Clemson University TigerPrints

All Theses Theses

5-2007 Design and Development of an in-house Scanning Tunneling System Esvar Subramanian Clemson University, [email protected]

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Engineering Mechanics Commons

Recommended Citation Subramanian, Esvar, "Design and Development of an in-house Scanning Tunneling Microscope System" (2007). All Theses. 141. https://tigerprints.clemson.edu/all_theses/141

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected].

DESIGNANDDEVELOPMENTOFANINHOUSESCANNINGTUNNELING MICROSCOPESYSTEM

AThesis Presentedto theGraduateSchoolof ClemsonUniversity

InPartialFulfillment oftheRequirementsfortheDegree MasterofScience MechanicalEngineering

by EsvarChandranSubramanian May2007

Acceptedby: Dr.NaderJalili,CommitteeChair Dr.ChadSosolik Dr.DarrenDawson

ii

ABSTRACT TheinventionofScanningTunnelingMicroscope(STM)byBinnigandRohrerin1982 eliminatedtheuseofopticallensesandreplacedthe conventional optical withanewclassofmicroscopescalledtheScanningProbeMicroscopes(SPM).Because of their unique characteristics such as higher resolution and acquisition of nano level images without affecting the physical properties of the sample, they have found wide applicationsinavarietyofscientificdisciplines such as biology, material science and electrochemistry. After considerable advancements in instrumentation, the STM has evolved as a nanomanipulation and nanofabrication tool. It operates in two modes: constantcurrentmodeandconstantheightmode.Inconstantcurrentmode,thefeedback parameteristhetunnelingcurrentbasedonwhichthevoltageappliedtothepiezoelectric actuator is varied. Hence, the tip height is varied in accordance with this tunneling current. In the constant height mode, however, the height is maintained at a constant value and hence the voltage applied to the piezoelectric actuator is adjusted (PZT).

Unlikeconstantcurrentmode,itisthetunnelingcurrentwhichchangesaccordingtothe surfaceprofileandthelocalelectronicstructureofthetipandthesample.

iii

Thepresentresearchis aneffortindesigningand fabricating an inhouse STM to be operated in the constant current mode by interfacing various subsystems. The various subsystemsconstitutingtheexperimentalsetupmainlyincludeamicropositioner,anano stager,STMElectronics,andSTMhead.The fabrication process involved testing and verification of a suitable preamplifier for providing the feedback signal, design of the

STMheadanddevelopmentofacomputerautomatedsysteminorder tofacilitatethe acquisitionofsignalsrelatedtoamicropositionerwhichactsasthecoarsepositioner.

ThesoftwarecontrolconsistsofControlDesk®asthefrontendandSimulink®asthe backend.Anopticalsubsystemintheformofahigh resolution camera that has been interfacedfacilitatesvisualmonitoringanddevelopmentofdualstagecontrolofthefine aswellascoarsepositioners.TheabilityoftheSTMtoacquireimagesatthenanolevel isattributedtothetiptosampleinteractionbasedonquantummechanicaltunneling.To betterunderstandtheaspectsofSTM,thepresentworkalsotracesthedevelopmentof theoretical modeling of the tipsample interaction and the conceptual design of other classes of microscopes belonging to the SPM family. Certain hardware limitations associated with the data acquisition board need to be addressed in order to acquire nanolevel images. The future scope of the research would include development and testingofvarioustypesofcontrollersontheSTMtestbed.

iv

DEDICATION

Thisthesisisdedicatedtomyfamily,teachersandfriends.

v

vi

ACKNOWLEDGEMENTS

AttheoutsetIwouldliketothankmyparentsforhavingencouragedmetopursuehigher education.

I’mgratefullyindebtedtomyadvisorDr.NaderJalili,whogavemeanopportunityto carry out research under his tutelage. His guidance, support and above all infinite patiencewithmeprovedtobeaconstantsourceofinspirationthroughouttheresearch project. I would also like to thank my committee member Dr. Chad Sosolik from

Department of Physics and Astronomy, Clemson University, who gave me an opportunitytopracticallyseeandlearntheoperationofSTMinhislab.Iwouldalsolike to express my sincere thanks on an equal basis to my other committee member Dr.

DarrenDawsonfromtheDepartmentofElectricalandComputerEngineering,Clemson

University,formonitoringtheprogressofmyresearchworkatfrequentintervals.

IwouldalsowanttoexpressmyspecialthankstoMr.SaeidBashash,PhDstudentatthe

SSNEMS lab, Department of Mechanical Engineering, Clemson University. The discussionswithhimregardingtheprojectalwaysprovedtobeasourceofguidance.

I would also like to specially thank Mr. David Moline, Department of Mechanical

Engineering, Clemson University, who helped me in the electrical interfacing of the micro positioner with the existing research setup in the lab. I would also like to acknowledge Mr. Michael Justice, technician assistant in Department of Mechanical

Engineering and personnel at the Precision Manufacturing Center, Clemson University forhelpingmetofabricatethevariouscomponentsofthetestbed.

vii

I would also want to thank Mr. Randy Emert from the Department of General

Engineering,ClemsonUniversityforgivingmeaccesstotherapidprototypingmachine

therebyprovidingmeanopportunitytoexperiment withvariousSTMtipandsample models.Finally,Iwouldliketothankallmypresentlabmates:NimaMahmoodi,Saeid

Bashash, Reza Saeidpourazar, Reza Housseini, Mana Afshari, Amin Salehi, Sudeep

ChavareandPrakashVenkataraman.Iwouldalsoliketoacknowledgethepastmembers ofSSNEMSlab:MiheerGurjar,VikrantBhadbhade,SandeepHiremath,VirgileAyglon andHimanshuRajoria.Eachofthemactedasasourceofsupportandinspirationintheir ownways.IwouldalsowanttothankmyroommatesandfriendsatClemsonUniversity whoseassociationIwouldcherishfortheyearstocome.

MysinceregratitudetoallthosepeoplewhomImayhaveforgottentomentionbuthave renderedhelpintheirownways.

viii

TABLEOFCONTENTS Page TITLEPAGE ...... i ABSTRACT ...... iii DEDICATION ...... v ACKNOWLEDGEMENTS ...... vii LISTOFFIGURES...... xi NOMENCLATURE...... xv 1.INTRODUCTION...... 1 HistoricalEvolution...... 1 ApplicationsofSPM...... 3 ThesisContributions...... 8 Thesisoutline...... …….9 2.CONCEPTUALDESIGNANDOPERATIONOFSPM ...... 10 BriefOverviewofSPM...... 11 ScanningTunneling...... 11 AtomicForceMicroscopy...... 14 MagneticForceMicroscopy...... 22 ScanningCapacitanceMicroscopy...... 23 LateralForceMicroscopy...... 25 ForceModulationMicroscopy...... 27 PhaseDetectionMicroscopy...... 28 ElectrostaticForceMicroscopy...... 29 ScanningThermalMicroscopy...... 32 NearFieldScanningOpticalMicroscopy...... 33 ChapterSummary...... 37 3.THEORETICALMODELING...... 38 ConceptofTunneling...... 38 TransferHamiltonianTheory...... 44 ThreeDimensionalScatteringTheory...... 50 ChapterSummary...... 55

ix

TableofContents(Continued) Page 4.DESIGNANDINTERFACEOFTHEEXPERIMENTALSETUP...... 56 CoarsePositioner...... 59 FinePositioner...... 60 STMHead...... 61 STMElectronics...... 62 dSPACER&D®ControllerBoard...... 63 Software...... 67 OpticalSystem...... 68 ExperimentalProcedure...... 69 ChapterSummary...... 71 5.RESULTSANDDISCUSSIONS ...... 72 PreamplifierandExperimentalResults...... 72 MicropositionerOutput...... 74 PreamplifierSimulationResults...... 76 6.CONCLUSIONSANDFUTUREWORK ...... 78 APPENDICES...... 82 A.DesignDiagramsofSTMHead...... 84 B.ImagesofSTMElectronics...... 90 C.ListofEquipments...... 92 REFERENCES...... 98

x

LISTOFFIGURES Figure Page 1.1SchematicofElectrochemicalCell ...... 5 2.1 SchematicofScanningTunnelingMicroscope...... 12 2.2 OperationofaScanningTunnelingMicroscope...... 14 2.3 DiagramofanAtomicForceMicroscope...... 15 2.4 Inter–atomicForcevariationwithDistance...... 17 2.5 OperationmodesofAFM ...... 21 2.6 SchematicHighlightingthedifferenceinoperationofSTMandAFM ...... 22 2.7 SchematicExperimentalSetupofSCM...... 23 2.8 BlockdiagramofSCM ...... 25 2.9 PSPDforAFMandLFM...... 26 2.10DiagramhighlightingthelateralForces...... 27 2.11ImagesofCarbon/Polymercompositecollected...... 28 2.12Variationofphaselagresponsetomechanicalpropertiesofsample ...... 29 2.13Imagesofrcutsapphiresample...... 30 2.14ExperimentalapparatusofSThM ...... 33 2.15SchematicRepresentationofSynge’sidea ...... 34 2.16Schematicofnearfieldopticalmicroscope ...... 35 3.1 Decayofradioactivenucleusbytunneling ...... 38 3.2 Energyoftwosolidsseparatedbyvacuumbarrier ...... 39 3.3 ProbabilityDensityFunctionofarectangularbarrierpotential...... 41

xi

ListofFigures(Continued) Figure Page 3.4SchematicofMetalInsulatorMetalTunnelingJunction ...... 41 3.5Statesofconstanttunnelingprobability...... 43 3.6SchematicRepresentationofSTMHamiltonian...... 45 3.7SchematicRepresentationofTunnelingGeometry ...... 47 3.8BoundaryconditionsforSTMScatteringProcess ...... 52 4.1 BasicFeaturesofatypicalSTM ...... 58 4.2 Schematicoftheoverallexperimentalsetup...... 59 4.3 ImageoftheSTMTipholder...... 60 4.4 Adetailedfieldofviewofanelectrochemicallyetchedtip...... 61 4.5 STMHeadconstitutingtheTipHolderandthesampleHolder...... 61 4.6 PreamplifierCircuitBoardandCircuittestingstation...... 63 4.7 dSPACE®R&DcontrollerboardinterfacedwithPZTController ...... 64 4.8 ImageofaControlDesk®Environmenthighlightingthecontrolalgorithm..... 68 4.9 Backviewoftheexperimentalsetupmountedontheopticalbench...... 71 5.1 PlotofPreamplifierVoltagewithrespecttotime...... 72 5.2 DisplacementofMicropositionerforasinusoidalinput...... 74 5.3 CircuitDiagramofaPreamplifierusedinSTM...... 75 5.4 SimulationOutputplotofpreamplifierforfirstsetofinputconditions ...... 76 5.5 SimulationOutputplotofPreamplifierforsecondsetofinputconditions ...... 76 6.1 Topographyofaimagewherenanoindentationhasbeendone ...... 80 6.2 Alayoutofthecontrolalgorithmthathasbeendone ...... 81

xii

ListofFigures(Continued) Figure Page A.1Schematicofafixtureforholdingthetwolegsofthetipholder...... 84 A.2Schematicofafixtureforholdingtheconductinglegofthetipholder ...... 84 A.3Schematicoftheoverallfixturethathasbeenformed...... 85 A.4Designofafixtureforholdingthecylindricalsampleholder ...... 86 A.5Designofthefixturetoholdthetipusingascrew...... 87 A.6AlternateDesignofasampleholder ...... 88 B.1ImageofaPreamplifierwithaprovisiontochangethegainof thepreamplifier ...... 90 B.2Imageofapreamplifierthatwasusedinthetestbed ...... 90 B.3CircuitDiagramofthepreamplifierthathasbeenusedinthetestbed...... 91 C.1PictureoftheM126DG1®stagers...... 93 C.2PictureoftheM410DG1®translationalstagers...... 93 C.3PictureofLISA®NanoAutomationStageactuators ...... 95 C.4PictureofP733®FlexureNanopositioner...... 96 C.5ApictureoftheCPS250®powersupplyunitsfromTEKTRONIX®...... 96

xiii

xiv

NOMENCLATURE

a widthofthepotentialbarrier

Bsample Magneticfieldemanatingfromthesamplesurface

C(z) tipsurfacecapacitance d distanceresolvedbetweentwopointlightsources

Dt Densityofstatesperunitvolumeoftheprobetip

E energyoftheelectron

E Energyofthestate ψ intheabsenceoftunneling f(E) FermiFunction

F(z) Interactionbetweenthetipandthesample

f Acurrentcarryingstateinthesamplemetal h ReducedPlanck’sconstant h heightofthepotentialbarrier

H o Hamiltonianofa2electrodesystem(capacitor)withouttipatom i Momentumoftheincomingelectron

wave with plane components propagating from the interior of the tip of the

electrodetowardsthetunneljunction

J currentdensity

M ν Tunnelingmatrix m Magneticdipoleofthetip

xv

me Massofanelectron

NA NumericalAperture

P Probabilitydensityfunctionfortypical(rectangular)barrierpenetration

V Potentialinthebarrier

V = Vtip −Vsurf thepotentialdifferencebetweenthetipandthesurface

V cap Potentialofthecapacitorwhichincludesthetwoelectrodes

V tip Thepotentialinducedbyatipatom,whichwouldbreakanyspatialsymmetry

thatmightexistsforthetwoelectrodesystem z verticaltipsurfaceseparation

Ψ Tipwavefunction

Ψv Surfacewavefunction

λ Wavelengthoflightused

α Angleofaperture

ω Voltagemodulationfrequency

tip δ AA Theprojectionofthelocalfunction A

cap δ AA Capacitorprojectedlocaldensity(CAPLOD)

γ ( E ) TransitionconductivityatthetunnelingenergyE

σ Tunnelingconductance

Ψ i)( Theinitialstateoccupiedbytheelectron

Ψ( f ) Thefinalstateoccupiedbytheelectron.

xvi

CHAPTER1

INTRODUCTION

EvolutionofScanningProbeMicroscopesfromOpticalMicroscopes

Itcanberightlysaidthattheinventionofmagnifyingglassmarkedthegenesisofmodern microscopy techniques. The conventional optical microscope was invented by Robert

Hooke in the late 17 th century [1]. The principle of obtaining images through a conventional optical microscope is focusing through a set of optical lenses [1]. The limitationinusingtheopticallensesisduetotwofactorswhichareangleofapertureand thewavelengthoflight [1].Thedistancetraveledbetweentwopointlightsourcesis relatedtothewavelengthas d = .0 61λ / sinα (1.1)

Where λ correspondstothewavelengthoflightused, αreferstotheangleofapertureand disthedistancethatcanberesolvedbetweentwopointlightsources[1].Theshortest wavelengthoflightusedis400nmhencethis puts a ceiling of theoretical resolution obtainablebytheopticalmicroscopesto200nm[1,2].Forobtainingimageswithan atomicresolutionashorterwavelengthisrequired.

The formulation of hypothesis of quantum mechanics in the 1900s by theoretical physicistslikeMaxPlanck(andalsothedeBroglie’s attribution of wave and particle naturetomatter)andthesubsequentexperimentalverificationofwavenatureofelectron byC.J.DavisonandL.H.Germerin1927[1]whereinitwasfoundthat“ahighenergy electronhasashorterwavelengththanalowenergyelectron”[1]pavedthewayforrapid progressinthefieldofelectronmicroscoperesearch.

1 xvii

ThefirstelectronmicroscopewasinventedbyE.RuskaandM.Knollin1931[1].The electronmicroscopesusetheelectronraysinsteadofthelightraysinordertofocusby means of electrical coils [1]. “The magnifying power is greatly improved since the wavelengthoftheseparticlesismuchlessthanthatofthelight”[1].Theinadequacyof theelectronmicroscopetoacquireimagesattheatomiclevelisamplyrevealedbythe followingstatementofRichardFeynmanintheyear1959[3]:“Theelectronmicroscope isnotquitegoodenough,withthegreatestcareandeffortitcanonlyresolveabout10 angstroms….Istherenowaytomakeelectronmicroscopemorepowerful?”[4].Using electron microscopes a theoretical resolution of 4 nm was achieved but a still shorter wavelengthwasrequiredinordertoacquireatomicimages.Thiswasbecauseofthefact thatboth“ λ“and“ d”inEquation(1.1)areofthesamedimensions[1].Hencefromthis condition we can infer that if atomic resolution images are to be obtained then the wavelengthoflightusedshouldalsobeintheorder of angstroms. Xrays and gamma raysaretheelectromagneticradiationswithwavelengthscorrespondingtothatorderof magnitude and the difficulty with the above electromagnetic radiations are that they cannot be focused by optical lenses [1]. The invention of Scanning Tunneling

Microscope(STM)byBinnigandRohrerin1982eliminatedtheuseofopticallensesand replacedtheconventionalopticalmicroscopeswithanewclassofmicroscopescalledthe

ScanningProbeMicroscopes(SPM)[1].

TheinventionofAtomicForceMicroscope(AFM)in1986byGerdBinnigsatisfiedthe purposeofimaginginsulatingmaterialssincetheSTMthatwasinventedfouryearsago couldacquireonlyimagesthatwereconducting[1].IntheinitialstagestheAFMdiffered fromtheSTMinthesensethatintheAFMthetipandthesamplewereincontactwith

1 eachotherandthevanderwaalsforcesprovidedthecontrastmechanismintheplaceof tunnelingcurrentasinSTM[1].AnoverviewabouttheevolutionofSPMcanbefound in[1].ThedifferentclassesofSPMandthedescriptionofeachofthemcanbefoundin

Chapter2.

ApplicationsofScanningProbeMicroscopy

“Theobjectiveofnanoscienceandistostudy,createorapplymaterials, devicesandsystemsthatcouldcontrolmatteratnanometricorevenatomicdimension

[5]”.TheabilityofSPMtoreachattheatomiclevelwithoutaffectingthebiologicalor physicalcharacteristicsofthesamplehashelpedinachievingtheaboveobjective.Thus owing to their versatility, the SPMs have tremendously affected various scientific disciplines;ashortdescriptionaboutwhichisstatedinthefollowinglines.

ApplicationsinBiology

Intheyear1959,RichardFeynmaninhislecturetitled[3],”Thereisplentyofroomat the bottom”, noted “It is very easy to answer many of these fundamental biological questions; you just look at the thing! You will see the structure of the microsome.

Unfortunatelythepresentmicroscopeseesatalevelwhichisjustabittoocrude.Make themicroscopeahundredtimesmorepowerful,andmanyproblemsofbiologywouldbe madeverymucheasier.”TheinventionofSPMswasasteppingstoneinthatdirectionof solvingtheproblemsofimaginginthefieldofbiologyasforeseenbyFeynman.

Conventional microscopes like Scanning Electron Microscope, Transmission Electron

Microscope and the Field Ion Microscope require the operating environment to be a vacuum environment [2]. Diffraction techniques are limited to crystalline samples and cannot provide local structural information in real space [2]. The above constraints

2 relatedtoothermicroscopytechniqueshelpedinthewidespreadapplicationofSPMto biology.Thebiologicalsamplesunderconsiderationloosetheirbiologicalandphysical propertieswhensubjectedtoanenvironmentotherthantheirnaturalenvironment.SPMs removeallconstraintsliketemperatureconditionsandenvironmentconditionsrelatedto imageacquisitionowingtotheirversatility[2].TheearlyusageofSTMinthefieldof biologywasintheacquisitionofimagesofanunstainedDNA.StudyofNucleicacids:

DeoxyriboNucleicAcidandRiboNucleicAcidismadepossiblebyAFMandSTM

(SPMsingeneral)intheirnaturalconditions[2].TheimagesofDNAinaqueoussolution obtainedbyAFMwerefirstreportedbyLindsayet.alinMarch1988[2,6].Intheinitial stagesSTMwasusedforimagingbutwiththeinventionofAFMbyGerdBinnigin1986

[1,7]thewaywaspavedforimagingofinsulation surfacesandbiologicalspecimens.

TwoyearsaftertheinventionofSTMintheyear1986,itsinventorsBinnigandRohrer reportedtheimageofadoublehelix[6,8].Withadvancementininstrumentation,the

STMsabilitywasenhancedtoacquireimagesinwater[8,9and10].Theadvantagesof theoperationofSTMinwaterare[8]“

• Thehydrationofthestructureismaintained.Althoughthismaylimitresolution

(because of the softer structure) it should allow more realistic imaging,

particularlyofbiologicalprocess[11].

• The interface is far better controlled when in contact with a fluid, and, in

principle,electrochemicalmethodspermitcontrolofdepositionstowithinsmall

fractionsofamonolayer[12].Wecanroutinely obtain high resolution images

withouttheneedtohuntoverasurface”.

3

Figure1.1:TheschematicoftheSPMelectrochemistrycellusedtoimageDNAsamples

inaqueousmedium.(a)Pttip(b)glassinsulation(c)goldballwithflatfacets(d)gold

platingelectrode(e)glasswalls(f)inlettubeand(g)outlettube[8].

ApplicationsinChemistry

“TheSTMduetoitsabilitytoimageattheatomiclevelon(m) 2 areasiswellsuitedto investigatetherelationshipbetweensurfacemorphologyandtheatomicmechanismsthat determineit[13]”.“TheSTMhasprovidedanimportantnewtoolforbothinsituandex situ characterization of electrodes. i.e., the imaging of surface structures at a scale rangingfromsubmicrontoatomicresolutionandtheacquisitionofinformationaboutthe electronicpropertiesofthesurface.”[14].Shortrangeorderandlongrangeperiodicity present in the structure of surfaces as well as disordered surface layers can easily be identified by STM. The electrochemical STM as shown in Figure 1.1 was first constructedbySonnenfeldandHansmatobeoperatedundersolution[7,10].Thereare widespread applications of SPM in the field of chemistry and in particular to electrochemistry. After the experimental demonstration of the ability of the STM to operate in an aqueous medium, the electrochemical STM was used to image the

4 electrochemical phenomena with an atomic or molecular resolution in real space. The

STM is used as an investigative tool to study various processes related to electrochemistrysuchas“electrodepositionofmetals,corrosion,adsorptionofspecies fromsolution,andchangesinthestructureoftheelectrodesurfacecausedbythepassage of current [14]”. The tunneling current which acts as the feedback signal contains importantinformationabouttheelectrochemicalprocessestakingplacebetweenthetip and the sample. “It also contains valuable information about the electronic states of adsorbedmoleculeswhichcouldbeusednotonlytoidentifythemoleculesbutalsoto study the reactivity of the molecules [15]”. The process of adsorption of the small moleculesoncleansurfacesisparticularlyusefulinthestudyofsurfacescienceowingto theapplicationstocatalysis, corrosion and etching [2]. “After STM had demonstrated atomicresolutiononsemiconductorandmetal surfaces, both with and without atomic adsorbates,itsoonbecameachallengetoimagemoleculesatsurfacesandinterfacesas well[2]”.Initsdevelopmentalstagestheissuesrelatedtoacquiringimagesofmolecular adsorbates had been attributed to rapid surface diffusion [2]. This process of surface diffusion is enhanced and aided by electric fields [2]. The reason for the difficulty in acquiring images of molecular adsorbates can also beduetotheabsenceofmolecular orbital near the fermi level [2]. After the issue of acquiring the STM images at the molecular surfaces and interfaces had been resolved the STM was widely used in providing information about the molecular properties and the moleculesurface interactions[2].

5

ApplicationsinMaterialscience

“Insemiconductortechnologysubmicrometerfeaturesonintegratedcircuitboardscan be measured to perform routine product information of failure analysis” [1]. In conjunctionwithtechniqueslikesecondarymassspectrometry and auger spectroscopy

SPM evolved into a powerful technique to characterize thin film growth in molecular beamepitaxy[16].STMisusedtostudyvarioustypesofstructureslikepolymersand ceramics.“Thetechniqueissuitablefordeterminingsurfacestructuressuchasporosity, fractures,defects,grainsize,boundariesanddistribution”[1].

ApplicationsasaNanofabricationTool

“TheSTM,initiallyinventedtoimagesurfacesdowntotheatomicscale,hasbeenfurther developedinthelastfewyearstoanoperativetool,withwhichatomsandmoleculescan bemanipulatedatwillatlowsubstratetemperaturesindifferentmannerstocreateand investigate artificial structures whose properties can be investigated employing spectroscopic dI /dV measurements[17]”.TheabilityoftheSTMtoobtain highly spatialresolutionimagesisduetothecloseproximityofthetiptothesampleastomake theelectroncurrenthighlyspatiallyconfined[2].ThetipoftheSTMisthecomponent thatplaysamajorroleinnanofabrication.“Thesmalldistancebetweenthetipandthe sample,whichisaboutonenanometer,causeselectronstotunnelto(orfrom)aregionon thesamplethatisapproximatelyonenanometerindiameter,withanevensmallermajor distributionarea.Thus,thesurfacefabricationproducedbySTMmustbeperformedon thenanometerscale.i.e.,STMcannanofabricate”[2].

6

TheadvantageofusingSTMinthesurfacefabricationprocessisthatitplaysamulti purposerole[2]:

a) Itcandetectthedefectsinmasksandcircuits.

b) Repairthembysurfacedepositionandetching.

c) Finallyexaminetheresultsby(STM)itself.

TheSTMcanbeusedtomanipulateatomsorclustersatwillbymodifyingthegrowth, migration and diffusion of clusters on surfaces, controlling and performing the interactions between particles and substrates as well as interactions between small particles[2].

ThesisContributions

Thepresentworkisdirectedtowardsdesigning,developingandintegratingvarioussub systemsinordertofabricateandbuildaninhousescanningtunnelingmicroscope.

TheSTMthathasbeenfabricatedconsistsof:

a) Coarsepositioner(intheformofamicropositioner)

b) Finepositioner(intheformofananostager)

c) Opticalsubsystem(whichfacilitatesinthedualcontrolofthefineaswellasthe

coarsepositioner)

d) STMHead(whichconstitutestipholderandsampleholder)

e) STMElectronicsApreamplifiercircuitthatprovidesthefeedbacksignal

f) dSPACE®DS1104R&Dcontrollerboardtocontrolthemicropositioner

g) C809MotionI/O®controllerAnauxiliaryapparatusforcontrollingthePZT

7

TheSTMthusbuiltbyintegratingtheabovesubsystemsactsasatestbed.Inthistest bedtheeffectivenessofvarioustypesofcontrollersforcoarseandfinepositioningcould be tested. The creation of the test bed also involved automation using software

(Simulink®inthebackendandControlDesk®inthefrontend).Thissoftwarecontrol was established to facilitate the operation and control of the micropositioner and the

STMasawhole.ForabetterinsightintotheaspectsofScanningProbeMicroscopythe workalsocoversanelaborateliteraturesurveyinvolvingthehistoricalevolutionofSPM, an overview of different types of scanning probes microscopes and a mathematical modelingdealingwiththetiptosampleinteraction.

ThesisOutline

Chapter1dealswiththeintroductionandthe general applications of SPM. Chapter 2 coversthedifferenttypesunderthefamilyofSPMs.Chapter3attemptstodiscussabout thedifferenttheoreticalmodelsoftiptosampleinteraction.Chapter4describesvarious subsystemsthatconstitutetheexperimentalsetup.Chapter5discussestheresultsthat were obtained pertaining to the micropositioner and the preamplifier. The thesis is concludedwithchapter6wherefuturescopeoftheprojectisdealtwith.

ChapterSummary

ThisgaveanoverviewabouttheevolutionofScanningProbeMicroscopyfromOptical

Microscopes. It also discusses about the widespread applications of SPM in different scientificdisciplinesrangingfromchemistrytobiology.

8

9

CHAPTER2

CONCEPTUALDESIGNANDOPERATIONOFASCANNINGPROBE

MICROSCOPE

Introduction

SPMsrefertoa generalfamilyofmicroscopes. Theprincipleofoperationofwhichis basedontheinteractionofthetipandsampleinordertoobservethephysicalproperties ofthesamplelikespectroscopicandstructuralpropertiesonanatomicscale.Scanning

Probe Microscopy technique provides threedimensional real space images and among surfaceanalysistechniques,itallowsspatiallylocalizedmeasurementsofstructure and properties[14].Thesurfaceimageofthesampleisreconstructedbymovingthescanner, line by line over the sample. In a SPM the tip doesn’t touch the sample. Hence, the scanner is also required to maintain an optimum distance that is constrained by the interaction.Thedistancebetweenthetipandthesampleisintheorderofsubangstrom units.Dependinguponthemodesof“interaction”the general class of Scanning Probe

Microscopyisclassifiedas:

a) ScanningTunnelingMicroscopy(STM)

b) AtomicForceMicroscopy(AFM)

c) MagneticForceMicroscopy(MFM)

d) LateralforceMicrocopy(LFM)

e) ForceModulationMicroscopy(FMM)

f) PhasedetectionMicroscopy(PMM)

g) ElectrostaticForceMicroscopy(EFM)

10

h) ScanningCapacitanceMicroscopy(SCM)

i) ScanningThermalMicroscopy(SThM)

j) NearfieldScanningOpticalMicroscopy(NSOM)

BriefOverviewofVariousTypesofSPMs

ScanningTunnelingMicroscope

STMwastheoriginalclassofScanningProbeMicroscopethatwasinventedbyGerd

BinnigandHeinrichRohreratIBMZurichin1981,forwhichtheywereawardedthe

Nobel Prize in Physics in 1986. In a STM, a voltage bias is applied between the tip

(whichisasharpconductingone)andthesample,andwhenthetipisbroughtclosetothe sampledependingonthesignofthebiasvoltagethetunnelingphenomenatakesplace either from the tip to the sample or vice versa. The tunneling current which is the feedbacksignalforacquiringimagesatthenanolevelisanegativeexponentialfunction ofthesamplesurfaceandtheSTMtip.Itisthisexponentialcharacteristicthatgivesthe

STM its high sensitivity and was the reason for the shift of focus of research from conventional optical microscopes to the Scanning Probe Microscopes and marked the genesisoftheclassofSPMs[2].Conventionalopticalmicroscopesarelimitedbythe valueofthewavelengthofthevisiblelightwhichis 0.4 m .Sothisinherentlimitationof theopticalmicroscopeslimitstheirusage.HencethisnecessitatedtheadventofSTMsfor obtainingthreedimensional,realspaceimagesofsurfaces with high spatial resolution

[14].TheSTMsoperatebasedontheprincipleofquantummechanicaltunneling,about which has been dealt in the later chapters under the title of Theoretical Modeling of

ScanningTunnelingMicroscopy.

11

Figure2.1:SchematicofaScanningTunnelingMicroscope[18].

TheSTMoperatesintwodifferentmodes:constantheight mode and constant current mode.

12

ConstantCurrentMode

Inconstantcurrentmodeasthename,suggeststhetunnelingcurrentbetweenthetipand thesampleismaintainedataconstantvalue.Thefeedbackparameteristhetunneling currentbasedonwhichthevoltageappliedtothepiezoelectrictransducerisvaried.So thetipheight(i.e.intheZdirection)isvariedinaccordancewiththistunnelingcurrent.

Whenitissensedafterfeedbackthatthetunnelingcurrentissmall;thetiptosample heightisincreasedinordertomaintainapresetvalue.Sothevariationofthefeedback voltageappliedintheZdirectionistheimageofthesampleandrepresentsaconstant chargedensitycontourofthesurface[14].

ConstantHeightMode

Intheconstantheightmode,theheightismaintainedataconstantvalueandhencethe voltage applied to the Piezoelectric Transducer (PZT). But it is the tunneling current whichchangesaccordingtothesurfaceprofileandthelocalelectronicstructureofthetip andthesample.Henceinthismode,thetunnelingcurrentcontainsdataaboutthesurface profileofthesampleandinturnisrelatedtothechargedensity[14].Thedisadvantages andtheadvantagesofthetwomodesare:Intheconstantheightmodethescanningis faster because it is not limited by the response time of the Z scanner [14]. But the corrugationsandvariationsinthesurfaceprofilecannotbetracedintheconstantheight mode.Intheconstantcurrentmodethesurfaceirregularitiesaretracedandthescanning timeiscomparativelyhigher.

13

Constantheightmode Constantcurrentmode

Figure2.2:OperationofScanningTunnelingMicroscopeinbothConstantheightaswell

asConstantcurrentmode.[19].

AtomicForceMicroscope

Theatomicforcemicroscopehasatipattachedtothefreeendofacantileverprobe.The interactionsbetweenthetipandthesampleaffectthedeflectionsofthecantilever.The cantilever deflections are used to image the topography of the sample. ”Keeping the deflectionconstantand byvaryingthevertical positionofthetipproducesaconstant forceimageanalogoustotheconstantcurrentSTM”[14].Thisdisplaysthechangesin surfaceheightduringscanning.Thismodealsogivescalibratedheightdisplayaboutthe samplesurface[23].Thedeflectionsinthecantileverprobeactsasthefeedbacksignalto correcttheheightsothismodeiscalledastheerrorSignalmode[20,21].Whenthereis aprofilechangeduringtherasterscanningofthesamplethentheamplitudeofoscillation ofthecantileveralsocorrespondinglychanges.

14

The objective of the feedback loop in that case will be to keep the amplitude of the oscillationofthecantileverconstant[22].Hencewiththisobjectivearisethreeopenloop modes which are: noncontact mode AFM or attractive AFM, contact mode AFM or repulsiveAFM,andtappingmodeAFM.

Figure2.3DiagramofanAtomicForceMicroscopeSystem[23]

15

VariousmodesofoperationoftheAFMaregiveninTable2.1[24]

Table2.1:ListsofvariousmodesofoperationofAFM[24]

ModeofOperation ForceofInteraction

ContactMode Strong (repulsive) –constant force or

constantdistance

Non–contactmode Weak(attractive)–vibratingmode

Intermittentcontactmode Strong(repulsive)–vibratingmode

LateralForcemode Frictional forces exert a torque on the

scanningcantilever

MagneticForce Themagneticfieldofthesurfaceisimaged

ThermalScanning Thedistributionofthermalconductivityis

imaged.

ContactAFMortheRepulsiveAFM

TheAFMtipmaintainsaslight“contactortouch”withthesamplesurface.Thespring constantofthecantileverbeamwhichholdsthetipislowerthanthespringconstantof the atoms of the sample that are held together [18, 22]. “The contact mode acquires sample attributes by monitoring interaction forces while the cantilever tip remains in contactwiththetargetsample[18,25]”.Anunderstandingabouttheinteractionofthetip andthesamplecanbegotfromtheanalysisofvanderWaalsForcecurve:FromFigure

2.4,wecanobservethatinitiallythedistancebetweenthetipandthesampleislarge.The atomatthetipoftheAFMandtheatomonthesample,whenareslowlybroughtcloseto each other, then there exists a weak force of attractionbetweenthem. Thereisalso a

16 counter acting electrostaticforceofrepulsionexistingbetweentheelectroncloudsand thisforceofrepulsionispredominantwhentheatomicdistancebetweenthetipofthe atom and the sample decreases. The repulsive force counteracts the attractive force betweenthetipandthesample.Thisisattributedto decrease in inter atomic distance.

Theforcebecomesfullyrepulsivewhenthedistancebetweenthetipandthesampleis onlyafewangstroms.“InAFMthismeansthatwhenthecantileverpushesthetipagainst thesample,thecantileverbendsratherthanforcingthetipatomsclosertothesample atoms”[18].Thedisadvantageoftheprobetipremainingincontactwiththesampleis thatthesamplegetsdamagedastherearelateraldraggingforcesexertedbytheprobetip.

Figure2.4:InteratomicforcevariationversusdistancebetweenAFMtipandsample

[22].

17

Apartfromtheabovementionedrepulsiveforces,therearealsopresentcapillaryforces whichareattributedtothepresenceofacontaminantlayer(whichisintheformofathin waterlayer)overthesamplesurfaceandtheforceexertedbythecantileverbeamitself.

Thecapillaryforceexistingbetweenthesampleandthetipcanbeapproximatedtothat ofaforceofacompressedspring[18].Assumingthedistancebetweenthetipandthe sampleisincompressibleandalsothewaterlayerishomogenousthemagnitudeofthe capillaryforcebetweenthetipandthesampleisconstant.However,themagnitudeand thesign(repulsiveorattractive)ofthecantileverdependonthedeflectionandthespring constantofthecantilever[18,22].ThetwomodesofoperationinaContactAFMare: constantheightmodeandconstantforcemode.Intheconstantheightmodethesampleis scannedlaterallyandthezheightbetweenthetipandthesampleisconstant[18,22].

Hencethedeflectionofthecantileverisusedtoobtainthesurfaceprofileofthesample.

The drawback of this technique is that there is a high probability of the tip getting damagedwhenitmayencounteramountainorsteepstepsonthesamplesurface,asitis constantlyin“Contact”withthesamplesurfaceduringthescanningprocess[18,22].

ConstantForceMethod

ThisisthemostcommonmodeinwhichtheAFMisoperated[18,22].Afeedbackloop isincorporatedwhichmaintainstheheightbetweenthetipandthesampleasconstant.In constantforcemodethedeflectionofthecantileverisusedastheinputtothefeedback circuitsothatthezheightisadjustedinaccordancewiththevariationsinthesurface profile[18,22].SothevoltageappliedtothePZTisinsuchawaythatitlowersorraises thecantilevertomaintainthepresetdeflectionvalueandthusmaintainsaconstantforce betweenthetipandthesample.Thisvalueof thevoltage applied to the PZT by the

18 feedbacksystemgivesthesurfaceprofileofthesampleunderscan[18,22].Inconstant forcemodesinceafeedbackloopisinvolved,thetimetoscanagivenareaofthesample islarge.Theforceappliedonthesamplebythetipiscontrolled[18].Constantheight mode is more preferred for atomically flat surfaces because of the above mentioned disadvantageofthetipgettingdamaged.

Ingeneral,thecontactAFMhasthefollowingfeatures[24]:

• 3Dimagesatthenanolevelareobtainedwithoutdamagingthesample.

• Sampletreatmentandpreparationiscomparativelyminimal.

• Existenceofrepulsiveforcebetweenthetipandthesample.

• Useful in analyzing insulators and conductors easily, as it is not based on

conductivitycontrarytoSTM.

• Capableofoperationinbothairaswellasfluidenvironments

• Providesconsiderableinformationaboutphysicalproperties.

NonContactAFM

TheuniquecharacteristicofNCAFMisthatthesurfaceprofileisobtainedbylittleorno contactbetweenthetipandthesample[18,22].InthenoncontactAFM,thecantileveris madetovibratenearthesurfaceofthesampleinordertodetectthevanderWaalsforces betweenthetipandthesample[18,22].ThegapbetweenthetipandthesampleinNC

AFMistypicallyintheorderof50150angstroms(ortenstohundredsofangstroms)

[18,22].Thetotalforcebetweenthetipandthesampleinthenoncontactregimeisabout

10 −12 NwhichislowwhencomparedtocontactAFM.Sothisfactorofthenoncontact

AFM facilitates in the study of “soft” or “elastic” samples. It is also advantageous to studythosesampleslikeSiliconwhichshouldnotbecontaminatedduringthetipsample

19 interaction[18,22].Becauseofthepresenceofweakerforceswhencomparedtocontact mode,thecantileversusedinnoncontactmodearestifferbecausethefluidcontaminant layerpresentisthickerthantherangeofthevan derWaalsforcegradient,andasthe oscillatingprobecangettrappedinthefluidlayerorvibratesbeyondtherangeofthe forcesthatitisusedtodetect.Sothisfeatureconstitutesalimitationastheresolutionof theimagesobtainedbynoncontactAFMisquitelow[18,22].Thesmallforceandthe highstiffnessofthecantileverbeamsmakethemagnitudeofthesignalverysmalland hencedifficulttomeasure.Sothisshortcominginmeasuringthetipsampledistancealso limitstheusageofnoncontactAFMtoconsiderableextent.Henceforthereasonsstated before, the NCAFM does not suffer from tip to sample degradation effects that are sometimesobservedaftertakingnumerousscanswithCAFM.“Iflayersofcondensed waterarelyingonthesurfaceofarigidsample,thentheAFMoperatingincontactmode willpenetratetheliquidlayertoimagethesurfaceandthenoncontactAFMwillimage thesurfaceoftheliquidlayer.”[18]

IntermittentContactAFM

TheintermittentcontactAFMisalsootherwisecalledasthetappingmodeAFM.The modeofoperationofanICAFMisverysimilartothatofNCAFMexceptthatinIC

AFMthevibratingcantileverisbroughtclosertothesample[18,22].Itischaracterized byoscillatingthecantileveratitsresonantfrequencyandthegapbetweenthetipandthe sampleisreduced,insuchawaythatwhenthecantileveroscillatesitjustbarelytouches or“taps”thesample.ThevibrationofthecantileverisactuatedbyaPZTandamplitude ofvibrationisaround20100nmwhenthetipdoesnottouchthesample.Intheconstant forcemodeofoperationoftappingmodeAFMafeedbackloopkeepstheoscillationof

20 the cantilever beam constant [18,22]. An optical system detects the change in the amplitudevibrationwhichinturnisusedinthecomputationoftheerrorbetweenthis changeintheamplitudeandthepresetvalue[18,22].Nowthiserrorsignalisusedin driving the PZT actuator and maintains constant amplitude of the cantilever, hence a constant force on the sample. The error signal which drives the PZT actuator in the verticaldirectionisusedtoplotthesurfaceprofileofthesample.Theintermittentcontact

AFMisusedinthosecaseswhenthereisariskofthesamplewithlowmoduli,getting damagedbythedraggingofanAFMtipacrossitssurface.ICAFMispreferredtoNC

AFMandCAFMwherethereisagreatervariationinthesurfaceprofileofthesample andalsobecauseiteliminatesthelateralforces(frictionordrag)betweenthetipandthe sampleowingtotheshortdurationofcontactofthetipwiththesample[18,22].

Figure2.5:Contactmode(left),Noncontactmode(middle)andtappingmode(right)

[22].

21 Figure 1: AFM and STM Schematic Quadcell HeNeLaserdiode Mirror photodetector Feedback I AFM

SharpenedSTM wiretip sampl V

Piezotub

PZ PyramidalAFMtip z mountedon reflective Scanxyz with y x

Piezotransducer(PZT) scanner samplepositioning Figure2.6:ASchematichighlightingthedifferencebetweentheoperationofAFMand

STM[26].

MagneticForceMicroscopy

MagneticForceMicroscopy(MFM)belongstothesamegenreofAFMexceptthatthis particular class of microscopy is used to image the magnetization patterns with high resolutionwithanickelorirontipwhichismagnetizedalongitslength,contrarytoa normalAFM(oranyotherforcemicroscope)operatinginthenoncontactmode.

This is accomplished by minimal sample preparation [27]. The tip of a MFM is also mountedonacantileversimilartoAFM,butthedifferencebeingthetipiscoatedwitha ferromagneticthinfilm[27].Thetiptosampledistanceistypically10500nm.Asthe namesuggests,thetipinMFMinteractswiththemagneticfield(whichisbecauseofthe magnetic dipoles present in both the tip and the sample) emanating from the sample.

MFMgivesinformationaboutsurfaceprofileaswellasthemagneticpropertiesofthe surface [27]. The distance between the tip and the sample determines the type of properties obtained [27]. Closer the tip is to the sample, the image gives information

22 aboutthetopographyofthesampleandfurtherawaythedistancebetweenthetipandthe sampletheimagegivesinformationaboutthemagneticeffectspertainingtothesample

[20].Thedetectionisbasedonmonitoringshiftsin the cantilever’s effective resonant frequency. The magnetic gradient present between the tip and the sample affects the effective resonant frequency and this shift in resonance frequency is caused by the change in oscillation amplitude. The MFM is essentially used in the study of the magnetic media giving insight into both head performance and quality of the storage medium[20].

Figure2.7:Experimentalsetupformappingmagneticfieldsby“ForceMicroscopy”[28].

ScanningCapacitanceMicroscopy

Scanning Capacitance Microscopy (SCM) is used as anauxiliaryapparatusalongwith

AFM. The principle behind the SCM is the same as any other SPM with the only variationthataSCMimagesthespatialvariations in capacitance [2]. The capacitance betweenthetipandthesampleisdetectedusingacircuit.SCMandEFMaresimilarin

23 inducingavoltagebetweenthetipandthesample[2].Thereisacapacitancethatexists betweenthetipandthesample,thiscapacitancedependsonthedielectricconstantofthe medium.MagneticandElectrostaticforcesofinteractionexperiencedbythetipplaced aboveahomogenoussurfacearegivenbytheEquations2.1and2.2[2]:

1 ∂C F = − (V ) 2 (2.1) electrostatic 2 ∂z

Fmagnetostatic = ∇(mBsample ) (2.2)

where F(z) istheforce, V = Vtip −Vsurf isthepotentialdifferencebetweenthetipand thesurface,zistheverticaltipsurfaceseparation,and C(z) isatipsurfacecapacitance.

FromEquation(2.1)itcanbeinferredthatcapacitance is a function of the tipsurface separation, topography and tipshape [29]. SCM is useful in the spatially resolved characterizationofsemiconductordevices[2,29]. This process of characterization is donebyobtainingtheCVcurvesorCapacitanceVoltagecurvesofthesemiconductor surfaces[30].TheshapeoftheCVcurvesthusobtainedusingtheSCMareafunctionof theoxidethickness.TheSCMdatapertainingtosemiconductordevicescanbeobtained onlyfordeviceswithuniformoxidethickness[30].

24

Figure2.8:BlockdiagramofaSCM[31]

LateralForceMicroscopy

Thecantileverduringtheprocessofscanningincontactmodeissubjectedtomanytypes of forces namely lateral forces and normal forces [18]. The normal forces cause the bending of the free end of the cantilever beam in the vertical direction [2]. And the former,whichisparalleltothesamplesurfaceinducelateraldeflectionsortwistingofthe cantilever[18].Thesetwoforcesareperpendiculartoeachother[18].Thecausesofthe lateral deflections are due to the change in the surface friction (owing to the in homogeneityinsurface)andchangesintheslope[18].Thefactthatthesetwoforcesare perpendiculartoeachotherhelpsintheacquisitionoftwotypesofdata:onepertaining totheusualsurfaceprofile(whichiscommontoAFMaswell)andtheotherrelatedto thefrictionalforces(whichareuniquetoMFM)[18].Thedeflectionofthecantileveris measuredusingaPositionSensitivePhotoDetectororPSPDforshort[4,28].ThePSPD consistsoftwotypesofcells:onethebicellandtheotherthequadcell.Thebicellis typicallyincorporatedinAFMinstrumentation,whenusedtomeasurethesurfaceprofile

25 ofthesample[18].Thequadcellhelpsinthefurtherdetectionormeasurementofthe twistingofthecantilever.Boththe“bicell”andthe “quadcell” basically measure the orientation as well as the bending of the cantilever by reflecting laser beams off the backside of the cantilever [18]. The reflected laser beams will travel in mutually perpendiculardirectionsifincasebothbendingaswellastorsionmotionofthebeamare measuredusingthe“quadcell”.TheillustrationinFigure2.9depictsthefunctioningof thePSPDfordetectingtorsionaswellasbendingofthecantileverbeams:

Figure2.9:ThePSPDforAFM(top)andLFM(bottom)[18]

26

scan cantilevertiptorsionaldeflection direction

low friction topographic region feature forwardtrace HYSTERESIS reversetrace LateralForceSignal

forward&reversetrace

TopographySignal

Figure2.10DiagramhighlightingLateralForces[26]

ForceModulationMicroscopy

Forcemodulationmicroscopy(FMM)isanothervariantoftheclassofAFM,whichis similarinoperationtoLFMandMFM[18].FMMisusedinthestudyofmechanical properties of the sample [18]. The tip is in contact with the sample in the FMM. A periodicsignalisappliedtoeitherthetiporthesample[18].Elasticpropertiesofthe samplecanbeobtainedfromthechangeintheamplitudeofthecantilevermodulation

[18].AForcemodulationimageisobtainedfromthechangesintheamplitudeofthe cantilever modulation. Figure 2.11 shows image obtained from the Force Modulation

Microscopeofacarbonfiber/polymercomposite:

27

Figure2.11:ImagesofaCarbonFiber/Polymercompositecollectedsimultaneouslyfield

ofview5m[18]

PhaseDetectionMicroscopy

Phasedetectionmicroscopy,asthenamesuggestsmonitorsthephaselagbetweenthe signalthatdrivesthecantilevertooscillateand the cantilever oscillation output signal

[18].Thechangeinthephaselagreflectsthechangeinthemechanicalpropertiesofthe samplesurfacelikeelasticity,adhesionandfriction[18].Thechangeinthephaselagas well as topographic images are taken simultaneously, this facilitates obtaining both topographical images as well as material properties related to the sample [18]. Phase detectionmicroscopytechniquecanbeusedinconjunctionwithaNCAFMforgetting boththetopographyimagesaswellasphasedetectioninformation.

28

Figure2.12:Thephaselagvariesinresponsetothemechanicalpropertiesofthesample

surface[18]

ElectrostaticForceMicroscopy

Electrostatic Force Microscope (EFM) maps the electrically charged regions in the sample similar to Magnetic Force Microscopy (MFM), which maps the magnetic domainsinthesample[18].BothintheEFMaswellasMFMaprobevibratesatits resonancefrequency.InElectrostaticForceMicroscopy,avoltageexistsbetweenthetip andthesampleinordertoimagethestaticchargespresentonthesamplesurface[14].

Thepresenceoftheseelectricalchargesinthesampleaffectsthevibrationamplitudeof theprobe.EFMisusedinthestudyofspatialvariationsofsurfacechargecarrierdensity andtheelectricalpropertiesofthesampleingeneral[14,18].EFMisusedintestingthe performance of microprocessor chips at submicron scale, the technique of which is called as “voltage probing”. The microscopy technique also finds its application in determiningtheconcentrationanddistributionofdopantatomsindopedsiliconasthe dopingconcentrationplays averyimportantrolein the chip performance [2]. Figure

29

2.13 reveals the images of a polished sapphire surface with both contact as well as electrostaticforces.

Figure2.13:Images5.2( m × 5.2 m 2 ) ofadifferentrcutsapphiresamplewithmore

closelyspacedsteps.Image2.13(a)Wastakenusingrepulsivecontactforceswhile(b)

wastakenusingattractiveelectrostaticforces[32].

From image 2.13, pertaining to electrostatic forces it can be inferred that images of chargeaccumulationscanbeobtainedfromEFM.Themostcommonlyusedtechniques ofEFMareForceGradientImagingandScanningSurfacePotentialImaging.

ForceGradientimaging

ThistechniqueofEFMimagingiswidelyusedcommerciallyinthenoncontactmode.A surfacetopographyisobtainedinthefirstscanandthenthecorrespondingelectriccharge distribution is recorded in the second scan. The amplitude, phase and frequency of vibrationofthetipgetchangedundertheinfluenceofelectrostaticforcesactingonthe

30 tip.Whentheexternaltipbiasisabsenttheforcegradientactingonthetipisproportional totheproductofelectricfieldandtheinducedcharge.“Thetipcanbemadesensitiveto electrostaticforcesbybiasingitwithrespecttothesample[14]”.WhenaDCvoltageis appliedbetweenthetipandthesample,theforcegradientthatactsasaconsequenceon thetipistheresultofvarioustypesofinteractions.Thoseindividualinteractionscanbe determinedbytakingmeasurementsatdifferentscanheightsanddifferenttipbiases.The effectofelectrostaticforcesactingonthetipcausesadecreaseintheresolutionofthe image obtained by EFM. This led to the development of Scanning Surface Potential

Microscopy.

ScanningSurfacePotentialMicroscopy

ThistechniqueisalsoalternativelycalledastheKelvinProbeMicroscopy(KPM).The forceexistingbetweenthetipandthesample when actipbiasis appliedis givenby

Equation(2.3)[14]:

1 ∂C(z) 1 F (z) = [(V − V ) 2 + V 2 1[ − cos(2ωt)] + (2 V − V )V sin(ωt)] (2.3) 2 ∂z dc surf 2 ac dc surf ac

Fromequation(2.3),itcanbeobservedthatwhenanacbiasisappliedbetweenthetip and the sample then both static components as well as harmonic components are produced. The dc component present in the biasing voltage contributes to the static components as well as to the first harmonic components. The rest of the harmonic components are induced by the presence of ac part of the biasing voltage. When the

conditionof Vdc = Vsurf isachievedthenthefirstharmonicvanishes,underthiscondition thesurfacepotentialisdirectlymeasuredbyadjustingthetipoffsetpotential[14].“Itis noteworthy that the signal is independent of the geometric properties of tipsurface

31 system and the modulation voltage. This technique allows high potential resolution.”

[14].

ScanningThermalMicroscopy

“Tipsamplethermalresistanceasaproximitymeasuringtechniquealloweddevelopment of Scanning Thermal Microscopy as an analog of the STM for imaging insulating materials.Theprimarypurposeoftheoriginalmicroscopewasnottomeasuresurface temperature but for imaging insulating materials.” [33]. The Scanning Thermal

Microscope(SThM)wasreportedtohavedevelopedintheyear1986,theyearbywhich theAtomicForceMicroscopehadnotstilltakenbirth. Wickramasinghe and Williams

[34,35]developedthefirstSThMinordertoovercometheinabilityofSTMtoscannon conductive surfaces. The first Scanning Thermal Microscope had a thermocouple mountedonthetungstentipofaSTM.ThetipoftheSTMwasheatedandbroughtin closeproximitytothesample.Thedifferenttypesoftipsampleheattransfermechanisms playavitalroleinthisjunctureastheycontrolspatialresolution,temperatureaccuracy and resolution and imaging artifacts [33]. Majumdar [33] has dealt with a detailed description about various types of heat transfer mechanisms ranging from solidsolid conductiontoliquidfilmconduction.”Whenthethermaldiffusionlayersurroundingthe heatedprobeoverlapsthesubstrate,heatistransferredtothesubstrate,coolingthetipand signalingthepresenceofasurface”[34].Thedifferenceinthethermalconductivityof solidandairsurroundingthetip,heatedprobeisabletosensethesolidi.e.thesample surface placed near the probe tip independent of its thermal characteristics [34]. Thus

SThMisusedinobservingthethermalbehaviorofmaterials, thermal conductivity in

32 particular.SThMishelpfulinacquiringbothtopographicaswellasthermalconductivity data pertaining to the sample. The material used in the cantilever is sensitive to the changeinthethermalconductivityofthesample.Thischangeinthethermalconductivity inturneffectsachangeinthedeflectionofthecantilever.SimilartoMFM,atopographic imageisgeneratedfromthechangesinthecantilever’samplitudeofvibration.

Figure:2.14:Experimentalapparatusanddetailsofthecantileverthermocoupleprobe

usedforSThM[33,36].

NearFieldScanningOpticalMicroscopy

“NSOM brings to the SPM family an optical probe than can yield complementary informationtotheothertechniquesthatcanonlybeobtainedbyopticalmean[34]”.The resolutionthatcouldbeachievedbyaobjectivelensofnumericalaperture NA foralight ofwavelength λ asproposedbyAbbe’isasperEquation(2.4)[37,38]:

.0 61λ R = (2.4) NA

33

From Equation (2.4) it can be inferred that the resolution in a conventional optical microscope is a function of the wavelength of light used. NSOM optical technique overcomestheconventionalAbbebarrierorthediffractionlimit[34,39].Comparedto thewavelengthoflightthedistancebetweenthetipandthesampleissmallerhencethe name“Nearfield”[39].

Figure2.15SchematicrepresentationofSynge’sideaforachievingsubdiffractionlimits

spatialresolution[40].

TheNSOM has the advantage ofpossessing contrast mechanisms and high resolution which are not present in a conventional optical microscopy technique [34]. “Optical

Microscopyhastheadvantagethatitisnoninvasivetothesamplewhichmakesithelpful in rendering investigative research in Biology, Medicine and Genetics in their native environment [34]”. The sample is excited by passing the light through a submicron apertureattheendofanopticalfiber[37,18].Thediameteroftheapertureisintheorder ofnanometers.Inordertopreventlightlossthefiberiscoatedwithaluminumorsome othermetaltoensureafocusedbeam[37,18].ThisdistinguishesaNSOMfromtherest of the family of SPMs in the sense that optical information (like refractive index) is

34 collectedfromthesamplebytheNSOM.GenerallyinaNSOMexperimenteitherthetip orthesamplemovesupanddownmaintainingaconstantforcesimilartoconstantcurrent setupinaSTMexperiment.Theupanddownmotionofthetiporthesamplewillbein accordancewiththesampletopography[37,18].SimilartootherconventionalSPMsthe sampleismovedbyaPZT[37,18].

Figure2.16:Schematicofanearfieldmicroscopebuiltaroundaninvertedfluorescence

microscope[40].

Asinanyotherscanningprobemicroscope,thetiptosampledistanceismonitoredbut theybeingspecifictoNSOMarediscussedasbelow[39]:

• ShearForceFeedback

• TappingMode

35

ShearForceFeedback

Oneoftheearliestmethodsemployedweretheopticaltechniquesfordeterminingthetip to sample proximity. The distance between the tip and the sample bears a direct relationshiptotheintensityofthereflectedorthetransmittedlightfromthesample.This relationship is due to the far field interference phenomenon [41, 42 and 43]. The drawbackoftheabovetechniqueisthatitisnotapplicabletoallsamplesastheoptical propertiesofthesamplesactsasacriterionforimplementingthetechniqueinorderto monitorthetiptosampledistance.Theshearforcetechniqueis“basedontheobservation thattheamplitudeofmotionofafiberprobedrivenatanaturalvibrationalresonanceina planeparalleltothesamplesurfacedecreasesastheprobeapproachesthesurface”[44].

Theshearforcemethodofdetectionwasreportedtohavedevelopedsimultaneouslyby

BetzigandcoworkersandVaezIravani’sgroup[37,44,45and46].AsshowninFig

NSOMprobeisditheredorlaterallyswayedby apiezoelectric device, parallel to the sample’ssurfacecorrespondingtothemechanicalresonanceoftheprobe[37,44].As, mentioned before the probe is driven by a piezoelectric transducer. The resonance at whichtheprobeisvibratedisaffectedbytheforceactingontheprobe.Theforcesacting ontheprobecauseachangeintheamplitudeoftheprobemotionwhichinturnfacilitates indeterminingthedistancebetweenthetipandsample[37].

TappingMode

Thetappingmodemethodoffeedbackisrelativelynewcomparedtotheearlierdescribed techniques. ” The fiber is mounted on a piezoelectric bimorph for probe modulation normal to the sample surface” [37]. Since the feedback is employed for “near field” opticalscanningmicroscopytheamplitudeofmotionissmallinordertoensurethatthe

36 sampleisnearertotheprobeandtheprobemakesaweakintermittentcontactwiththe samplesurface[37].Apositionsensitivephotodetector(PSPD)(similartothatusedin

LateralForceMicroscopy)isusedinordertomonitorthetiptosampledistance.”The probe is driven at a mechanical resonance, and its motion is observed via lock –in detection of the signal from the diode” [37]. This method of feedback helps in minimizingtheinteractionforces(whichisintheorderofpiconewtonornanonewton range)existingbetweenthetipandthesample[37,47].

ChapterSummary

Scanning Probe Microscopes have revolutionized the world of microscopy techniques eversincetheirinvention.DifferenttypesofScanningProbeMicroscopesevolvedafter theinventionofScanningTunnelingMicroscopein1982andAtomicForceMicroscope in1986.ThebasicprinciplebehindthevarioustypesofScanningProbeMicroscopesis the interaction of the tip and sample. Depending upon the type of interaction the

Scanning Probe Microscopes are classified into various categories. Within each sub category they are further classified depending upon the modes of operation, like for exampleScanningTunnelingMicroscopeisclassifiedasConstantCurrentandConstant

Height.AtomicForceMicroscopeisclassifiedasContactAFM,NonContactAFMand intermittentContactSFM.

37

CHAPTER3

THEORETICALMODELINGOFSCANNINGTUNNELINGMICROSCOPY

The concept of Scanning Tunneling Microscopy evolved on the basis of electron tunneling.

ConceptofTunneling

Thetunnelingphenomenawasexperimentallyobservedin1928inthefollowingthree cases:thenaturaldecayofcertainheavynucleiby α − particleemission,theionization ofatomichydrogeninastrongelectricfieldand,similarlytheemissionofelectronfrom acold,cleanmetalsurfaceundertheapplicationofastrongelectricfield.[48]

FromFigure.3.1,wecanobservethata α particleinitiallywithametastableenergy E

decaysexponentiallyafteritcomesoutofthenucleuswithakineticenergy EK whichis oftheorderofafewMeV.

Figure3.1:Decayofradioactivenucleusbytunnelingofalphaparticlethroughcoulomb

barrier.Regularitybetweenenergy EK ofemergingalphaparticleandlifetime τ α against

decaysubstantiatestunnelingmodel[48].

38

Thetunnelingphenomenonisattributedtothewaveaspectofparticlesaspropoundedin quantummechanics.Inaccordancewiththiseffect,theelectronsaregivenanonzeroor finiteprobabilityofpassingthroughaforbiddenenergygap.Thisisinoppositiontothe principles of classical mechanics where the electrons require energy greater than the forbiddenpotentialenergytocrosstheenergybarrier.

Figure3.2:Theenergylevelsintwosolidsseparatedbyaninsulatingorvacuumbarrier

(a)withnobiasappliedbetweenthesolidsand(b)withanappliedbias.Energiesofthe

electronsinthesolidsareindicatedbytheshadedareasupto EF1 and EF 2 ,whicharethe

Fermilevelsoftherespectivematerials.TheappliedbiasVis EF1 − EF 2 andZisthe

distancebetweenthetwosolids.[14]

ThesolutionstoSchrödinger’sequationinsidethebarrierhavetheformas[14]=

ψ (z) =ψ )0( e −kz (3.1)

39 where

2m(V − E) k= (3.2) h

Wherem isthemassofanelectron, h isthereducedPlanck’sconstant, Eistheenergyof theelectron;VisthePotentialinthebarrier.

TunnelingProbability

Asmentionedbefore,thetunnelingprocessespropoundedundertheprecinctsofquantum mechanicsfollowsdirectlyfromthesolutionsofSchrödinger’sequation(Equation.3.1) andtheprobabilityisinterpretedby ψ *ψ [48].

TherateatwhichsuchprocessesoccurcanbecalculatedfromtheWentzelKramers

Brillouin(WKB)approximationasperequation(3.3)[48]

D = e(−2K ) (3.3)

x2 (Ex ) where K = κ(x, E ).dx (3.4) ∫ x x1 (Ex )

1 * 2 2m [V (x) − Ex ] where κ(x, Ex ) =  2  (3.5)  h 

The decaying probability of the electron through the barrier is proportional to the tunnelingcurrentwhichinturnisexponentiallydependentonthebarrierwidthasper

Equation(3.6):

P ∝ I ∝ e −2kz (3.6)

40

Figure3.3(a)Asimplerectangularbarrierpotentialofheight φO (b)Theprobability

densityfunctionPfortypical(rectangular)barrierpenetration[49]

Figure3.4:Metalinsulatormetaltunneljunction.TwometalelectrodesatT=0K.The electronenergylevelsarefilleduptotheFermienergy.Electronsintheoccupiedstates oftheleftelectrodemaytunnelelasticallytotheemptystatesoftherightelectrode[49].

Thenetcurrentflowacrossthemetalinsulatormetaljunctionconstitutesthetunneling probability contributed by the conduction electrons which possess energies up to the

Fermienergy.Theparametertransmissioncoefficientindicatestheprobabilityofan

41 electronpassingthroughapotentialbarrier[50].Theprobabilitydependsontheshapeof thebarrier(rectangular,triangular,etc.),onitswidthandheight.

Hence for a lower and thinner barrier, higher is the transmission coefficient. For a rectangularbarrierthetransmissioncoefficientisgivenby:

1 T = (3.7) 1 V 2  a  1+ sinh 2  2m(V − E)  4 E(V − E)  h 

Where“ a”and“h”arethewidthandtheheightofthepotentialbarrier,respectively,and

Eistheenergyoftheelectron(E

Fermi’sgoldenrulestatesthat[52].

“Thetransitionratei.e.theprobabilityoftransitionfromaninitialstateψ i )( intoallfinal statesψ ( f ) perunittime,isobtainedbymultiplyingtheabsolutesquareoftransition

amplitude by the density of final states at the energy Ei of the tunneling electron

2π δ (E − E ) andtheprefactor .Thetransitionamplitudeisevaluatedasthematrix ∑ f i h f element of some transition inducing potential between the initial stateψ i )( with

energy Ei andthefinalstateψ ( f ) withenergy E f respectively.Theinitialstateisthe wavefunctioncontainingtheelectronbeforethetransitionandthefinalstateisthewave functionoftheelectronafterthetransition“.Kineticenergyoftheelectroninadirection perpendiculartothebarrieraffectsthetunnelingprobability.

42

CurrentDensity

Thecurrentdensityiscalculatedas[60]:

2e J = P(E )[ f (E) − f (E + eV )]dE (3.8) h ∑ ∫ Z z K t EZ

TheEquation(3.8)isapplicableforafreeelectronmodel.

FromEquation(3.8)wecanobservethattheprobabilityoftunnelingisafunctionofthe

kinetic energy Ez , when the motion is perpendicular to the barrier and the Fermi occupation function depends on the total energy of the electron and the applied bias voltage[60].Sothetotalcurrentdensityisthecontributionoftheelectronswiththesame

EZ andhencethesame P(EZ ) over K t [60]

Thesestatescanbeillustrated(fig3.5)aslyingonannulusordiscinkspaceasshownin thefigandhencethetotalcurrentdensityatT=0Kbecomesasperequation(3.9)[49]

4πme 2V EF −eV J(v) = P(E V )dE + h 3 ∫ Z , Z 0 (3.9) 4πme EF (E − E )P(E ,V )dE h 3 ∫ F Z Z Z EF −eV

Figure3.5Statesofconstanttunnelingprobabilityfor(a) k z <= kmin (b) kmin <= k z <= kmax

43

Wheretheprobabilityisconstantandestablishesalinearrelationshipbetweenthecurrent and the applied bias at low voltages. But for the larger voltage when the magnitude becomesasignificantfractionofthebarrierheight,therelationshipgivenbytheequation

(3.9)holdsgood.

Bardeen’sGeneralFormalism

OriginoftheTransferHamiltonianTheory

BardeenusedthetransferHamiltoniantheorytoexplainthephenomenonofobservation oftunnelingcurrentflowingbetweenthetwometalsthatweresuperconductingandwere separatedbythinoxidelayerinGiaver’sexperimentin1960[53,54,55].

ThebasisoftheBardeen’sHamiltoniantheoryisthequantummechanicaltreatmentof theelectronsaswavefunctionswhichdonotdroptozeroabruptlyatthesurfaceofthe barrier but extend into the barrier with an exponentially decaying tail [53, 52]. The processoftunnelingoccurswhenthesewavefunctionsfromthemetalsoverlapandthe electrons can cross the barrier [53, 52]. The effectalsotakesintoaccountmanybody effectsandbandstructuresurfacestates.[52,56,57]

HenceinthecaseofHamiltonian,thetotalstructureofthebaseandthesamplecanbe separatedintodifferentsubsystemswithknownHamiltoniansandwavefunctionsasin

Figure3.6[52,56].

44

Figure3.6:SchematicrepresentationoftheSTMHamiltonian[56]

H = H 0 + H sample +Vtip−sample (3.10)

H = H base +Vatom−base + H atom + H sample +Vtip−sample (3.11)

Inequation(3.10), H 0 describesthenoninteractingtipplussamplesurface.Thetipis consideredasatungstenatomoranAlatomadsorbed on a flat W surface. Bardeen’s

formalismleadstotheevaluationofthematrixelement M v whichisgivenbyEquation

(3.12):[58]

2 → − h * M = ds(ψ ∇ψ −ψ ∇ψ ) (3.12) v 2m ∫ v v wheretheintegralisoveranysurfacelyingentirelywithinthevacuum(barrier)region separatingthetwosides.Thequantityinparenthesesissimplythecurrentoperator[59,

58,and2].SofromEquation(3.12)wecanobservethattheintegrandcontinuestohave

thewavefunctions ψ and ψ v oftheindividualsystemsandnotthefullsystem

Hamiltonianorwavefunction.Themainassumptionbehindthisformalismisthatthe

45 tunnelingprocessiscontributedbythewavefunctionsofthetwosubsystemswhichare unperturbed.Theabovemethodisuncomplicatedandeasyforcomputation[55].To obtainthetotaltransitionconductivityγ (E ) atthetunnelingenergyE,onehastosum overallpossibleinitialandfinalstatesatthisenergy.Withintheapproximationofnon interactingtipelectrodeandsamplesurface,thetransitionconductivityforanelectron

tunnelingatenergy E f = Ei isintroducedintheperturbationlimitas:[52]

4πe 2 2 γ (E) = ψ V ψ δ (E − E )δ (E − E ) (3.13) h ∑ f curr i i f i, f

Where

Vcurr =Vbase−W +Vtip−sample (3.14)

The transition conductivity evaluated in Equation (3.13) was for the energy corresponding to the tunneling energy E. Moreover, the applied voltage does not determinethetransitionconductivity.Butfortunnelingenergiesnearthefermileveland theappliedvoltagetendingtozero,thetransitionconductivityisjusttheinverseofthe resistanceR.[52]

dJ γ = at E = E (3.15) dU fermi

DrawbacksofTransferHamiltonian

TheinherentdrawbacksinthetransferHamiltoniantheoryisthatthecouplingbetween thetipandthesamplesurfaceintheSTMconfigurationhasbeenneglectedandhencethe validity of Transfer Hamiltonian (TH) formalism is limited in providing a consistent explanationfortheobservedSTMimages[60].Andtosubstantiatethisconclusionisthe

46 limitation of TH theory in interpreting the unforeseen large corrugations which were observedinclosepackedmetalsurfacessuchasAu(111)[62]andAl(111)[61].TH formalismgivesascopeforwavefunctionssuchasthe“Swaveorbital”foraspherical tip to give non zero current which is in contradiction to the concept of quantum mechanics[49].

Figure3.7:SchematicPictureoftunnelingGeometry,Probetiphasarbitraryshapebutis assumedlocallysphericalwithradiusofcurvatureR,whereitapproachesnearesttothe surface(shaded).Distanceofnearestapproachisd.Centerofcurvatureoftipislabeled

rO [58,2].

AccordingtoBardeen’sformalismdiscussedearlierthetunnelingcurrenttothefirst orderisgivenby[59,2]

2πe 2 I = f (E )[1− f (E + eV )] M δ (E − E ) (3.16) h ∑ V .V V

where M ν isthetunnelingmatrix f(E)=Fermifunction

47

V=appliedvoltage

E =Energyofthestate ψ intheabsenceoftunneling[59].

Forroomtemperatureandatsmallvoltagesofaround( ≅ 10meV),wetakethelimitsof smallvoltageandtemperatureas[59]:

2 2πe 2 I = V M δ (E − E )δ (E − E ) (3.17) h ∑ ν v f F ,υ

On the basis of above formalism, Tersoff and Hamann [59, 58] proceeded with their derivationof I.

TersoffandHamann[59,58,63,2]isanindependentelectrodeapproximationinwhich thetipismodeledasalocallysphericalpotentialwellwhereitapproachesnearesttothe surfaceasshowninthefigure3.7.TersoffandHamann[59,58,63,and2]helpinthe evaluationofthetipwavefunctionwhichisgivenas:

− 1 −k r−r0 2 kR −1 ψ = t Ct kRre (k r − r0 ) e (3.18)

Where t = ProbeVolume

2mφ k= h

Thesurfacewavefunctionisalsoexpressedas:

2 − 1 2 2 ψ v = s ∑ aG exp[−(k + k11 + G z]exp[i(k11 + G)X ](3.19) G

Equation(3.12)[50]gives M υ

Nowsubstitutingthesurfaceandthetipwavefunctionsintheexpressionfortunneling matrixandevaluatingtheexpansiontermbytermin G,weget:

48

2 h − 1 M = 4πk −1 2 k Re kR ψ (r ) (3.20) υ 2m t v o

Nowsubstituting(3.20)intoequation(3.17),wegetequation(3.21)[58,59,63and2]:

2 3 −1 2 2 2 −4 2kR I = 32π h e Vφ Dt (EF )R k e * ∑ψ v (ro ) δ (Ev − EF ) (3.21) v

Where Dt =densityofstatesperunitvolumeoftheprobetip.

Nowthefinalresultafterthesubstitutionofthemetallicvaluesinto(3.22)wegetthe tunnelingconductanceas[59,63and2]

2 2kR σ = 1.0 R e ρ(ro , E) (3.22)

2 ρ(ro ,EF ) ≡ ∑ψ V (ro ) δ (Ev − E) (3.23) V

' Theaboveanalysisisapplicableforlargetipsampledistances.Thefactor ρ(r, EF ) s behavioraffectstheperformanceofSTMintermsofsensitivityoftheanalysisputforth byTersoffandHamann[52,58,and59].Ithelpsin establishing a direct relationship betweenSTMimagethathasbeenobtainedexperimentallywithnotonlythetopography ofthesamplesurfacebutaswellwithelectronicstructure.Anychangeincorrugationis directlyaffectedbyanychangeinthedistancebetweenthetipandsamplesurfacewhich canbeinferredfromtherelationshipderivedabove.Forperiodicstructuresthemeasured corrugationamplitudedecreasesexponentiallywithresolution.Thesignificantdrawback oftheabovetheoryistheinabilitytoexplainthe spatial resolution when the distance

betweenthetipandsurfaceissignificantlylarge.[52,58,59].If ρ(EF ) containsanode thecurrentwilldroptozeroandthetipwillbepushedintothesamplebythefeedback system.Thenodeleadstoananonymouslyhighmeasuredcorrugation.

49

TersoffandHamann[52,58,and59]mimicthesamplechargedensitybyasumof

c sphericaldensitiesoftheform exp(−2kr) andthusobtainsamplechargedensityas: r

2 π 2 z ≅ exp[− (2 k 2 + − k)z](3.24) k a 2

Where “ a”isthedistancebetweenthe2atoms, V istheheightofthepotentialinthe

barrier, EF istheTunnelingEnergy.ThebasisonwhichtheTersoffHamanntheoryhas beendevelopedisthatthetipisasphericalstypetipandthatithelpsintheevaluationof thetunnelingmatrixbasedonthesurfacewavefunctionsofthetipandthesample.Inthe evaluation of the tunneling matrix the volume integral has been replaced by surface integral[52,64].

Threedimensionalscatteringtheoryofscanningtunnelingmicroscopy

Thephenomenonoftunnelingcanbedefinedwithrespecttothescatteringprocessin whichanelectronincidentfromtheinteriorofthetipmetalscattersatabarrierjunction andhasacertainprobabilityofpenetratingintothesamplesurface.ThetotalHamiltonian hastheformas:[52,53,and54]

o H = H +Vtip (3.25)

h 2 o − H = +Vcap (3.26) 2me

o Where H istheHamiltonianofa2electrodesystem(capacitor)withouttipatom, me is theelectronmass, V cap isthepotentialofthecapacitorwhichincludesthetwoelectrodes,

50

and V tip isthepotentialinducedbyatipatom,whichwouldbreakanyspatialsymmetry

thatmightexistsforthetwoelectrodesystem[53].Theexactformulationinscattering

theory is to calculate the total current of the scattering wave function i + from the

generalizedEhrenfesttheorem(GET).[52,54]

(3.27) 2πe 2 J i)( = f V + V i + δ (E − E ) h ∑ cap tip sample F i f

Where f isacurrentcarryingstateinthesamplemetal(thestatesarelabeledbythe

incidentmomentumiandthefinalmomentumf,respectively)[53,65].Equation(3.27)

holdsgoodforasingleelectronscattering.Inordertoobtainthenettunnelingeffect,the

summationisappliedtoalltheelectrons.Thescatteringprocessisdescribedbyawave

functioni+whichisanEigenfunctionofthetotalHamiltonianHincludingthesample

and tip potential and the potentials in the nano complex [52]. Here nano complex

indicatestheadsorbedparticlesalongwithatomsandparticlesinthetunnelgapthatform

thetipapex.idenotesthemomentumoftheincomingelectronand+signindicatesthe

incoming scattering boundary conditions. Therefore describes a wave with plane

componentspropagatingfromtheinteriortipoftheelectrodetowardsthetunneljunction

andwiththescatteredwavecomponentsemergingfromthescatteringprocess[52].

Thewavefunction f cap containsthefinalmomentumoftheoutgoingscatteredelectron,

whenithaspassedthroughthesample,andthisdoesnotexperiencethepotential V tip in

thebarrierregion. f hastobeanEigenstateof H o satisfyingtheoutgoingscattering

boundary conditions i.e. f describes a wave with plane wave components running

awayfromthetunneljunctioninthedirectiontowardstheinteriorofthesampleand

51 scatteredwavecomponentscollapsingtowardsthescatteringprocess[52].

.

Figure3.8:BoundaryConditionsforSTMscatteringprocess[52]

The GET [65] provides a natural connection between the mathematical and physical descriptions of the collision process and it enables the resolution of the scattered amplitudeinanychanneltobeeffectedquitereadily[51,58].Sousingthatthecurrentis obtainedas:

4πe 2 J = f V +V i+ > δ (E − E ) (3.28) f ←i h curr sample f i

InEquation(2.8)

Vcurr = Vapex−base +Vapex−sample (3.29)

By substituting the unperturbed tip wave function i instead of i + , then Bardeen’s formalismcanbeobtainedfromtheGETinfirstorderperturbationtheory[51].

52

Whentheappliedbiasisoppositethenthetunnelingcurrentbecomesas:

4πe 2 J = f V +V i + δ (E − E ) (3.30) f ←i h curr base f i

Eliminationof Vsample intheevaluationofthescatteringstates

Ithasbeenproved[58,52]mathematicallythattransitionmatrixcontainstheEigenstates

of the H sample insteadoftheplanewaves. Itisbecauseofthefact that the scattering

effects are already incorporated in the sample andhence Vsample iseliminatedfromthe transitionmatrixelement.Furtheranalysishavealsobeenpresentedinthepaper[52]in thisregard,whereithasbeenconcludedthatforasufficientlylargenumberofatomic layersinthetipbaseandinthesamplethetunnelingcurrentisnotdependentuponwhat ishappeningfarfromthetunneljunction.Addingallthetransitionmatrixelementswe getthetotalcurrentusingtheGellmanandGoldbergertheorem[58,52]as:

4πe 2 J = fˆ − V i + δ (E − E ) (3.31) h ∑ curr F i f ,i

ˆ Where f − isanEigenstateof H sample ( H base )fortunnelingintothesample(thetip).

ThetransitionmatrixusedinGETisasperequation(3.32): ) < f − Vcurr i+ >= ∑ V fA A i + (3.32) A

−1 Where A i + = ∑ 1( − GcapVcurr ) AB B i p (3.33) B

Gcap istheGreenoperatorforthesystemcomprisingthe2electrodes(baseandsamplein figure3.6)

53

[20]Whentheappliedvoltage E / etendstozeroweget Jas:

2πe 1 tip cap ~ ~ J = lim δ AB δ CD VBCVDA (3.34a) E→0 h ∑ E A,B,C,D

tip With δ AB = ∑ A i + i + B (3.34b) i

capacitor cap δ CD = ∑ C f cap f cap D (3.34c) f

tip δ AA representstheprojectionofthelocalfunction A onthescatteringEigen states thatareemittedfromthetipandreachthesamplesurface.Henceitisgiventhenametip

cap projected local density (TIPLOD) [58, 52]. Similarly δ AA is called the capacitor projectedlocaldensity(CAPLOD)whichistheprojectionofthelocal stateoneigen functions of the two electrodes system without tip atom and gives an insight into the electronicstructureofthesampleontheotherhandTIPLODspellsoutdetailsaboutthe tipsampleinteraction[58,52].

The f cap and i + factorsaresubstitutedby K sample and K tip whichrepresenteigen functions of standing waves because of their noninteraction between the tip and the sample[58,52].BecauseofthissubstitutiontheGETreducedtoFermi’sgoldenrule.

Sincethe3DScatteringtheoryoftunnelingisquiteanexhaustivesubjectinitselftodeal with,soforfurtheranalysisandtreatmentofthesubjectthereadersarereferredtoother papers[52,58,and65]for3DscatteringtheorybasedonGET.

54

ChapterSummary

The theoretical modeling of interaction between the tip and sample of a Scanning

Tunneling Microscope has been an area of intense research in the domain of

Nanophysics.InChapter3anattempthasbeenmadetodiscussaboutthephenomenonof tip to sample interaction based on the Bardeen’s General Formalism and the three dimensional scattering theory. Chapter 4 talks about the experimental set up and the differentsubsystemsthatconstitutetheSTMtestbed.

55

CHAPTER4

DESIGNANDINTERFACEOFTHEEXPERIMENTALSETUP

TheSTMExperimentalSetupactslikeatest bedfor testing of the various types of controllers starting from simple linear controller to complicated non linear controller.

Before the description of the experimental set up a brief overview about the design criteriatobefollowedinthedesignoftheSTMwouldhelpinthrowingsomelightonthe designoftheSTMtestbed.

Asmentionedearlier,thetunnelingcurrentisexponentiallydependentuponthedistance betweenthetipandthesample[66].Hencethevibrationisolatorsuppressesthechange in the distance between the probing metal tip and the sample due to the external mechanicalvibration[67].DuringtheoperationofSTMintheconstantcurrentmodethe

.o observed atomic corrugation especially that of metals will be around 0.1 A so the

o objectiveofthevibrationisolationmustbeatleast ≈ .0 01A orless[66].Thebehaviorof an STM as a result of the external noise is the result of two factors: the amount of vibrationswhichreachtheSTMandtheresponseoftheSTMtothosevibrations.[54].

Hencetheneedforagoodvibrationisolationsetupisimperativebasedontheabove arguments.

TypesofdisturbancestowhichtheSTMissubjected ThetwotypesofdisturbancestowhichtheSTMwillbesubjectedareingeneral[66]: vibrationandshock.Vibrationsarerepetitiveandcontinuousinnature.Shockisdefined

56 asatransientconditionwherebykineticenergyistransferredtoasysteminashorttime period.Buildingsvibrateatfrequenciesbetween10and100Hz[68].Theexcitationsof the vibrations are caused by those machines which run either at or near the line frequency. The resonant frequency of vibration of the frame, walls and floors of a building,whichundergoshearandbending(membrane)vibrationsaretypicallybetween

15and25Hz[68].Vibrationsduetoventilationducts,transformersandmotorsareat frequencies between 6 and 65 Hz. The vibrations induced due to people walking are between1and3Hz[54and68].From[68],itisunderstoodthatinordertooffsetthe influenceofvibrationsontheperformanceofSTM,thefocusshouldbeonthefrequency rangebetween1and100Hz.

VibrationIsolationTechniquesUsed

Thevibrationisolationtechniqueusedbytheinventorswasthatofamagneticlevitation of permanent magnets on a superconducting lead bowl [54]. [69] The two types of vibrationisolationtechniquesinpracticearespringsuspensionwithmagneticdamping andthesecondisastackofstainlesssteelplateswithVitondampersbetweeneachpair ofsteelplates.Thevibrationisolationsystemforsimplificationhasbeensubdividedinto twopartsonethetunnelingassemblyandtheothertheisolatortable[69].Theobjective ofthevibrationisolationistomakethetwoEigenfrequenciescompletelydifferentfrom one another [69]. [70]The three types of vibration isolation in vogue are: magnetic levitationutilizingtheMeissner’seffectofsuper conductivity, a two stage coil spring suspensionandmultiplestackedmetalplateswithrubberpiecesamongthem.Thefactor whichpreventstheusageofmagneticlevitationisthatitrequiresliquidHeandrequires much more elaborate vibration isolation techniques and the conventional usage of the

57 thermalisolationisinsufficientthethermalstress takes a longer time to relax causing thermaldriftintheSTMImages.Itisseenthatthemetalstackisolatorsaremorewidely used .FortheSTMexperimentalsetupthathasbeenfabricatedintheSmartStructures

NanoElectromechanicalSystemslab,ClemsonUniversityanopticalbenchboughtfrom

Newport®hasbeenusedtodampoutthevibrations.Oneoftheearliestresearchesinthe fieldofdesignofSTMinvolvingvariouscriteriawasdealtbyDieterW.Pohl[68].

Figure4.1:(a)BasicFeaturesofatypicalSTMincludingtwosetsofthreedimensional

translationalstagesanddampers.(b)Simpleequivalentmodel[68].

ExperimentalSetup

The experimental set up mainly consists of a coarse positioner (in the form of a micropositioner),finepositioner(intheformofananostager),STMElectronics(STM

58

Preamplifier), Optical Subsystem (in order to facilitate the coarse as well as the fine positioner)andSTMhead(constitutingSTMtipholderandsampleholder).Thedetailed descriptionabouteachoneofthemisfoundasbelow:

Figure4.2:Schematicoftheoverallexperimentalsetup.

CoarsePositioner

Thecoarsepositionerisintheformofastagerwithamotionintermsofmicrometers.

ThestagersaredrivenbyarmaturecontrolledDCservomicromotors.Themicromotors are manufactured by Faulhaber®. Three micro motors interfaced with one another providecoarsemovementintheX,YandZdirections.The3Degreeoffreedom(DOF) is achieved through two micro motors of the M126 DG1® genre in the Y and Z directionsandthroughasingleM410DG1®micromotorintheXdirection.Further informationregardingthefeaturesofthemicropositionercanbefoundinappendix.

59

Finepositioner

ThefinepositionerisintheformofaNanostagerboughtfromPhysikInstrumente®.The

Nanopositionersimilartothemicropositioner,iscapableofmovementinallthethree directionsvizX,YandZ.TheP753®NanoAutomationstageactuatorfromPIactsas the fine positioner in the Z direction. The P733® single module, XY Piezo flexure

Nanopositioner®andScannerstagerprovidestheXandYaxesmovement.

Figure4.3:AnSTMtipandtipholdermountedontheP753Nanoautomationstage

actuator.

Thescanningrangeprovidedbythemisaround100X100 m andsimilar,toP753

NanoAutomation®stageactuatorthesubnanometerand nanometer level accuracy is obtainedowingtothecapacitivefeedbacksensors.Adetailedandindepthanalysisofthe mathematical modeling based on hysteresis of the above mentioned piezoelectric actuatorshasbeendonein[70].

60

STMHead

TheSTMHeadcomprisesofSTMTip,Tipholderandthesampleholder.STMtipmade withaconcentrationof80%Platinumand20%Iridiumhasbeenusedforinitialimaging purposes.TheinhouseSTMunderconsiderationisonetobeusedinair.HencetheSTM tipboughtfromMolecularImagingCorporation®isintendedtomeettheobjectivequite well.

Figure4.4:Adetailedfieldofviewofanelectrochemicallyetchedtip[71].

Figure4.5:STMHeadconstitutingtheTipHolderandthesampleHolder.

61

ThenextcomponentoftheSTMHeadbeingSampleHolderwasboughtfromNanosurf® which was custom made specifically for use in easy Nanosurf® Air STM. This necessitatedthedesignofafixtureforfixingtheSampleHolder.ThisparticularSample

Holderwaschosenforitscylindricalshapeandstainlesssteelbodywhichprovidesbetter electrical contact, facilitating better application of bias voltage with lesser conduction losses.Thesampleholderalsopossessesamagneticheadontopofwhichasampleplate can be affixed. On a preliminary basis the sample to be imaged can be a HOPG or

Graphite.Thetipholderthatwasfabricatedwastakencaretobeanon–conductingone sothatthetunnelingcurrentlossesareminimal.

STMElectronics

TheSTMPreamplifierformsapartoftheSTMElectronics.Theoperationalabilityofthe

STM preamplifier determines the imaging capability and the resolution of the STM

Images[72].Therearetwokindsoftunnelingcurrentpreamplifierswhichare:

a) “feedback picoammeter consisting of an operational amplifier with resistive

feedback

b) Electro meter amplifier which consists of shunt resistor followed by a voltage

amplifierrealizedbyanopampaswell.”[72]

AsmentionedinChapter2,thetunnelingcurrentactsasafeedbacksignalinthecontrol oftheZheightofthescannerintheconstantcurrentmode.Thepreamplifier’soutputacts asafeedbacksignalwhichwillbeutilizedinthedevelopmentofthecontrollerforthe

62

STMandtheoutputvoltageofthepreamplifierchangeswithdistancebetweenthetip andthesample

Thepreamplifiercircuitsgivenin[72],[73]and[74]weretestedexperimentallyaswell assimulationswasrunforthesame.Outofthemthedesignspecifiedin[74]waschosen for the STM test bed owing to its simplicity of design and the minimum number of componentsrequired.

Figure4.6:(a)Preamplifiercircuitconstructedonabreadboard.(b)Preamplifiertesting

stationwithabiassupplyvoltageandpowersupply.

dSPACE®R&DControllerBoard

The version of dSPACE  R & D Controllerboard used is DS1103®. The controller boardcanbeinterfacedandsoftwareprogrammedusingSimulink Software[75].The interfacingwiththeSimulink softwareprovideseaseofoperationbyallowinggraphical manipulation of I/O blocks. dSPACE  R&D controller board helps in the hardware implementationofthecontrolalgorithmsdevelopedbytheSimulink software[75].The dSPACE  provides a range of interfaces which include 50 bit I/O channels, 36 A/D channelsand8D/Achannels.Theseinterfacesallowsimultaneousacquisitionofdata

63 from various actuators and sensors. An onboard DSP controller unit TMS 320F20  facilitatesthefastprocessingoftheacquireddata.

TheDS1103®isdesignedforrapidcontrolprototyping and this characteristic feature widensitsareaofapplicationsto[75]:

1) ActiveVibrationControl

2) DevelopingpositioncontrolformotorslikeDCServoMotor,DCStepperMotor

andInductionMotors.

3) Robotics

Figure4.7:dSPACE®DS1103ControllerBoardConnectedtothePZTServo

Controller[70].

64

InterfacingofC809MotionI/O®withdSPACE®DS1103R&DController

Board

ThePinassignmentwasdoneasshown:

Table4.1MatchingofthepinsbetweentheC809MotionI/O®anddSPACE®side

C809I/OMotionSide® dSPACE®Side

Functions PinNo: PinNo: Functions

1. Axis1EncoderPhaseA 36 CP192 PHIO(1)

2. Axis1EncoderPhaseB 37 CP194 PHI90(1)

3. Axis1EncoderIndex 38 CP196 IDX(1)

4. DigitalGround 2 CP1910 GND

5. Axis2EncoderPhaseA 42 CP202 PHIO(2)

6. Axis2EncoderPhaseB 43 CP204 PHI90(2)

7. Axis2EncoderIndex 44 CP206 IDX(2)

8. DigitalGround 8 CP2010 GND

9. Axis1HomeSwitch 4 CP1720 IO0

10. Axis1Forwardlimitswitch 39 CP172 IO1

11. Axis1ReverseLimitSwitch 40 CP1721 IO2

12. Axis2HomeSwitch 10 CP173 IO3

13. Axis2ForwardLimitSwitch 45 CP1723 IO4

14. Axis2ReverseLimitSwitch 46 CP175 IO5

15. Axis1Inhibit 6 CP1724 IO6

16. Axis1Trigger 5 CP176 IO7

65

17. Axis2Inhibit 12 CP1726 IO8

18. Axis2Trigger 11 CP178 IO9

19.Axis1Breakpoint 26 CP1727 IO10

20.Axis2Breakpoint 60 CP179 IO11

21.AnalogI/P1 32 CP1 AnalogtoDigitalConverter

22.AnalogI/P2 66 CP2 AnalogtoDigitalConverter

23.AnalogO/P1 29 CP9 DigitaltoAnalogConverter

24.AnalogO/P3 63 CP10 DigitaltoAnalogConverter

25.DigitalGround 2 CP171 GND

26.Host+5V 59 CP1736 V cc

AShortDescriptionoftheInterfacing

Thepinsfromserialnumbers1to20aredigitalinnature.Thisfactnecessitatedusingthe

DigitalI/OportofthedSPACE®forinterfacing.TheC809MotionI/O®wascustom madetoworkwithNationalInstruments®I/Ocard,sothisaspectpromptedtoutilizethe

DigitalI/OpinsofthedSPACE®.ThefirststepwastotapallthedigitalpinsontheC

809 I/O Motion Side. Accordingly the first 20 pins were selected for interfacing and tapping the digital signals for running the micropositioner. For pins corresponding to serialnumbers21to24thenatureofsignalsbeinganalogpromptedustoutilizetheA/D

andD/AportsofthedSPACE®.AttheenddigitalGroundand VCC pinswereconnected for completing the interfacing process. In the beginning it was assumed that the pins breakpoint and the trigger willbe required for running the micropositioner. But later

66 afterfewpreliminarylevelexperimentsitwasfoundthattheencoderphaseAandBpins and Encoder index pins corresponding to each axis along with Forward, Reverse and

HomeLimitSwitcheswerenecessaryforrunningeachaxisofthemicropositioner.Axis

Inhibitpinshadtobetiedhighi.e.anonzeroquantityofthevoltagehastobesupplied totheinhibitpininordertomakeitrun.AnAnalogVoltagesupplyisalsosuppliedin ordertovarythespeedofrotationoftheDCServoMicromotor.Forthispurposepin withserialnumber26wasutilized.InitiallythetyingoftheInhibitpinwithanonzero

voltageandvaryingofthespeedofrotationoftheDCServomotorusingthe Vcc pinwas donemanually.Hence,thedigitalpinsalongwiththeanalogpinswereutilizedinorder tomakethemicropositionertorunwithathirdpartydrivewhichisdSPACE®inthis case.ButlateracustommadecablewasbuiltwhichhadaNationalInstruments®Cable boughtfromNI®fortheC809I/OMotion®Sideandtheotherendwasa37pindSub connectorpinforthedSPACE®side.Successfulcompletionusingthiscablefacilitated inestablishingaswellasacquiringsignalspertainingtotheencoderusingsoftwarecalled

“ControlDesk®”easierandeliminatedmanualcontrol.

Software

Softwareheresatisfiestwopurposes:Automaticcontrolofthemicropositionerandthe

STMasawhole;SecondlyprocessingoftheimagecapturedbySTM.Fortheautomatic controlofthemicropositionerControldesk®isusedforthefrontendandSimulink®is used for the back end. Various types of commercial softwares are available like the

SPIP® (Scanning Probe Image Processor), Deconvolution Software®, GXSM® for scanningandprocessingoftheimageobtainedfromaSTM.Butforthepreliminarylevel

67 experimentsMatlab®hasbeenconcludedtobesufficientfortheimageprocessingofthe dataobtainedfromtheairSTM[76].

Figure4.8:ApicturehighlightingtheControldeskenvironmentasthefrontendwhichis

usedtodevelopthecontrolalgorithmsfortheSTM.

OpticalSystem

ThecontrolofSTMrequirescoordinationofboththecoarsepositioneraswellasthefine positionerinordertomakethetipreachtheoptimumdistancenearthesamplewhichis fixed.InthefirststagetheDCServoMotorisrunbyadjustingthecoarsepositionerup

68 toacertainpointandafterthatthenanopositionerisactivatedinordertomakethetip reachanoptimumdistancenearthesample.Thesecondstageofcontrolinvolvingthe nano positioner as mentioned before is in the order of nano meters. So for a precise controlweneedacameraoranopticalsystemthattracksthisnanometerlevelmotion.

APulnix®camerawitha0.67Xadaptersatisfiesthispurpose.Thecameraalsocomes withanAccupixel®ControlSoftwarethathelpsinsimultaneousonlineimagingofthe objectscapturedbythecamera.

ExperimentalProcedure

The experimental procedure that has been described in the following lines is for the operationofaSTMintheconstantcurrentmode.Theentiresubsystemisactivatedby interfacing all the components. Initially the coarse positioner is run for several micrometersuptoacertainpointandoncewiththehelpofthemicropositioner,thetipis broughtwithinthecapturerangeofthecamera,thenanostager(intheZdirection)is activated. At this stage the nano stager is carefully run in order to find the optimum distancebetweenthetipandthesample.Atanoptimumdistancethecurrentbeginsto flowbetweenthetipandthesample.Wiresaresolderedtothemetallicpartofthetipand to the stainless steel body of the cylinder (Sample Holder). Depending upon the magnitudeofthecurrentoutputfromthepreamplifier,thezheightofthenanostageris adjusted.Oncetheoptimumdistancehasbeenestablishedthecurrentbetweenthetipand the sample starts flowing. And this generation of current is based on the quantum mechanicalphenomenonofmatter,thetheoreticalaspectofwhichhasbeendiscussedin chapter 4. This current is amplified using a preamplifier which provides the feedback

69 signalforcontrollingthezheightofthemicropositioner.Theoptimumdistanceinthe initialstagesisreachedbytrialanderror,asitdependsonthetypeofthesampletobe imagedandthemagnitudeofthebiasvoltagethatis applied between the tip and the sampleAfteranobservablemagnitudeoftunnelingcurrenthasbeensensedthroughone oftheD/AchannelsofthedSPACE®R&Dcontrollerboard,themovementoftheZ stagerisstopped.TheXandYstagersofthenanostagerareactivateddependingupon therequirementinordertocompletethescanningofthesampleplacedonthesample holder.Variousnumericalvalueswouldbeobtained correspondingtotheX,YandZ directions using which surface profile of the sample is generated with the help of

Matlab®.

Followingprecautionsneedtobetakenbeforebeginningtheimagingprocess:

a) Thetipandthesampleholderneedtobecleanedinitiallyusingacetoneandthen

using ethanol in order to remove the sweat and the oils that could have

accumulatedduringthehandlingofthesampleandthetipholder.Itisnecessary

tocleantheoilsandthefluidsastheycontributetotheconductionlossesduring

thepassageofthenanolevelcurrent.

b) Ifthetipistobecutfromawirethenitshouldbeetchedinanangularwaysothat

the edge of the tip contains only a single atom thus facilitating the tunneling

processwhenthetipisbroughtincloseproximitytothesample.

c) Thecuttipalsoneedstobehandledbyusingatweezersothattheyarenot

exposedtothenakedhands.

d) GlovesalsoshouldbewornwhilehandlingthecomponentsofSTMhead.

70

BasedonthedesigncriteriaoutlinedbyDieter.W.Pohl,ithasbeenthoughttobeessential tocovertheentireexperimentalsetupwithaglassenclosureinordertopreventnoise andexternalvibrationsduringtheimagingprocess.

Figure4.8:Backviewoftheexperimentalsetupmountedonanopticalbenchand

enclosedinsideaglasscase.

DetailsofdesignsofSTMapparatushavebeenprovidedintheappendix

ChapterSummary

VarioussubsystemsconstitutingtheScanningTunnelingMicroscopetestbedhavebeen described.TheprocessofinterfacingofthemicropositionerwiththedSPACE®R&D controllerboardalongwiththepinassignmenthasbeendiscussed.Theotherapparatus likeSTMElectronics,opticalsubsystem,nanostageretcandtheiroperationhavebeen described.Chapter5discussesabouttheresults.

71

CHAPTER5

RESULTSANDDISCUSSIONS

As mentioned in Chapter 2, the tunneling current acts as the feedback signal in the control of the height of the Z stager in the constant current working mode. The plot showninFigure5.1showstheouputvoltageofpreamplifiercircuitwhenthetunneling gapdistanceinthecircuitisvaried.

Figure5.1(a):Plotofthepreamplifiervoltageinvoltswithrespecttotimeinseconds

72

Figure5.1(b)Zoomedplotofvariationofpreamplifiervoltagewithtimeinseconds

73

Figure5.2Plotofdisplacementofmicropositionerforasinusoidalinput

Displacementofthemicropositonerisafunctionofthistunnelingcurrent.Theplotof

Figure5.2indicatesthedisplacementofthemicropositionerforasinusoidalinput.From

Figure 5.2, we can observe that for a sinusoidal input the output must go spiraling downwardsbutonthecontraryitspiralsupwardsduetothepositionoftheencoderand the displacement of the DC micromotor from the Home switch towards the Forward limitswitch.

74

Thepreamplifiercircuitgivenin[72]isshowninFigure5.3:

C4

3p out R3 R2 R4 C2 10K 10K 25 1p

V6 12 V3 5

V5 I1 12 1n X1 X2 R7

C1 R1 402 5p 200 C3

8.2p V4 R5 R6 5 R8 470K 470K 402

C5 R9 0.1u 100K R10 R11 470K 470K

V1 V2 12 12

Figure5.3:AcircuitdiagramshowingapreamplifierusedinSTM[72].

PSPICE wasusedtorunbasicsimulationsforthecircuitdiagramgiveninFig5.3.The simulationsofthecircuitareasshowninFigure5.4andFigure5.5:

75

Circuit1-Transient-6-Graph Time (s) 2.050u 2.100u 2.150u 2.200u 2.250u 2.300u 2.350u 2.400u

(V)

2.000

1.000

0.0

-1.000

-2.000

-3.000

-4.000

-5.000 TIME -1.000 v(out) -1.000 D(TIME) -1.000 D(v(out))-997.577m

Figure5.4:Theinputconditionsforthepreamplifierwere1nanoampere(currentsource

assumption),20MHz,1 V peaktopeak

Circuit1-Transient-5-Graph Time(s) 4.880u 4.900u 4.920u 4.940u 4.960u 4.980u 5.000u 5.020u 5.040u 5.060u 5.080u 5.100u 5.120u

(V)

100.000m

50.000m

0.0

-50.000m

-100.000m

-150.000m

-200.000m

-250.000m TIME 3.516u v(out) -54.509m D(TIME)385.007n D(v(out))52.281m

Figure5.5:Theinputconditionsforthepreamplifierwere1nanoampere(currentsource

assumption),20MHz,1mVpeaktopeak

76

77

CHAPTER6

CONCLUSIONS

Intheabovethesisworkanattempthasbeenmadetobuildandfabricateaninhouse

STM.Tounderstandthesystembetter,ananalysiswasdoneonthedesignofSPM(in general)basedonthepastliterature.Thedevelopmentsthathastakenplaceinthefieldof tiptosampleinteractionhavealsobeendiscussed,whichfacilitateintheinterpretationof thephysicsofthephenomenonbetweenthetipandthesample.Thiswasfollowedupby apracticalefforttobuildaninhouseSTMbyinterfacingvarioussubsystems.Theinitial taskwastoautomatethecontrolofthemicropositionerandestablishasoftwarecontrol ofthemicropositionerwithSimulink®asthebackendandtheControldesk®asthe frontend.TherewereotherauxiliaryapparatusthatweredesignedfortheSTMlikeSTM electronics, STM head (STM tip holder and Sample holder) to complete the test bed.

Many preamplifier circuits were tested for their effectiveness. A preamplifier with minimumnumberofpassivecomponentswasconstructedinordertoamplifythevoltage and provide the feedback signal. This feedback signal will be utilized to control the heightofthemicropositionerintheZdirection.Anopticalsubsystemintheformofa high resolution camera from Pulnix® has been interfaced to facilitate a dual stage control.Theentireexperimentalsetuphasbeenenclosedinaglasscase.Though,under thepresentconditionsnanolevelimageshavenotbeenattainedbut,itcanbeconfidently statedthatwithsomemodificationstothepresentfabricatedexperimentalsetup(which mighttypicallyinvolvereplacementofthecurrent dSPACE®R&Dcontrollerboard

78 withahigherresolutiondataacquisitionboard)andsomemoreattempts,acquisitionof nanolevelimagesisfeasible.

FutureWork

Thisprojectworkcanberightlydescribedasa“fertileground“forfurtherresearch.The futureworkwouldinvolvethedesignandimplementationofvarioustypesofnonlinear controllersforthecoarsepositioneraswellasfortheSTMasawhole.Theeffectiveness ofthecontrollerswouldbeadirectmeasureoftheresolutionofthenanolevelimages obtainedusingtheSTM.Thecoarsepositionerthathasbeenfabricatedhasnonlinearties like backlash and friction which can be included in the design of the non linear controllers.Though,atpresenttheacquisitionofnanolevelimageshasnotbeencarried out due to the hardware constraints (like resolution) pertaining to the data acquisition board.ButinthefutureahigherresolutiondataacquisitionboardlikeDataphysics®can solvetheproblemofacquiringimages.Thecamerathatisusedforzoominginduringthe fine positioning of the tip to sample interaction can be used as a tool in developing controllers based on visual feedback. Better image processing algorithms can also be implementedinordertoprovidebettergraphicsuserinterfacefortheacquisitionofdata andvisualizationofthefineaswellascoarsepositioner.Thepreamplifierwhichhasnow beenconstructedonabreadboardandplacedneartheSTMatadistancecanbemade moresophisticatedbysolderingitonaPrintedcircuitboardandplacingitneartheSTM head,whichwillshortenthelengthofthewiregoingintothebreadboardandhence reduceconsiderablytheelectricalnoiseassociatedwithit.Anenclosuretypicallymade ofsteelorbrasscanalsobeprovidedtocovertheSTMpreamplifierinordertomakeit

79 less sensitive to the vibrations which might affect the resolution of the images to be obtained.Thefabricationcanalsobemademore“inhouse”orindigenousbycreatinga tipmanufacturingmodule.Thismodulemaytypicallyincludeadessicatortofacilitate cleaningthecylindricalsampleholderandtipholder.Theadvantageofpossessingsucha module near the test bed itself will facilitate un interrupted supply of tips during the imagingprocess,becausethereisahighprobabilityofoccurrenceoftiptosamplecrash.

Futureworkmayalsoinvolvenanoindentationandnanomanipulationusingthepresent experimentalsetupasabaseandwithadditionalimprovisedinstrumentation.

Figure6.1:Topographyimageofasurfaceinwhichnanoindentationhasbeendone.

[77].

80

Figure6.2:Alayoutofthecontrolalgorithmthatisbeingdevelopedtocontrolthe

scanningprocessoftheairSTMthathasbeenbuiltwithSimulink®softwareasthe

backend.

81

APPENDICES

82

83

AppendixA

DesignDiagramsofSTMHead

ThedesignofthetipholderisasshowninFigureA.1,FigureA.2andFigureA.3:

FigureA.1:ASchematicofafixtureforholdingthetwolegsofthetipholder.

FigureA.2:ASchematicofafixtureforholdingtheconductinglegofthetipholder.

84

FigureA.3:ASchematicofafixturethathasbeenformedbycombiningboththefixtures

showninFigureA.1andFigureA.2

Thetipholderfixturewasdesignedkeepinginperspectivethatthetipholderusedinthe experimentwasspecificallymanufacturedbyOmicron®technologiesandwasdesigned tobeusedinVacuum

85

72

50 17 7 2 5,08

O 5,5

O 3

29,46 23

FigureA.4:DesignofafixtureforholdingthecylindricalsampleholderupontheXand

YaxesNanostagerboughtfromPI®

86

FigureA.5:Designofthefixturetoholdthetipusingascrewwhichwasmountedonthe

P753Nanoautomation®stager

87

FigureA.6:Thesampleholdershownbelowwasdesignedandmanufacturedintwo

steps:

Step1:Thesamplewasdesignedandmanufacturedasasinglepieceasshownabove.

88

Step2:Thewholepiecewasthenwirecutexactlyatthecenterofsymmetry

89

AppendixB

ImagesrelatedtoSTMPreamplifier

FigureB.1:Imageofapreamplifierthatwasconstructedwithaprovisiontochangethe

gainofthecircuitusingapotentiometer

FigureB.2:Imageofapreamplifier[74]onabreadboardthatisbeingusedintheSTM

testBed

90

FigureB.3:Circuitdiagramofthepreamplifierthathasbeenconstructed[74]

91

AppendixC

ListofEquipments

Micropositioner

ThemicropositionersboughtfromPhysikInstrumente®are“compactclosedloopDC motorwithashaftmountedhighresolutionencoderandaprecisiongearheadproviding

0.1mminimumincrementalmotion”[78].

In order to ensure protection of the equipment the stages are provided with non contacting,HallEffectlimit(TTLdrivers)anddirectionsensingswitches(likeForward,

ReverseandHomelimitswitches)whichareplacedthroughoutthetravelrangeofthe stager.Theseswitchesareresponsibleforcontrollingtheovertravelofthestager.They alsopreventthestagerfromcomingtoahardstop.Asmentionedearlier,theHallEffect switchesinthestagerprovideTTLsignalastowhetherthestageistothenegativeorthe positivesideofthefixedpoint[79].BoththeM126DG1®andM410DG1®possess theseHallEffectswitches.Thetravel rangeof theM410DG1®is100mmandits maximumvelocityis1.5mm/sec.ThetravelrangeoftheM126DG1®is25mmand themaximumvelocityis1.5mm/sec.

92

FigureC.1:ApictureoftheM126DG1whichbelongstothesamegenreofM126DG1

stagers[78]

FigureC.2:ApictureoftheM410®seriesoftranslationalstagers[79].

BoththesestagersaredrivenbyanarmaturecontrolledDCservomotormanufacturedby

Faulhaber®theoutputpowerofwhichis1.75watts.Therearealsovariantsofthesame

93 genre of stagers which are driven by stepper motorsbutthey arenot chosenasservo motorsuseafeedbackfromthemotortohelpthemotorgettoadesiredstate.[82]

Thedetailedspecificationsaboutthemotorconstantsarefoundin[86].

Nanopositioner[83]

TheNanopositionersimilartothemicropositioneriscapableofmovementinallthe threedirectionsvizX,YandZ.TheP753®NanoAutomationstageactuatorfromPIis the one that has been used as the Nanopositioner. The characteristic features of the

Nanopositionerareitsscanningrangeofupto38 m andveryfastsettlingtime[81].

The stage actuators are also extremely fast and compact devices. They can be used as both linear actuators as well as translation stages. The subnanometer resolution of around0.05nmisattributedtothecapacitivefeedbacksensorincorporatedintheNano

Automationstageactuator.Theabovementionedcharacteristicfeaturesmakeitideally suitedforPreciseTrajectoryControlforuseinapplicationslikeScanningMicroscopy,

Scanninginterferometry,Micromanipulationetc.

94

FigureC.3:LISA®NanoAutomationStageactuators[81]

Asinglemodule,XYPiezoflexureNanopositionerandScanner

The P733® single module, XY Piezo flexure Nanopositioner and Scanner stager providestheXandYaxesmovement.Thescanningrangeprovidedbythemisaround

100 X 100 m and similar, to P753® Nano Automation stage actuator the sub nanometer and nanometer level accuracy is obtained owing to the capacitive feedback sensors.TheNanostagerworksontheprincipleofParallelKinematics,whichprovides theNanopositionerwiththeadvantageofeliminationofcables[83].Theeliminationof cableshelpsinprovidingbetteraccuracyandresolutionatthesubnanometerlevelasthis alsohelpsinreducingfriction.Theadditionaladvantagesbeingincreasedresponsiveness andrepeatability[83].ThefieldofapplicationsisthesameasthatmentionedforP753®

NanoAutomationStageActuator.

95

FigureC.4:P733®FlexureNanopositioner[81]

PowerSupplyUnits

FigureC.5:ApictureoftheCPS250powersupplyunitsfromTEKTRONIX®[84]

TwoCPS250PowerSupplyUnits(eachwithonefixed5V,2Aandtwovariable0to20

Vand0.5Apowersupplies)fromTektronix®wereusedforsupplyingbiasvoltageand powersupplytotheAD549JHopampinthepreamplifier.

96

97

REFERENCES

[1]Smith,R.,James,1997,“AnOverviewtoScanningProbeMicroscopy ”,Educ.Chem , Vol. No: 34, 4,P.107111

[2]Bai,C.,2000,“ScanningTunnelingMicroscopyanditsApplications ”,Springer Verlag,NewYork.

[3]URL:http://www.zyvex.com/nanotech/feynman.htmlAwebsitedealingwiththe SpeechdeliveredbyDr.RichardFeynmanonDecember29th1959.Cited04/25/2007

[4]URL:http://www.lbl.gov/LBLPrograms/TEAM/:Awebsitedealingwiththe NationalCenterforElectronMicroscopy:Cited04/15/2007

[5]VidaSimiti,I.,Jumate,N.,Chicinas,I.,Batin,G.,2004,“ApplicationsofScanning ElectronMicroscopyinNanotechnologyandNanoscience”,Rom.Journ.Phy.,Vol No: 49 ,910,P.955965,BucharestMeetingoftheAmericanPhysicalSociety attheCaliforniaInstituteofTechnology.

[6]Binnig,GandRohrer,H.,1984, in“ TrendsinPhysics”, (editors:J.JantaandJ. Pantoflicek,EuropeanPhysicalSociety ,P.3846

[7]Dovek,M.M.,Heben,M.J.,Lewis,N.S.,Penner,R.M.,Quate,C.F.,1988, “ApplicationsofScanningTunnelingMicroscopytoelectrochemistry”,American ChemicalSociety , Vol No: 378 ,P.174201

[8]Lindsay,S.M.,Nagahara,L.A.,Thundat,T.,Knipping,U.,Rill,R.L.,Drake,Prater, C.B.,Weisenhorn,A.L.,Gould,S.A.C.,andHansma,P.K.,1989,“STMandAFM ImagesofNucleosomeDNAunderwater”,JournalofBiomolecularstructureand Dynamics , Vol No: 7,2

[9]Liu,H.Y.,Fan,F.F.,Lin,C.W.,andBard,A.J.,1986, AmericanChemicalSociety , Vol No: 108 ,P.38383839 [10]Sonnenfeld,R.,andHansma,P.K.,1986, Science, Vol No : 232 ,P.211213

[11]Drake,B.,Prater,C.B.,Weisenhorn,A.L.,Gould,S.A.C.,andHansma,P.K.,1989, Science,Vol No :243 ,P.15861589

[12]Thundat,T.,Nagahara,L.A.,Oden,P.,andLindsay,S.M.,1989,“Direct ObservationofBioelectrochemicalProcessesbySTM”, J.Vac.Sci.Technol,Vol No: A, 8,1,P.645648

98

[13]Girard,J.C.,Gauthier,S.,Rousset,S.,andKelin.J.,1993,“Investigationsofthe Morphologyofcoppersurfacesbyscanningtunnelingspectroscopy”, Microsc.Micoranal.Microstruct,Vol No :4, P.489499

[14]Bonnell,A.,Dawn,” ScanningProbeMicroscopyandSpectroscopyTheory, Applicationsandtechniques ”,JohnWiley&Sons,NewYork,2001

[15]Tao,N.J.,Li,C.Z.,He,X.,2000,“ScanningTunnelingMicroscopyApplicationsin Electrochemistrybeyondimaging”,JournalofElectroanalyticalChemistry , Vol No: 492, P.8193

[16]Website:www.mrs.org/publications/bulletinAwebsitecontainingabulletinboard ThatdealswiththeapplicationsofScanningTunnelingMicroscopyinMaterialCited 05/10/2007 [17]HeinzReider–Karl,MeyerGerhard,WaiHlaSaw,MorescoFracesca, Brown,F.,Kai,MorgensternKarina,ReppJascha,FoelschStefanandBartels Ludwig,2004,“TheScanningTunnelingMicroscopeasanoperativetool:doing Physicsandchemistrywithsingleatomsandmolecules”,Phil.Trans.R.Soc.Lond A, Vol No: 362 ,P.1207 1216

[18]Bookleton“ThermoMicroscopes”, highlightingtheSPMtechniques.

[19]Ressel,B.,PracticalAspectsofScanningProbeMicroscopy, ICSTraining CourseonExperimentalMethodsinNanophotonics,Trieste(Italy),2125February, 2005.Cited:09/04/2007

[20]Hansma,G.,HelenandJan,.H,Hoh,1994,“BiomolecularImagingwiththeatomic Forcemicroscope”,Annu.Rev.Biophys.Biomol.Struct., Vol No: 23, P.11539

[21]Putman,C.A.,vanderWerf,K.O.,deGrooth,B.G.,vanHulst,N.F.,Greve,J., 1992.“Newimagingmodeinatomicforcemicroscopybasedontheerrorsignal”, Proc.SPIEInt.Soc.Opt.Eng ,Vol No: 16389 ,P.198204.

[22]Jalili,N.,andLaxminarayana,K.,2004,“Areviewofatomicforcemicroscopy Imagingsystems:applicationtomolecularmetrologyandbiologicalsciences ”, Mechatronics,Vol No: 14, P.907945.

[23]Wright,L.,Tanya,Master’sthesis,May2005,titled“Fabricationandtestingof HeatedAtomicForceMicroscopeCantilevers”, presentedtoDepartmentof MechanicalEngineering,GeorgiaInstituteofTechnology [24]URL:http://vpd.ms.northwestern.edu/teaching/AFM_MSc_190_lab.pdf:APDF FiledealingwithAtomicForceMicroscopypublishedbyNorthWesternUniversity Cited:05/10/2006

99

[25]Hofer,A.,Werner,Foster,S.Adam,Shluger,L.,Alexander,Oct2000,”Theoriesof ScanningProbeMicroscopesattheatomicscale”,ReviewofModernPhysics , Vol No: 75.

[26]URL:http://www.webpages.uidaho.edu/~aston/AFMShortCourse2001.docl: WebsitedealingwithaShortCourseon“SurfaceandColloidScience”byDr.Eric AstononJuly913,2001,UniversityofWashington,DepartmentofChemical Engineering,Seattle,Washington,Cited:04/15/2007

[27]Rugar,D.,Mamlin,H.J.,Guethner,P.,Lambert,S.E.,Stern,J.E.,McFadyen,I.,and Yogi,T.,August11990,“Magneticforcemicroscopy:Generalprinciplesand Applicationtolongitudinalrecordingmedia”,J.App.Phys, Vol No : 68,(3)

[28]Martin,Y.andWickramasinghe,H.K.,18May1987,“Magneticimagingby“force Microscopy”with1000Å ”,Appl.Phys.Lett ,50, Vol No : 20 .

[29]Williams,C.C.,1999, AnnualReviewMaterialScience, Vol No : 29 ,471

[30]Barrett,R.C.,Quate,C.F ., 1990,J.Vac.Sci.Technol, Vol No : A8 ,400

[31]Kopanski,J.J.,Marchiando,J.F.,andLowney,J.R.,Jan/Feb1996,”Scanning Capacitancemicroscopymeasurementsandmodeling:Progresstowardsdopant ProfilingofSilicon”,J.Vac.Sci.Technol .,B,Vol No: 14, 1 [32]Barrett,R.C.,andQuate,C.F.,Jan/Feb1990,”Imagingpolishedsapphirewith AtomicForcemicroscopy”,J.Vac.Sci.Technol ., Vol No: A8, 1

[33]Majumdar,A.,1999,”ScanningThermalMicroscopy”, Annu.Rev.Mater.Sci .,Vol No: 29 ,P.50585

[34]Pylkki,J.,Russell,MoyerJ.,Patrick,andWest,E.,Paul,1994,“Scanningnear FieldOpticalMicroscopyandScanningThermalMicroscopy”,Jpn.J.Appl. Phys .,Vol No: 33,P.37853790

[35]Williams,C.C.,andWickramasinghe,H.K.,1986: Appl.Phys.Lett .,Vol No: 49 1387 [36]Majumdar,A.,Carrej,J.P.,Lai,J.,1993,Appl.Phys.Lett , Vol No: 62 ,P.25013

[37]URL:http://www.tripleo.de/pages/application_spm.html#snomCited:07/12/2007

[38]Abbe,E.,Archiv.Mikros.Anat ,1873, Vol No: 9,413.

[39]URL:http://www.jpk.com/tutorial/snom_principle.htmCited:05/10/2007

100

[40]Dunn,C.,Robert,“NearfieldScanningOpticalMicroscopy”,ChemicalReviews , 1999,Vol No: 99 ,10. [41]R.ToledoCrow,P.C.Yang,Y.Chen,andM.VaezIravani, Nearfielddifferential Scanningopticalmicroscopewithatomicforceregulation, Appl.Phys.Lett, Vol No: 60 ,24,15June1992

[42]Cline,J.A.,Barshatzky,H.,andIsaacson,M.,1991,Ultramicroscopy,Vol No :38 , 299

[43]Pohl,D.W.,Fischer,U.C.,andDurig,U.C.,1988,J.Microsc.Vol No: 152 ,853

[44]Grober,D.R.,Harris,D.T.,Trautman,K.J.,andBetzig,Eric,March1994,“Design andImplementationofalowtemperaturenearfieldscanningoptical Microscope”,Rev.Sci.Instrum , Vol No: 65 ,3.

[45]Crow,R.Toledo,Yang,P.C.,Chen,YandVaezIravani,M.,15June1992,”Near fielddifferentialscanningopticalmicroscopewithatomicforceregulation”, Appl.Phys.Lett , Vol No: 60 ,24.

[46]Betzig,E.,Finn,P.L.,andWeiner,J.S.,1992,. Appl.Phys.Lett, Vol No: 60 ,2484.

[47]Talley,C.E.,Cooksey,G.A.andDunn,R.C.,1996,Appl.Phys.Lett., Vol No : 69 , 3809

[48]Colinge,J.P.,Colinge,C.A.,2002,“ PhysicsofSemiconductorsDevices ”,Kluwer AcademicPublishers ,Dordrecht,TheNetherlands.

[49]Drakova,D.,2001,”Theoreticalmodelingofscanningtunnelingmicroscopy, Scanningtunnelingspectroscopyandatomicforcemicroscopy”,Reportson ProgressinPhysics , Vol No : 64 ,P.205290.

[50]Bardeen,J.,1961,“Tunnelingfromamanyparticlepointofview”,PhysicalRevie w Letters , Vol No: 6 ,2,P.5761

[51]Giaever,I.,1960,”Energygapinsuperconductorsmeasuredbyelectrontunneling”, PhysicalReviewLetters , Vol No: 5 ,4,P.147148

[52]Wolf,E.L.,1985,“Principlesofelectrontunnelingspectroscopy ”,Oxford UniversityPress, Oxford.

[53]Albrecht,P.,Ritter,K.,Ruppalt,L.,“TheBardeenTransferHamiltonianApproach ToTunnelinganditsApplicationtoSTMandcarbonNanotubes”,Apresentation OnMay5,2004atBeckmannInstituteforAdvancedScienceandTechnologyat UIUC,USA.

101

[54]VandeLeemputandKempen,H.Van,1992,“ScanningTunnelingMicroscopy”, ReportsonProgressinPhysics , Vol No: 55 ,P.11651240

[55]Koetter,E.,Drakova,D.,Doyen,G.,1996,“RoleofthetipatominSTMandAFM: Theoryofatomtransfer”,PhysicalReview.B , Vol No: 53 ,24.

[56]Tersoff,JandHamann,D.R.,1983,“TheoryandapplicationfortheScanning TunnelingMicroscope”,PhysicalReviewLetters , Vol No: 50 ,25.

[57]URL:http://wwwex.physik.uni hlm.de/lehre/physikalischeelektronik/phys_elektr/node233.htmlCited:05/10/2007

[58]Sacks,W.,andNoguera,C.,Mar/Apr1991,“BeyondTersoffandHamann:A Generalizedexpressionforthetunnelingcurrent”,J.Vac.Sci.Technology ,B Vol No : 9, 2

[59]Longini,L.R.,1997,“IntroductorytoQuantumMechanicsfortheSolidState”, WileyInterscience ,JohnWileyandSons,NewYork

[60]Winterrlin,J.,Wiechers,J.,Brune,H.,Gritsch,T.,Hofer,H.,andBehm,R.J., 1989, Phys.Rev.Lett , Vol No: 62 ,59

[61]Lippmann,B.A.,1965,“Ehrenfest’stheoremandScatteringtheory”,Physical ReviewLetters , Vol No: 15 ,1 [62]Doyen,GandDrakova,D.,Dec1986,“ModelingCalculationsforthetunneling CurrentfromtungstentiptoaflatandsteppedNickel(100)surface”Sur.Sci , Vol No: 178 ,13,P.375381(III) [63]Hallmark,V.M.,Chiang,S.,Rabolt,I.F.,Swalen,J.D,andWillson,R.J., 1987,Phy.Rev.Letters , Vol No: 59 ,2879

[64]Doyen,G.,Drakova,D.,andScheffler,M.,1993,“Greenfunctiontheoryof Scanningtunnelingmicroscopy:Tunnelcurrentandcurrentdensityforcleanmetal Surfaces”,PhysicalReviewB ., Vol No: 47 ,15.

[65]Doyen,G.,1993,“TunnelCurrentandgeneralizedEhrenfesttheorem”,J.Phy: Condens.Matter , Vol No; 5,P.33053312

[66]Kuk,Y.,Silverman,P.J,Feb1989,“Scanningtunnelingmicroscope Instrumentation”,ReviewofScientificInstruments , Vol No : 60, 2

[67]Okano,M.,Kajimura,K.,Wakiyama,S.,Sakai,F.,Mizutani,W.,andOno,M., Nov/Dec1987“VibrationIsolationforscanningtunnelingmicroscopy”,Journalof VacuumScience.Technology , Vol No : A5, (6)

102

[68]Pohl,W.,Dieter,July1986,“Somedesigncriteriainscanningtunneling Microscopy”,IBM.JournalResearchandDevelopment , Vol No: 30 ,4

[69]Park,SangilandQuate,C.F.,Nov1987,“Theoriesofthefeedbackandvibration Isolationsystemsforthescanningtunnelingmicroscope”,ReviewofScientific Instruments , Vol No: 58,11

[70]Master’sThesistitled,“ NonlinearModelingandControlofPiezoelectrically DrivenNanostagers ”,submittedbyMr.SaeidBashashonDec2005tothe DepartmentofMechanicalEngineering,ClemsonUniversity,SouthCarolina,USA

[71]URL:http://www.molec.com/Products/AFM_consumables/STM_Tips.htmlCited 04/16/2007

[72]Demming,FDickmann,KandJersch,J.,June1998,“WidebandwidthTran ImpedancepreamplifierforScanningTunnelingMicroscope”,ReviewofScientific Instruments , Vol No: 69 ,6

[73]Chen,Y.P.,Cox,A.J.,Hagmann,M.J.,andSmith,H.D.A.,July1996, “ElectrometerPreamplifierforScanningTunnelingMicroscopy”,Reviewof ScientificInstruments ,Vol No: 67 ,7

[74]URL:http://www.angelfire.com/electronic2/spm/Preamp.pdf.Cited05/15/2006

[75]URL:http://www.dspaceinc.com/ww/en/inc/home/products/hw/singbord/ppcconbo.cf Cited05/15/2006

[76]URL:http://www.mathworks.com/applications/tech_computing/description/visimage Cited07/15/2006

[77]URL:www.tuharburg.de/gk/research/tipsample.html- Awebsitedealingwith TheInstituteofAdvancedCeramics,TechnischeUniversitätHamburgHarburg Cited:05/14/2006

[78]URL:http://www.physikinstrumente.com/en/pdf/M126_Datasheet.pdf Cited:05/14/2006

[79]MP42EUserManual:M126SeriesLinearPositioningStages:Release:2.6.0.

[80]URLhttp://www.physikinstrumente.com/en/primages/pi_M400_3ST_i4c_O_eps.jpg Cited:05/14/2006

[81]UserManualfromPhysikInstrumentetitled“Micropositioning,Nanopositioning, NanoAutomation”SolutionsforCuttingEdgeTechnologies

[82]URLhttp://zone.ni.com/devzone/cda/tut/p/id/3656#toc3Cited:05/14/2007

103

[83]URLhttp://www.physikinstrumente.com/en/products/prdetail.php?sortnr=201200 Cited:05/14/2007

[84]URLhttp://www.tek.com/site/ps/0,,3M15099INTRO_EN,00.html Cited:05/14/2007

[85]URL:http://www.physikinstrumente.com/en/pdf/C809_Datasheet.pdf Cited:05/14/2006 [86]URL:http://www.faulhabergroup.com/n41656/i120174.html:Cited06/30/2006

104