant λ when N tends to infinity; moreover, the value of this constant is approximated and proven to be less than 0. Here s(n) sums the divisors of n less than n. Thus the geometric mean of s(n)/n, the growth factor of the function s, in the long run tends to be less than 1. This could be interpreted as probabilistic evidence that aliquot sequences tend to remain bounded. 1. Introduction This paper is concerned with the average growth of aliquot sequences. An aliquot sequence is a sequence a0, a1, a2,... of positive integers ob- tained by iteration of the sum-of-aliquot-divisors function s, which is defined for n> 1 by s(n)= d. d|n Xd<n The aliquot sequence with starting value a0 is then equal to 2 a0, a1 = s(a0), a2 = s(a1)= s (a0),... ; k we will say that the sequence terminates (at 1) if ak = s (a0)=1 for some k ≥ 0. The sequence cycles (or is said to end in a cycle) k l 0 if s (a0) = s (a0) for some k,l with 0 ≤ l<k, where s (n) = n by arXiv:0912.3660v1 [math.NT] 18 Dec 2009 definition. Note that s is related to the ordinary sum-of-divisors function σ, with σ(n)= d|n d, by s(n)= σ(n) − n for integers n> 1.
    [Show full text]
  • Ramanujan, Robin, Highly Composite Numbers, and the Riemann Hypothesis
    Contemporary Mathematics Volume 627, 2014 http://dx.doi.org/10.1090/conm/627/12539 Ramanujan, Robin, highly composite numbers, and the Riemann Hypothesis Jean-Louis Nicolas and Jonathan Sondow Abstract. We provide an historical account of equivalent conditions for the Riemann Hypothesis arising from the work of Ramanujan and, later, Guy Robin on generalized highly composite numbers. The first part of the paper is on the mathematical background of our subject. The second part is on its history, which includes several surprises. 1. Mathematical Background Definition. The sum-of-divisors function σ is defined by 1 σ(n):= d = n . d d|n d|n In 1913, Gr¨onwall found the maximal order of σ. Gr¨onwall’s Theorem [8]. The function σ(n) G(n):= (n>1) n log log n satisfies lim sup G(n)=eγ =1.78107 ... , n→∞ where 1 1 γ := lim 1+ + ···+ − log n =0.57721 ... n→∞ 2 n is the Euler-Mascheroni constant. Gr¨onwall’s proof uses: Mertens’s Theorem [10]. If p denotes a prime, then − 1 1 1 lim 1 − = eγ . x→∞ log x p p≤x 2010 Mathematics Subject Classification. Primary 01A60, 11M26, 11A25. Key words and phrases. Riemann Hypothesis, Ramanujan’s Theorem, Robin’s Theorem, sum-of-divisors function, highly composite number, superabundant, colossally abundant, Euler phi function. ©2014 American Mathematical Society 145 This is a free offprint provided to the author by the publisher. Copyright restrictions may apply. 146 JEAN-LOUIS NICOLAS AND JONATHAN SONDOW Figure 1. Thomas Hakon GRONWALL¨ (1877–1932) Figure 2. Franz MERTENS (1840–1927) Nowwecometo: Ramanujan’s Theorem [2, 15, 16].
    [Show full text]